JPH04232071A - Thermal head - Google Patents

Thermal head

Info

Publication number
JPH04232071A
JPH04232071A JP40947090A JP40947090A JPH04232071A JP H04232071 A JPH04232071 A JP H04232071A JP 40947090 A JP40947090 A JP 40947090A JP 40947090 A JP40947090 A JP 40947090A JP H04232071 A JPH04232071 A JP H04232071A
Authority
JP
Japan
Prior art keywords
filler
glass
layer
surface roughness
hardness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP40947090A
Other languages
Japanese (ja)
Other versions
JP2837963B2 (en
Inventor
Teruhisa Sako
照久 佐古
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP2409470A priority Critical patent/JP2837963B2/en
Publication of JPH04232071A publication Critical patent/JPH04232071A/en
Application granted granted Critical
Publication of JP2837963B2 publication Critical patent/JP2837963B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electronic Switches (AREA)

Abstract

PURPOSE:To improve the surface smoothness of a protecting layer which comes in contact with a recording sheet without deterioration of hardness in a thick film thermal head used on a thermal printer. CONSTITUTION:A glazed layer 2 is formed on an insulator substrate 1 and a conductor for a common electrode 3 and a conductor for an individual electrode 4 are formed on the glazed layer 2. In addition, a thermal resistor layer 5 and a protecting layer 6 consisting of glass to which a filler is added, are formed. If the filler is added, the heat resistance and hardness of the glass are improved. Further, the smoothness of the surface is improved by setting the average granular diameter of the filler to 1 to 2mum max.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明はサーマルヘッド、特に表
面平滑性及び硬度に優れた保護層を有するサーマルプリ
ンタ用厚膜型サーマルヘッドに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermal head, and particularly to a thick-film thermal head for a thermal printer having a protective layer with excellent surface smoothness and hardness.

【0002】0002

【従来の技術】サーマルプリンタに搭載されるサーマル
ヘッドは、例えば複数個の発熱抵抗体素子を同一基板上
に配列し、印字すべき情報に従ってこの発熱抵抗体素子
を通電加熱させてインクリボンを介して記録紙に転写記
録するために用いられる。
2. Description of the Related Art A thermal head installed in a thermal printer has, for example, a plurality of heat generating resistor elements arranged on the same substrate, and the heat generating resistor elements are heated with electricity according to the information to be printed, and printed via an ink ribbon. It is used for transferring and recording onto recording paper.

【0003】図6にこのサーマルヘッドの断面図が示さ
れており、絶縁基板1上にはガラスからなるグレーズ層
2が形成されており、このグレーズ層2の上に共通電極
用導体3及び個別電極用導体4がAu等によって形成さ
れる。さらに、この電極用導体の間隙にRuO2 など
からなる発熱抵抗体層5が形成され、ガラス等の保護層
6が形成される。
FIG. 6 shows a cross-sectional view of this thermal head. A glaze layer 2 made of glass is formed on an insulating substrate 1, and a common electrode conductor 3 and individual conductors are formed on this glaze layer 2. The electrode conductor 4 is made of Au or the like. Further, a heating resistor layer 5 made of RuO2 or the like is formed in the gap between the electrode conductors, and a protective layer 6 made of glass or the like is formed.

【0004】そして、個別電極用導体4に情報に応じて
選択的に電圧が印加されると、発熱抵抗体層5が発熱し
、この熱が伝わって保護層6の表面の発熱部が発熱して
インクリボンなどに発色エネルギーが与えられることと
なる。
[0004] When a voltage is selectively applied to the individual electrode conductor 4 according to the information, the heat generating resistor layer 5 generates heat, and this heat is transmitted to generate heat in the heat generating portion on the surface of the protective layer 6. As a result, coloring energy is applied to an ink ribbon or the like.

【0005】ここで、保護層6としては通常SiO2 
−PbO−B2 O等のガラスが用いられ、このガラス
の耐熱性や硬度を向上させるため通常α−Al2 O3
 などのフィラーが添加される。
[0005] Here, the protective layer 6 is usually made of SiO2.
Glass such as -PbO-B2 O is used, and α-Al2 O3 is usually used to improve the heat resistance and hardness of this glass.
Fillers such as

【0006】[0006]

【発明が解決しようとする課題】このように、従来の保
護層にはフィラーを添加したガラスが用いられており、
通常フィラーの平均粒径は0.7〜0.8μmで20〜
30wt%添加されており、ガラスの表面粗度Raは0
.1〜0.20μm程度である。
[Problems to be Solved by the Invention] As described above, filler-added glass is used in the conventional protective layer.
The average particle size of fillers is usually 0.7 to 0.8 μm and 20 to 20 μm.
30wt% is added, and the surface roughness Ra of the glass is 0.
.. It is about 1 to 0.20 μm.

【0007】しかしながら、表面粗度Raが0.1μm
以上であるとこの保護層6に当接して移動する記録紙に
傷が生じ印字変質が悪化してしまうため、従来より、こ
の表面粗度を低下させるべく例えばPbO−SiO2 
系の場合にはPbOの量を増加させてその軟化点を低下
させることが提案されている。しかしながら、この方法
では表面粗度は確かに低下するがサーマルヘッドの保護
層としての重要なファクターである耐磨耗性、すなわち
硬度が逆に低下してしまう問題があった。
However, the surface roughness Ra is 0.1 μm.
If this is the case, the recording paper moving in contact with the protective layer 6 will be scratched and the print quality will worsen.
It has been proposed to increase the amount of PbO in order to lower the softening point of the PbO system. However, although this method does reduce the surface roughness, there is a problem in that the abrasion resistance, that is, the hardness, which is an important factor for a protective layer of a thermal head, conversely decreases.

【0008】図7にガラス軟化点と硬度の関係を示す。 ガラス軟化点が低下すると硬度(図8においてはヌープ
硬度で示す)が著しく低下することがわかる。
FIG. 7 shows the relationship between glass softening point and hardness. It can be seen that as the glass softening point decreases, the hardness (indicated by Knoop hardness in FIG. 8) decreases significantly.

【0009】そこで、保護層のガラス系を変化させず、
添加するフィラー量を減少させることにより表面粗度を
低下させることも考えられるが、本来フィラーは硬度を
増加させるべく導入されたものであり、従ってフィラー
の量を減じると所望の硬度が得られなくなる問題があっ
た。
[0009] Therefore, without changing the glass system of the protective layer,
It is possible to reduce the surface roughness by reducing the amount of filler added, but fillers were originally introduced to increase hardness, so if the amount of filler is reduced, the desired hardness cannot be obtained. There was a problem.

【0010】図8にガラスに添加するフィラー量と硬度
との関係を示す。フィラー量を減じると表面粗度は低下
するが逆に硬度は劣化してしまうことがわかる。
FIG. 8 shows the relationship between the amount of filler added to glass and hardness. It can be seen that when the amount of filler is reduced, the surface roughness decreases, but on the contrary, the hardness deteriorates.

【0011】本発明は上記従来の課題に鑑みなされたも
のであり、その目的は硬度及び表面平滑性共に優れた保
護層を有するサーマルヘッドを提供することにある。
The present invention has been made in view of the above-mentioned conventional problems, and its object is to provide a thermal head having a protective layer having excellent hardness and surface smoothness.

【0012】0012

【課題を解決するための手段】上記目的を達成するため
に、本発明に係るサーマルヘッドは保護層を形成するガ
ラスに添加されるフィラーの平均粒径を1μmから2μ
mの範囲内に設定したことを特徴とする。
[Means for Solving the Problems] In order to achieve the above object, the thermal head according to the present invention has an average particle diameter of 1 μm to 2 μm of the filler added to the glass forming the protective layer.
It is characterized in that it is set within the range of m.

【0013】[0013]

【作用】このように、本発明はガラス系の比率やフィラ
ー量を変化させるのではなく、フィラーの形状、すなわ
ちフィラーの平均粒径を変化させるものである。
[Operation] As described above, the present invention does not change the proportion of glass or the amount of filler, but changes the shape of the filler, that is, the average particle size of the filler.

【0014】本願出願人は従来着目されていなかったフ
ィラーの平均粒径に着目し、このフィラー粒径がガラス
の表面粗度に大きな影響を与えることを見い出し、この
フィラーの平均粒径を1μmから2μmの範囲内に設定
することにより硬度を劣化させずに表面粗度を低下させ
ることができることを見出だしたものである。
[0014] The applicant of the present application focused on the average particle size of the filler, which had not been paid attention to in the past, and found that this filler particle size has a large effect on the surface roughness of the glass. It has been discovered that by setting the thickness within the range of 2 μm, the surface roughness can be reduced without deteriorating the hardness.

【0015】[0015]

【実施例】以下、図面を用いながら本発明に係るサーマ
ルヘッドの好適な実施例を説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the thermal head according to the present invention will be described below with reference to the drawings.

【0016】本実施例のサーマルヘッドの構成は従来と
ほぼ同様であり、アルミナセラミックなどの絶縁性基板
1上にグレーズ層2が形成され、このグレーズ層2の上
に共通電極用導体3及び個別電極用導体4がAu等によ
って形成される。さらに、この電極用導体の間隙にRu
O2 などからなる発熱抵抗体層5が形成され、ガラス
等の保護層6が焼成形成される。
The structure of the thermal head of this embodiment is almost the same as that of the conventional one, in which a glaze layer 2 is formed on an insulating substrate 1 such as alumina ceramic, and a common electrode conductor 3 and individual conductors are formed on this glaze layer 2. The electrode conductor 4 is made of Au or the like. Furthermore, Ru is added to the gap between the electrode conductors.
A heating resistor layer 5 made of O2 or the like is formed, and a protective layer 6 made of glass or the like is formed by firing.

【0017】本実施例において特徴的なことは、このよ
うな構成におけるサーマルヘッドにおいて、保護層6を
形成するガラスに添加されるフィラー量の粒径を制御し
、保護層6の表面平滑性を硬度を低下させることなく向
上させた点にある。
The characteristic feature of this embodiment is that in the thermal head having such a configuration, the particle size of the amount of filler added to the glass forming the protective layer 6 is controlled to improve the surface smoothness of the protective layer 6. The point is that the hardness has been improved without decreasing it.

【0018】図1には保護層6に用いられるガラス系、
このガラス系に添加されるフィラーの種類、フィラーの
添加量及びフィラーの平均粒径を変化させて保護層6の
表面粗度Ra及びヌープ硬度を測定した結果が示されて
いる。ここで、表面粗度Raは形成された保護層6表面
を粗さ計にて走査し、その偏位量を測定したものである
FIG. 1 shows glass-based materials used for the protective layer 6;
The results of measuring the surface roughness Ra and Knoop hardness of the protective layer 6 by changing the type of filler added to this glass system, the amount of filler added, and the average particle size of the filler are shown. Here, the surface roughness Ra is obtained by scanning the surface of the formed protective layer 6 with a roughness meter and measuring the amount of deviation thereof.

【0019】まず、実施例1においてはガラス系として
SiO2 −PbO−B2 O3 を用い、フィラーと
してはα−Al2O3 、フィラーの添加量は25%、
フィラーの平均粒径は0.7μmとした。この時、表面
粗度Raは0.08μmと良好であったが、ヌープ硬度
は540と低く、耐磨耗性の点で十分ではなかった。
First, in Example 1, SiO2-PbO-B2O3 was used as the glass system, α-Al2O3 was used as the filler, and the amount of filler added was 25%.
The average particle size of the filler was 0.7 μm. At this time, the surface roughness Ra was 0.08 μm, which was good, but the Knoop hardness was low, 540, and the wear resistance was not sufficient.

【0020】そこで、実施例2においてはガラス系をS
iO2 −PbO−Al2 O3 −CdOに変更し、
フィラーの種類、添加量、平均粒径は実施例1と同一に
して表面粗度Ra及びヌープ硬度を測定した。その結果
、ヌープ硬度は600と向上したが、表面粗度は0.1
3μmと悪化し、印字後の記録紙に紙傷が多数発生して
いた。 ヌープ硬度が600と高かったのはガラス系をSiO2
 −PbO−Al2 O3 −CdOを用いたからと考
えられ、一方表面粗度が0.13μmと悪かったのは以
下の理由によるものと考えられる。
Therefore, in Example 2, the glass system was
Changed to iO2 -PbO-Al2 O3 -CdO,
The type of filler, the amount added, and the average particle size were the same as in Example 1, and the surface roughness Ra and Knoop hardness were measured. As a result, the Knoop hardness improved to 600, but the surface roughness increased to 0.1.
The thickness was 3 μm, which was worse, and many paper scratches occurred on the recording paper after printing. The glass-based SiO2 had a high Knoop hardness of 600.
This is thought to be due to the use of -PbO-Al2O3-CdO, while the poor surface roughness of 0.13 μm is believed to be due to the following reasons.

【0021】すなわち、図4に示されるようにフィラー
粒径が0.8μmの場合、Pb0,SiO2 からなる
ガラスネットワーク内に多数のフィラーが入り込み、フ
ィラーの融点はガラスに比べ高いためガラスの融点及び
軟化点が上昇すると考えられる。このように軟化点が上
昇すると焼成時のガラスの流れが悪くなるためこのよう
に表面粗度が悪化したものと考えられる。
That is, as shown in FIG. 4, when the filler particle size is 0.8 μm, a large number of fillers enter the glass network consisting of Pb0 and SiO2, and the melting point of the filler is higher than that of glass. It is thought that the softening point increases. It is thought that this increase in the softening point impairs the flow of the glass during firing, which is why the surface roughness deteriorated in this way.

【0022】そこで、実施例3においてはガラス系、フ
ィラーの種類、添加量は実施例2と同一にしてフィラー
の平均粒径を1.3μmと大きくし、表面粗度及びヌー
プ硬度を測定した。すると、表面粗度は0.06μmと
向上し、かつヌープ硬度も598と良好であった。さら
に、実施例4においてはフィラー平均粒径をさらに1.
8μmと大きくして表面粗度とヌープ硬度を測定した結
果、表面粗度0.06μm、ヌープ硬度578と良好な
結果を得ることができた。
Therefore, in Example 3, the glass system, type of filler, and amount added were the same as in Example 2, the average particle size of the filler was increased to 1.3 μm, and the surface roughness and Knoop hardness were measured. As a result, the surface roughness was improved to 0.06 μm, and the Knoop hardness was also good at 598. Furthermore, in Example 4, the filler average particle diameter was further increased by 1.
As a result of measuring the surface roughness and Knoop hardness with the surface roughness increased to 8 μm, good results were obtained with a surface roughness of 0.06 μm and a Knoop hardness of 578.

【0023】さらに、実施例5においてはフィラーの平
均粒径を2.5μmと大きくした場合の保護層を形成し
て表面粗度及びヌープ硬度を測定した。
Furthermore, in Example 5, a protective layer was formed in which the average particle size of the filler was increased to 2.5 μm, and the surface roughness and Knoop hardness were measured.

【0024】ところが、この実施例5の場合においては
その表面粗度は表面粗さ計で検出できるレベルを越えた
粗さを示し、数値化することが不能で記録紙にも多数の
大きな穴が生じていた。このように、フィラーの平均粒
径が2.5μmと大きくなった場合に表面粗度が悪化す
るのは以下の理由によるものと考えられる。
However, in the case of Example 5, the surface roughness exceeded the level that could be detected by a surface roughness meter, and it was impossible to quantify it, and the recording paper also had many large holes. It was happening. The reason why the surface roughness deteriorates when the average particle size of the filler becomes as large as 2.5 μm is considered to be due to the following reasons.

【0025】すなわち、図5に示されるようにフィラー
の平均粒径を2.5μmと大きくするとフィラーの添加
量は同一であるためフィラーの粒子数は少なくなり、ガ
ラスネットワーク内に入り込むフィラーの量も少なくな
る。すると、焼成時のガラスの流れは良くなるが、フィ
ラーの平均粒径が大きいためフィラーの存在するところ
だけガラスの流れが悪くなり、従って突起が生じ易く表
面粗度が悪化したと考えられる。
That is, as shown in FIG. 5, when the average particle size of the filler is increased to 2.5 μm, the number of filler particles decreases because the amount of filler added is the same, and the amount of filler that enters the glass network also decreases. It becomes less. As a result, the flow of the glass during firing improved, but since the average particle size of the filler was large, the flow of the glass deteriorated only where the filler was present, and it is thought that this caused protrusions to easily occur and the surface roughness to deteriorate.

【0026】なお、比較のためフィラーの添加量を12
%及び0%とした場合の表面粗度及びヌープ硬度も測定
したが(実施例6及び実施例7)、それぞれヌープ硬度
が480及び246と低く、耐摩耗性の点でサーマルヘ
ッドに用いることはできなかった。これは、勿論フィラ
ーの添加量が少なく、フィラーの耐熱性向上機能及び硬
度向上機能が得られなかったことによる。
For comparison, the amount of filler added was 12
The surface roughness and Knoop hardness were also measured at % and 0% (Example 6 and Example 7), but the Knoop hardness was low at 480 and 246, respectively, so it could not be used for thermal heads in terms of wear resistance. could not. This is, of course, because the amount of filler added was small, and the heat resistance improving function and hardness improving function of the filler could not be obtained.

【0027】このように、フィラーの添加量は従来と同
一の25wt%とし、フィラーの平均粒径を1μm〜2
μmに設定することにより、ヌープ硬度を低下させずに
表面粗度Ra≦0.1μmを達成することができた。
[0027] As described above, the amount of filler added is 25 wt%, which is the same as before, and the average particle size of the filler is 1 μm to 2 μm.
By setting the surface roughness to μm, it was possible to achieve a surface roughness Ra≦0.1 μm without reducing Knoop hardness.

【0028】なお、図2にフィラーの粒径と表面粗度と
の関係を、そして図3にフィラーの粒径とヌープ硬度と
の関係を示す。フィラーの粒径を1〜2μmに設定する
ことにより表面粗度が低下、すなわち表面が平滑化し、
かつヌープ硬度はほとんど変化しないことがわかる。
FIG. 2 shows the relationship between filler particle size and surface roughness, and FIG. 3 shows the relationship between filler particle size and Knoop hardness. By setting the particle size of the filler to 1 to 2 μm, the surface roughness is reduced, that is, the surface is smoothed,
Moreover, it can be seen that the Knoop hardness hardly changes.

【0029】[0029]

【発明の効果】以上説明したように、本発明に係るサー
マルヘッドによれば、表面の平滑性及び硬度に優れた保
護層を有するサーマルヘッドを得ることができ、紙傷の
少ない高品質の印字を行うことができる効果がある。
As explained above, according to the thermal head according to the present invention, a thermal head having a protective layer with excellent surface smoothness and hardness can be obtained, and high quality printing with less paper damage can be achieved. There is an effect that can be done.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明に係るサーマルヘッドの各実施例におけ
る表面粗度とヌープ硬度との関係を示す説明図である。
FIG. 1 is an explanatory diagram showing the relationship between surface roughness and Knoop hardness in each example of a thermal head according to the present invention.

【図2】実施例におけるフィラー粒径と表面粗度との関
係を示すグラフ図である。
FIG. 2 is a graph diagram showing the relationship between filler particle size and surface roughness in Examples.

【図3】実施例におけるフィラー粒径とヌープ硬度との
関係を示すグラフ図である。
FIG. 3 is a graph showing the relationship between filler particle size and Knoop hardness in Examples.

【図4】ガラスネットワークにおけるフィラーの混入状
態を示す説明図である。
FIG. 4 is an explanatory diagram showing the state of filler mixture in the glass network.

【図5】ガラスネットワークにおけるフィラーの混入状
態を示す説明図である。
FIG. 5 is an explanatory diagram showing the state of filler mixture in the glass network.

【図6】サーマルヘッドの断面図である。FIG. 6 is a sectional view of the thermal head.

【図7】ガラス軟化点とヌープ硬度との関係を示すグラ
フ図である。
FIG. 7 is a graph showing the relationship between glass softening point and Knoop hardness.

【図8】フィラー量とヌープ硬度及び表面粗度との関係
を示すグラフ図である。
FIG. 8 is a graph showing the relationship between filler amount, Knoop hardness, and surface roughness.

【符号の説明】[Explanation of symbols]

1  絶縁性基板 2  グレーズ層 3  共通電極用導体 4  個別電極用導体 5  発熱抵抗体層 6  保護層 1 Insulating substrate 2 Glaze layer 3 Conductor for common electrode 4 Conductor for individual electrodes 5 Heat generating resistor layer 6 Protective layer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】基板上に形成されたグレーズ層と、このグ
レーズ層上に形成された発熱抵抗体層と、この発熱抵抗
体層に電力を供給する給電体層と、この給電体層及び前
記発熱抵抗体層上に形成された保護層と、を有するサー
マルヘッドにおいて、前記保護層はフィラーが添加され
たガラスからなり、かつ前記フィラーの平均粒径が1μ
mから2μmの範囲内にあることを特徴とするサーマル
ヘッド。
1. A glaze layer formed on a substrate, a heat generating resistor layer formed on the glaze layer, a power supply layer for supplying power to the heat generating resistor layer, the power supply layer and the heat generating resistor layer. a protective layer formed on a heating resistor layer, the protective layer is made of glass to which a filler is added, and the filler has an average particle size of 1 μm.
A thermal head characterized in that the thermal head is within a range of 2 μm to 2 μm.
JP2409470A 1990-12-28 1990-12-28 Thermal head Expired - Fee Related JP2837963B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2409470A JP2837963B2 (en) 1990-12-28 1990-12-28 Thermal head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2409470A JP2837963B2 (en) 1990-12-28 1990-12-28 Thermal head

Publications (2)

Publication Number Publication Date
JPH04232071A true JPH04232071A (en) 1992-08-20
JP2837963B2 JP2837963B2 (en) 1998-12-16

Family

ID=18518805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2409470A Expired - Fee Related JP2837963B2 (en) 1990-12-28 1990-12-28 Thermal head

Country Status (1)

Country Link
JP (1) JP2837963B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5635974A (en) * 1994-12-26 1997-06-03 Kyocera Corporation Thermal head

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01272466A (en) * 1988-04-26 1989-10-31 Copal Co Ltd Thermal head

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01272466A (en) * 1988-04-26 1989-10-31 Copal Co Ltd Thermal head

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5635974A (en) * 1994-12-26 1997-06-03 Kyocera Corporation Thermal head

Also Published As

Publication number Publication date
JP2837963B2 (en) 1998-12-16

Similar Documents

Publication Publication Date Title
US4742362A (en) Thermal head
GB2151989A (en) Thermal head
US5099257A (en) Thermal head with an improved protective layer and a thermal transfer recording system using the same
US5157414A (en) Thick film type thermal head and thermal recording device
JP2561956B2 (en) Thick film type thermal head
JPH04232071A (en) Thermal head
JPH08230223A (en) Thermal head
JP4330681B2 (en) Thermal head and manufacturing method thereof
JPH0532297Y2 (en)
JP3476938B2 (en) Thermal head
JPH0131476Y2 (en)
JP2825209B2 (en) Manufacturing method of thin film thermal head
JP2645759B2 (en) Method for manufacturing thermal head for uniformizing surface temperature of heating resistor protective layer with high accuracy
JP3045213B2 (en) Substrate for thermal head
JPH02229053A (en) Thermal printer
JPH04259571A (en) Thermal head
JP4004893B2 (en) Laminate parts and laminator
JPH01272466A (en) Thermal head
JPS6387255A (en) Thermal head
JPS5872477A (en) Heat-sensitive recording head
JPS6183055A (en) Preparation of thermal head
JPH1191148A (en) End face type/edge type thermal head
JPH05147248A (en) Thermal head and preparation thereof
JP2001088337A (en) Thermographic printing apparatus
JPH04169247A (en) Thermal printing head

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees