JP2616230B2 - Asynchronous counter circuit - Google Patents

Asynchronous counter circuit

Info

Publication number
JP2616230B2
JP2616230B2 JP2331583A JP33158390A JP2616230B2 JP 2616230 B2 JP2616230 B2 JP 2616230B2 JP 2331583 A JP2331583 A JP 2331583A JP 33158390 A JP33158390 A JP 33158390A JP 2616230 B2 JP2616230 B2 JP 2616230B2
Authority
JP
Japan
Prior art keywords
circuit
output
frequency dividing
frequency
dividing circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2331583A
Other languages
Japanese (ja)
Other versions
JPH04196921A (en
Inventor
浩之 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2331583A priority Critical patent/JP2616230B2/en
Publication of JPH04196921A publication Critical patent/JPH04196921A/en
Application granted granted Critical
Publication of JP2616230B2 publication Critical patent/JP2616230B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔概要〕 非同期式カウンタ回路の初期設定方式に関し、 任意の初期値に初期設定を施すことができるカウンタ
回路の提供を目的とし、 各々が前段出力に同期して動作する第一分周回路〜第
N分周回路からなるカウンタ回路において、該カウンタ
回路のカウント周期を所望のタイミングに初期設定する
ための制御情報を、前記第一分周回路〜第N−1分周回
路の出力を用いて次のカウントまで保持する第一状態保
持手段〜第N−1状態保持手段と、前記制御情報を第一
分周回路の設定値とする第一設定値書込手段と、該第一
状態保持手段〜第N−1状態保持手段の保持出力を前記
第二分周回路〜第N分周回路の設定値とする第二設定値
書込手段〜第N設定値書込手段とを設けた構成にする。
DETAILED DESCRIPTION OF THE INVENTION [Overview] Regarding an initialization method of an asynchronous counter circuit, the object of the invention is to provide a counter circuit capable of performing initialization to an arbitrary initial value, and each of them operates in synchronization with the output of the preceding stage. In a counter circuit composed of a first frequency dividing circuit to an N-th frequency dividing circuit, control information for initializing the count cycle of the counter circuit to a desired timing is stored in the first frequency dividing circuit to the (N-1) th frequency dividing circuit. First state holding means to (N-1) th state holding means for holding to the next count using the output of the circuit, first set value writing means for setting the control information as a set value of the first frequency dividing circuit, Second setting value writing means to N-th setting value writing means for setting the held output of the first state holding means to the (N-1) th state holding means as the set value of the second frequency dividing circuit to the N-th frequency dividing circuit. Is provided.

〔産業上の利用分野〕[Industrial applications]

本発明は、非同期式カウンタ回路の初期設定方式に関
する。
The present invention relates to an initialization method for an asynchronous counter circuit.

〔従来の技術〕[Conventional technology]

第4図はカウンタ回路の設定値の書込み例を示す図で
あり、(A),(B)はカウンタ回路の書込み出力が
“H"である例、又(C)、(D)は書込み出力が“L"で
ある例である。図中、41はカウンタ回路としてのフリッ
プフロップ(以下、FFと称す)、42は論理和演算回路
(以下、ORと称す)であり、なお43,44は入力信号の反
転出力回路(以下、INVと称す)、又45は論理積演算回
路(以下、ANDと称す)である。
FIG. 4 is a diagram showing an example of writing the set value of the counter circuit, wherein (A) and (B) show examples where the write output of the counter circuit is "H", and (C) and (D) show the write output. Is "L". In the figure, reference numeral 41 denotes a flip-flop (hereinafter referred to as FF) as a counter circuit, reference numeral 42 denotes an OR operation circuit (hereinafter referred to as OR), and reference numerals 43 and 44 denote input signal inversion output circuits (hereinafter referred to as INV). Reference numeral 45 denotes an AND operation circuit (hereinafter, referred to as AND).

図(A)おいて、データ(以下、Dと称す)の“H"と
設定値の制御情報(以下、Fと称す)の“H"の論理和を
OR42で求め、当該論理和値を書込み信号としてFF41のD
端子に加えてクロックCで打ち抜いて保持し、次のクロ
ックCのタイミングにおいて正極性端子Q(以下、Q端
子と称す)からD及びFの“H"の部分を“H"とした信号
を読みだす。また図(B)では、Dの“H"をINV43で
反転した出力とFの“H"を反転した出力との論理積をAN
D45で求め、当該論理積値を書込み信号としてFF41に加
えてクロックCで打ち抜いて保持し、次のクロックCの
タイミングにおいて負極性端子*Q(以下、*Q端子と
称す)からD及びFの“H"の部分を“H"とした信号を
読みだす。同様に、図(C)ではD端子にDとFの反転
信号の論理積値を書込み信号としてFF41に加え、端子Q
からはDの“L"とFの“H"の部分を“L"とした信号を
読みだす。また図(D)ではDの“L"とFの“H"部分を
“L"とした信号を端子*Qから読みだす。以下におい
て、第4図(A)〜(D)の回路を用いたカウンタ回路
例を第5図および第6図に示す。
In FIG. 7A, the logical sum of “H” of data (hereinafter, referred to as “D”) and “H” of control information of a set value (hereinafter, referred to as “F”) is obtained.
OR42, and the logical sum value is used as a write signal as D in FF41.
In addition to the terminal, the signal is punched out and held by the clock C, and at the timing of the next clock C, a signal is read from the positive terminal Q (hereinafter referred to as the Q terminal) with the “H” portions of D and F set to “H”. Soup In FIG. 3B, the logical product of the output obtained by inverting “H” of D with INV43 and the output obtained by inverting “H” of F is given by AN.
D45, the logical product value is added as a write signal to the FF41, and is punched and held by the clock C. At the next clock C timing, the negative and positive terminals * Q (hereinafter referred to as the * Q terminals) are connected to the D and F terminals. A signal with the “H” portion set to “H” is read. Similarly, in FIG. 4C, the logical product of the inverted signals of D and F is applied to the D terminal as a write signal to FF41, and the terminal Q
From this, a signal in which the "L" portion of D and the "H" portion of F are set to "L" is read out. In FIG. 4D, a signal in which the "L" of D and the "H" of F are "L" is read from the terminal * Q. Hereinafter, an example of a counter circuit using the circuits of FIGS. 4A to 4D is shown in FIGS.

第5図は従来の一実施例の回路を示す図であり、初期
設定を考慮せずに設計した非同期式カウンタの回路図で
ある。また第6図は従来の一実施例回路のタイムチャー
トを示す図である。
FIG. 5 is a diagram showing a circuit of a conventional example, and is a circuit diagram of an asynchronous counter designed without considering the initial setting. FIG. 6 is a diagram showing a time chart of a conventional circuit of one embodiment.

第5図において、1−1は本回路の基準信号をクロッ
クとする同期式の第一分周回路、1−2は第一分周回路
1−1の出力をクロックとする同期式の第二分周回路で
ある。また1−3は第二分周回路1−2の出力信号をク
ロックとする同期式の第三分周回路である。なおこれら
第一分周回路1−1,第二分周回路1−2の出力信号を、
それぞれ次段の同期式分周回路のクロックに使用するこ
とで6×6×3=108の非同期式分周回路を形成してい
る。
In FIG. 5, reference numeral 1-1 denotes a synchronous first frequency divider which uses the reference signal of the circuit as a clock, and 1-2 denotes a synchronous second frequency divider which uses the output of the first frequency divider 1-1 as a clock. It is a frequency dividing circuit. Reference numeral 1-3 denotes a synchronous third frequency divider which uses the output signal of the second frequency divider 1-2 as a clock. The output signals of the first frequency divider 1-1 and the second frequency divider 1-2 are
Asynchronous frequency dividers of 6 × 6 × 3 = 108 are formed by using the clocks of the synchronous frequency dividers at the next stage.

11〜13は入力する基準信号をクロックとするFFであ
り、11は第4図(A)に示した回路に該当する第一FF、
12は第4図(D)に示した回路に該当する第二FF、なお
13はFF11とFF12の動作を組み合わせた第三FFである。更
に、14は第二FF12の負極性出力および第三FF13の正極性
出力を入力とする反転論理和演算回路の第一NOR、15は
第一FF11の正極性出力と第一NOR14を入力とする論理和
演算回路の第一ORであり、これら11〜15にて前記した同
期式の6分周回路1−1を形成する。同様に、21〜23は
第一FF11〜第三FF13と同一動作の回路であり、第一分周
回路1−1の出力である第一FF11の出力信号をクロック
とする第四FF〜第六FF、24は第五FF22と第六FF23の出力
を入力とする第二NOR、25は第二NOR24と第四FF21の出力
を入力とする第二ORであり、これら21〜25にて同期式の
6分周回路を形成する。更に、31と32はFF12とほぼ同一
動作の回路であり、第二分周回路1−2の出力である第
四FF21の出力をクロックとする第七FFと第八FF、33は第
七FF31と第八FF32のそれぞれの負極性出力を入力とする
第三ORであり、これら31〜33にて同期式の3分周回路を
形成している。
Reference numerals 11 to 13 denote FFs using the input reference signal as a clock, 11 denotes a first FF corresponding to the circuit shown in FIG.
12 is a second FF corresponding to the circuit shown in FIG.
13 is a third FF that combines the operations of FF11 and FF12. Further, 14 is the first NOR of the inverted OR operation circuit having the negative polarity output of the second FF12 and the positive polarity output of the third FF13 as inputs, and 15 has the positive polarity output of the first FF11 and the first NOR14 as inputs. This is the first OR of the OR circuit, and these 11 to 15 form the above-mentioned synchronous divide-by-6 circuit 1-1. Similarly, reference numerals 21 to 23 denote circuits having the same operation as the first FF11 to the third FF13, and the fourth to sixth FFs to the sixth FF11 which use the output signal of the first FF11 which is the output of the first frequency divider 1-1 as a clock. FF, 24 is a second NOR having inputs of the outputs of the fifth FF22 and the sixth FF23, and 25 is a second OR having inputs of the outputs of the second NOR24 and the fourth FF21. Is formed. Further, 31 and 32 are circuits having almost the same operation as the FF12, and the seventh FF and the eighth FF clocked by the output of the fourth FF21 which is the output of the second frequency divider 1-2, and the 33 are the seventh FF31. And a third OR having the negative output of each of the third and eighth FF32s as inputs. These 31-33 form a synchronous divide-by-3 circuit.

第6図において、(a)は本回路のクロックとなる基
準信号、(b)は本回路のリセット信号、(c),
(d),(e)は基準信号(a)をクロックとする第一
分周回路1−1に備えたる第一FF11,第二FF12,第三FF13
の正極性出力であり、基準信号(a)の6分周出力に相
当する。なお信号(h),(i),(j)は前段の第一
分周回路1−1の出力信号(c)をクロックとした第二
分周回路1−2に備えたる第四FF21,第五FF22,第六FF23
の正極性出力であり、基準信号(a)の6×6=36分周
出力に相当する。また信号(m)と信号(n)は、前段
の第三分周回路1−3の出力信号(h)をクロックとす
る同期式の第三分周回路の第七FF31と第八FF32の正極性
出力を示し、基準信号(a)を基準とする6×6×3=
108分周出力に相当する。
In FIG. 6, (a) is a reference signal serving as a clock of the present circuit, (b) is a reset signal of the present circuit, and (c),
(D) and (e) are the first FF11, the second FF12, and the third FF13 provided in the first frequency dividing circuit 1-1 using the reference signal (a) as a clock.
Of the reference signal, and corresponds to the divide-by-6 output of the reference signal (a). The signals (h), (i) and (j) are the fourth FF21 and the fourth FF21 provided in the second frequency divider 1-2 using the output signal (c) of the preceding first frequency divider 1-1 as a clock. 5th FF22, 6th FF23
, Which corresponds to the 6 × 6 = 36 frequency-divided output of the reference signal (a). Also, the signal (m) and the signal (n) are the positive electrodes of the seventh FF31 and the eighth FF32 of the synchronous third frequency divider circuit using the output signal (h) of the preceding third frequency divider circuit 1-3 as a clock. 6 × 6 × 3 based on the reference signal (a)
Equivalent to 108 divided output.

以下第5図の従来例を第6図を参照し説明する。本回
路の基準を示す基準信号(a)であるクロックが順次に
入力し、かつリセット信号(b)が第5図に示すように
入力されると、基準信号(a)が入力するごとに1クロ
ックづつシフトして、クロックのタイミングで正極性
出力(c)と負極性出力(c′)、同様にタイミング
で(d)と(d′)、又タイミングで(e)と
(e′)を第一FF11〜第三FF13から出力し、以下同様の
動作を繰り返す。そしてこの出力(d′),(e)を第
一NOR14へ帰還しかつ出力(e′)を第一FF11に帰還す
ることにより、6分周の出力(c),(d),(e)が
送出する。次にこの分周回路1−1の出力(c)をクロ
ックとして第二分周回路1−2に入力すると、第二分周
回路1−2は第一分周回路1−1と同様の動作をし、第
四FF21〜第六FF23から第6図(h)〜(j)に示す信号
が順次に出力される。同様に、信号(h)をクロックと
する第三分周回路1−3から第6図(m),(n)の各
出力が順次に送出される。
The conventional example of FIG. 5 will be described below with reference to FIG. When a clock, which is a reference signal (a) indicating the reference of the present circuit, is sequentially input and a reset signal (b) is input as shown in FIG. 5, each time the reference signal (a) is input, 1 is output. The clock is shifted by one clock, and the positive output (c) and the negative output (c ') at the clock timing, (d) and (d') at the same timing, and (e) and (e ') at the timing. Output from the first FF11 to the third FF13, and the same operation is repeated thereafter. The outputs (d ') and (e) are fed back to the first NOR 14 and the output (e') is fed back to the first FF11. Sends out. Next, when the output (c) of the frequency divider 1-1 is input to the second frequency divider 1-2 as a clock, the second frequency divider 1-2 operates in the same manner as the first frequency divider 1-1. The signals shown in FIGS. 6 (h) to (j) are sequentially output from the fourth FF21 to the sixth FF23. Similarly, the outputs of FIGS. 6 (m) and (n) are sequentially transmitted from the third frequency dividing circuit 1-3 using the signal (h) as a clock.

このような連続したカウント動作の回路において、例
えば設定値=“8"の状態、即ち2番目のクロックにお
ける(A)領域の信号状態は、第6図のタイムチャート
から(c)=1,(d)=1,(e)=0であり、なお
(B)領域では(h)=1,(i)=1,(j)=0であ
り、また(C)領域では(m)=1,(n)=0であり、
なおこれらは各FF11,12,13,21,22,23,31,32の連続カウ
ントの或る瞬間におけるカウント値である。
In the circuit of such a continuous counting operation, for example, the state of the set value = “8”, that is, the signal state of the area (A) in the second clock is (c) = 1, ( d) = 1, (e) = 0, (h) = 1, (i) = 1, (j) = 0 in the region (B), and (m) = 1 in the region (C). , (N) = 0,
These are the count values at a certain moment in the continuous count of each of the FFs 11, 12, 13, 21, 22, 23, 31, 32.

上記したように、従来の非同期式カウンタ回路では初
期設定を行わずにカウンタ回路にリセットをかけること
により、カウント動作を開始させる程度のものである。
従って或る値を初期設定したい場合は、カウンタ回路の
設計段階で考慮しなければならない。
As described above, in the conventional asynchronous counter circuit, the count operation is started by resetting the counter circuit without performing the initial setting.
Therefore, when a certain value is desired to be initially set, it must be taken into consideration at the stage of designing the counter circuit.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

従って、一度設計したカウンタ回路は初期値に対して
汎用性がない、つまり初期値が変わると再度その値を考
慮したカウンタ回路を設計しなければならず、設計上に
おける時間の損失や回路規模の増大を招くという課題が
ある。
Therefore, the counter circuit once designed has no versatility with respect to the initial value. That is, when the initial value changes, the counter circuit must be designed again in consideration of the value. There is a problem that it causes an increase.

本発明は、任意の初期値に初期設定を施すことができ
る非同期式カウンタ回路の提供を目的とする。
An object of the present invention is to provide an asynchronous counter circuit capable of initializing an arbitrary initial value.

〔問題点を解決するための手段〕[Means for solving the problem]

上記の目的を達成するために本発明では、各々が前段
出力に同期して動作する第一分周回路1−1〜第N分周
回路1−nからなるカウンタ回路において、該カウンタ
回路のカウント周期を所望のタイミングに初期設定する
ための制御情報を、前記第一分周回路1−1〜第N−1
分周回路1−nの出力を用いて次のカウントまで保持す
る第一状態保持手段3−1〜第N−1状態保持手段3−
(n−1)と、前記制御情報を第一分周回路1−1の設
定値とする第一設定値書込手段2−1と、該第一状態保
持手段3−1〜第N−1状態保持手段3−(n−1)の
保持出力を前記第二分周回路1−2〜第N分周回路1−
nの設定値とする第二設定値書込手段2−2〜第N設定
値書込手段2−nとを設けるように構成する。
In order to achieve the above object, according to the present invention, in a counter circuit including a first frequency dividing circuit 1-1 to an N-th frequency dividing circuit 1-n, each of which operates in synchronization with a preceding stage output, The control information for initially setting the cycle to a desired timing is stored in the first frequency dividing circuit 1-1 to the (N-1) th frequency dividing circuit.
The first state holding means 3-1 to the (N-1) th state holding means 3- which hold until the next count using the output of the frequency dividing circuit 1-n.
(N-1), a first set value writing unit 2-1 for setting the control information as a set value of the first frequency dividing circuit 1-1, and the first state holding units 3-1 to N-1. The held output of the state holding means 3- (n-1) is output from the second frequency divider 1-2 to the N-th frequency divider 1-
The second set value writing means 2-2 to the N-th set value writing means 2-n for setting the set value of n are provided.

〔作用〕[Action]

本発明では第1図に示すように、各々が同期し動作す
るN段の第一分周回路1−1〜第N分周回路1−nから
構成される非同期式カウンタ回路において、外部からの
制御情報を初段の第一設定値書込手段2−1に入力して
初期設定し、当該初期設定値を初段の第一分周回路1−
1に対し直接に書き込むようにし、また2段目以降の第
二分周回路1−2〜第N分周回路1−nに対しては、各
分周回路1−2〜1−nで使用する前段の第一分周回路
1−1〜第N−1分周回路1−(n−1)の出力を次の
カウントまで前記制御情報により第一状態保持手段3−
1〜第N−1状態保持手段3−(n−1)に保持し、各
第二分周回路1−2〜第N分周回路1−nでの設定値の
次のカウント値を書き込むようにしている。
In the present invention, as shown in FIG. 1, in an asynchronous counter circuit composed of N stages of first frequency divider circuits 1-1 to N-th frequency divider circuits 1-n, each of which operates in synchronization with each other, The control information is input to the first-stage first setting value writing means 2-1 for initial setting, and the initial setting value is stored in the first-stage first frequency dividing circuit 1--1.
1 is written directly, and the second and Nth frequency dividers 1-2 to 1-n in the second and subsequent stages are used by the frequency dividers 1-2 to 1-n. The output of the first frequency dividing circuit 1-1 to the (N-1) th frequency dividing circuit 1- (n-1) in the preceding stage is used by the first state holding means 3 based on the control information until the next count.
1 to the (N-1) th state holding means 3- (n-1), and write the next count value of the set value in each of the second frequency dividing circuits 1-2 to the N-th frequency dividing circuit 1-n. I have to.

従って、第一設定値書込手段2−1は所望の初期設定
値が書込みされ、また第二分周回路1−2〜第N分周回
路1−nには前記初期設置値の次の値が書き込まれる非
同期式カウンタ回路が構成できる。
Therefore, the first set value writing means 2-1 writes a desired initial set value, and the second divider circuit 1-2 to the N-th divider circuit 1-n write the next value after the initial set value. Is written in the asynchronous counter circuit.

〔実施例〕〔Example〕

第2図は本発明の一実施例の回路を示す図であり、第
3図は本発明の一実施例回路のタイムチャートを示す図
である。なお第3図は、第5図、第6図に示した初期設
定を考慮せずに設計した非同期式カウンタにおいて、制
御情報の入力により初期設定=“8"が施された場合を示
す。
FIG. 2 is a diagram showing a circuit of one embodiment of the present invention, and FIG. 3 is a diagram showing a time chart of the circuit of one embodiment of the present invention. FIG. 3 shows a case where the initial setting = “8” is performed by input of control information in the asynchronous counter designed without considering the initial setting shown in FIGS. 5 and 6.

第2図において、1−1は本回路のクロック信号をク
ロックとする同期式6分周の第一分周回路であり、従来
回路の第一FF11〜第三FF13、第一NOR14、第一OR15およ
び本発明の第一設定値書込手段2−1に対応の第11OR16
〜第13OR18を備える。又1−2は第一分周回路1−1の
出力信号をクロックとする同期式6分周の第二分周回路
であり、従来回路の第四FF21〜第六FF23、第二NOR24、
第二OR25および本発明の第二設定値書込手段2−2に対
応の第14OR26〜第16OR28と第一状態保持手段3−1に対
応の第九FF29を備える。又1−3は第二分周回路1−2
の出力信号をクロックとする同期式3分周の3分周回路
であり、従来回路の第七FF31〜第八FF32、第三OR33およ
び本発明の第三設定値書込手段2−3に対応の第17OR3
4、第18OR35と第二状態保持手段3−2に対応の第十FF3
6を備える。これらは第5図と同様に、互いに同期式の
第一分周回路1−1と第二分周回路1−2の出力信号を
それぞれ次の同期式の第二分周回路1−2と第三分周回
路1−3のクロックに使用することで6×6×3=108
の非同期式108分周回路を形成している。
In FIG. 2, reference numeral 1-1 denotes a first frequency divider circuit of a synchronous divide-by-6 system using the clock signal of the present circuit as a clock, and the first FF11 to the third FF13, the first NOR14, the first OR15 of the conventional circuit. And an 11th OR16 corresponding to the first set value writing means 2-1 of the present invention.
To the 13th OR18. Reference numeral 1-2 denotes a synchronous frequency-divided second frequency dividing circuit that uses the output signal of the first frequency dividing circuit 1-1 as a clock, and is a fourth to sixth FF23, a second NOR24, and a fourth FF21 of the conventional circuit.
There are provided the second OR25, the fourteenth OR26 to the sixteenth OR28 corresponding to the second set value writing means 2-2 of the present invention, and the ninth FF29 corresponding to the first state holding means 3-1. Also, 1-3 is a second frequency divider 1-2.
Is a synchronous frequency-divided-by-3 circuit that uses the output signal as a clock, and corresponds to the seventh to eighth FF32s and the third OR33 of the conventional circuit and the third set value writing means 2-3 of the present invention. 17th OR3
4. Tenth FF3 corresponding to the eighteenth OR35 and the second state holding means 3-2
6 is provided. These output signals of the first and second frequency dividers 1-1 and 1-2 are synchronized with the second and second synchronous frequency dividers 1-2, respectively, similarly to FIG. 6 × 6 × 3 = 108 by using for the clock of the divide-by-3 circuit 1-3
Is formed.

第3図は第2図の動作を示すタイムチャートであり、
信号(a),(b),(c),(d),(d′),
(e),(e′),(f),(g)と(h),(i),
(i′),(j),(j′),(k),(l)および
(m),(m′)(n),(n′),(o)、更に
(p),(q),(r)は第2図の回路の各点における
それぞれの回路の出力を示し、また信号(b),
(d′),(e),(f),(g)と(i′),
(j),(k),(l)および(m′)と(n′),
(o)については第3図への記載を省略してある。そし
て、信号(p)は本回路の初期設定を行う制御情報、信
号(q)は制御情報(p)によりリセットされた第九FF
29の負極性出力、(r)は制御情報(p)によりリセッ
トされた第十FF36の負極性出力である。
FIG. 3 is a time chart showing the operation of FIG.
The signals (a), (b), (c), (d), (d '),
(E), (e '), (f), (g) and (h), (i),
(I '), (j), (j'), (k), (l) and (m), (m ') (n), (n'), (o), and further (p), (q ) And (r) show the output of each circuit at each point of the circuit of FIG.
(D '), (e), (f), (g) and (i'),
(J), (k), (l) and (m ') and (n'),
(O) is omitted from FIG. The signal (p) is control information for initial setting of the circuit, and the signal (q) is a ninth FF reset by the control information (p).
The negative output 29 and (r) are the negative output of the tenth FF36 reset by the control information (p).

第一分周回路1−1〜第三分周回路1−3が図示せざ
る信号(b)に既にリセットされ、或る周期で自走カウ
ントを繰り返している場合において、任意(本例では第
八番目のクロック)のタイミングに初期設定をする際
は、制御情報の第3図(p)を入力する。いま初期設定
値=“8"なので第八番目のクロック、即ちに相当して
おり、第6図のタイムチャートから(c)=1、(d)
=1、(e)=0、(h)=1、(i)=1、(j)=
0、(m)=1、(n)=0がカウンタ値の“8"である
ことがわかる。そこで第5図に示す第一分周回路1−1
の各FF11,12,13の初期設定値が(c)=1、(d)=
1、(e)=0になればよいので、(c)=1、(d)
=1については制御情報(p)をそのまま第11OR16と第
12OR17に入力し、第11OR16において制御情報(p)と第
三FF13の正極性出力(e)との論理和をとり、また第12
OR17において制御情報(p)と第一OR15の出力(g)と
の論理和をとる。(e)=0については、第二FF12の負
極性出力(d′)と制御情報(p)との論理和を第三OR
18でとり、第三FF13からは第13OR18の出力の極性を反転
させた“0"が出力するようにする。又こうすることによ
り第三FF13の出力パターンの極性が反転するので、デー
タの入力先である第二FF12の出力極性を反転させて第一
NOR14と第11OR16に対して入力する。以上のことを行っ
た結果を領域(A)に示し、該回路は第2図に示す第一
分周回路1−1である。
In the case where the first frequency dividing circuit 1-1 to the third frequency dividing circuit 1-3 have already been reset to the signal (b) (not shown) and repeat the self-running count in a certain cycle, any (in this example, the At the time of initial setting at the timing of the (eighth clock), FIG. 3 (p) of the control information is input. Now, the initial setting value is "8", which corresponds to the eighth clock, that is, (c) = 1, (d) from the time chart of FIG.
= 1, (e) = 0, (h) = 1, (i) = 1, (j) =
It can be seen that 0, (m) = 1, and (n) = 0 are the counter values “8”. Therefore, the first frequency dividing circuit 1-1 shown in FIG.
The initial setting values of each of the FFs 11, 12, and 13 are (c) = 1, (d) =
1, (e) = 0, so that (c) = 1, (d)
For = 1, the control information (p) is directly
In the 12th OR17, the control information (p) is ORed with the positive output (e) of the third FF13 in the 11th OR16.
In OR17, the logical sum of the control information (p) and the output (g) of the first OR15 is calculated. For (e) = 0, the logical OR of the negative output (d ') of the second FF12 and the control information (p) is calculated by the third OR.
In step 18, "0" is output from the third FF13 with the polarity of the output of the thirteenth OR18 inverted. In addition, since the polarity of the output pattern of the third FF13 is inverted by doing this, the output polarity of the second FF12, which is the data input destination, is inverted and the first FF13 is inverted.
Input to NOR14 and 11th OR16. The result of performing the above is shown in the area (A), and this circuit is the first frequency dividing circuit 1-1 shown in FIG.

次に(h)=1、(i)=1、(j)=0であるが、
この同期式の第二分周回路1−2は本回路が対象とする
クロック信号(a)を直接に用いず前段からの出力をも
ちいた非同期式分周回路であるため、前述の第一FF11〜
第三FF13と同じ動作が出来ない。このため、当該第二分
周回路1−2のクロックである前段の第一分周回路1−
1のタイミングでの出力(c)を片方の入力端が“H"
固定の第九FF29に入力し、制御情報(p)にて例えば当
該出力(c)のタイミングの時点での値を次の立ち上
がりエッジまで保持させた出力(q)を生成して、第四
FF21〜第六FF23に初期設定を施す。又、そうすることに
より初期設定値をタイミングの次の値、つまりタイミ
ングの(h)=1、(i)=1、(j)=1にする。
即ち、制御情報(p)の入力により第九FF29から第3図
に示す出力(q)が出力され、そしてこの信号(q)を
前述の信号(p)と同様に第四FF21,第五FF22,第六FF23
に施すと、第2図及び第3図の領域(B)に示す出力
(h),(i),(j)などの出力が得られる。
Next, (h) = 1, (i) = 1, and (j) = 0,
Since the synchronous second frequency dividing circuit 1-2 is an asynchronous frequency dividing circuit using the output from the previous stage without directly using the clock signal (a) targeted by this circuit, the above-mentioned first FF11 ~
The same operation as the third FF13 cannot be performed. For this reason, the first-stage frequency divider 1- 1 in the preceding stage, which is the clock of the second frequency divider 1-2.
The output (c) at the timing of 1 is set to “H” at one input terminal.
The output (q) is input to the fixed ninth FF29 and the control information (p) generates an output (q) in which the value at the timing of the output (c) is held until the next rising edge, for example.
Initial settings are made to FF21 to sixth FF23. By doing so, the initial set values are set to the values next to the timing, that is, (h) = 1, (i) = 1, and (j) = 1 of the timing.
That is, the output (q) shown in FIG. 3 is output from the ninth FF29 by the input of the control information (p), and this signal (q) is converted into the fourth FF21 and the fifth FF22 in the same manner as the signal (p) described above. , Sixth FF23
, Outputs such as outputs (h), (i), and (j) shown in the area (B) of FIGS. 2 and 3 are obtained.

第5図の第三分周回路1−3についても同様に、第6
図に示したタイミングの(m)=1,(n)=0の初期
設定値を第3図の領域(C)に示す如く(m)=1,
(n)=1とした初期設定を施すと、第2図に示す第三
分周回路1−3が得られる。
Similarly, the third frequency divider 1-3 shown in FIG.
The initial set values of (m) = 1, (n) = 0 at the timing shown in the figure are changed to (m) = 1, as shown in the area (C) of FIG.
By performing the initial setting with (n) = 1, the third frequency dividing circuit 1-3 shown in FIG. 2 is obtained.

〔発明の効果〕〔The invention's effect〕

以上の説明から明らかなように本発明によれば、任意
の初期値に初期設定を行うことが可能となり、従って設
計時間の短縮や回路規模の小型化を図ることができると
いう効果を呈する。
As is apparent from the above description, according to the present invention, it is possible to perform initial setting to an arbitrary initial value, and therefore, it is possible to reduce the design time and the circuit size.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の原理構成を示す図、 第2図は本発明の一実施例の回路を示す図、 第3図は本発明の一実施例回路のタイムチャートを示す
図、 第4図はカウンタ回路の設定値の書込み例を示す図、 第5図は従来の一実施例の回路を示す図、 第6図は従来の一実施例回路のタイムチャートを示す
図、 である。 図において、 1−1〜1−nは第一分周回路〜第N分周回路、2−1
〜2−nは第一設定値書込手段〜第N設定値書込手段、
3−1〜3−(n−1)は第一状態保持手段〜第N−1
状態保持手段、 を示す。
1 is a diagram showing the principle configuration of the present invention, FIG. 2 is a diagram showing a circuit of one embodiment of the present invention, FIG. 3 is a diagram showing a time chart of the circuit of one embodiment of the present invention, FIG. FIG. 5 is a diagram showing an example of writing a set value of a counter circuit, FIG. 5 is a diagram showing a circuit of a conventional example, and FIG. 6 is a diagram showing a time chart of the circuit of a conventional example. In the figure, 1-1 to 1-n denote first to Nth frequency divider circuits, and 2-1.
To 2-n are first set value writing means to Nth set value writing means,
3-1 to 3- (n-1) are the first state holding means to the (N-1) th state holding means.
State holding means.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】各々が前段出力に同期して動作する第一分
周回路〜第N分周回路からなるカウンタ回路において、 該カウンタ回路のカウント周期を所望のタイミングに初
期設定するための制御情報を、前記第一分周回路〜第N
−1分周回路の出力を用いて次のカウント周期まで保持
する第一状態保持手段〜第N−1状態保持手段と、 前記制御情報を第一分周回路の設定値とする第一設定値
書込手段と、 該第一状態保持手段〜第N−1状態保持手段の保持出力
を前記第二分周回路〜第N分周回路の設定値とする第二
設定値書込手段〜第N設定値書込手段と、 を設けたことを特徴とする非同期式カウンタ回路。
1. A counter circuit comprising a first frequency dividing circuit to an N-th frequency dividing circuit, each of which operates in synchronization with a preceding stage output, wherein control information for initializing a counting cycle of the counter circuit to a desired timing is provided. From the first frequency dividing circuit to the Nth
A first state holding means to an (N-1) th state holding means for holding until the next count cycle using an output of the -1 frequency divider; and a first set value for setting the control information as a set value of the first frequency divider Writing means; and second set value writing means to N-th set values held by the first state holding means to the (N-1) th state holding means as set values of the second frequency dividing circuit to the N-th frequency dividing circuit. An asynchronous counter circuit comprising: a set value writing unit;
JP2331583A 1990-11-28 1990-11-28 Asynchronous counter circuit Expired - Lifetime JP2616230B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2331583A JP2616230B2 (en) 1990-11-28 1990-11-28 Asynchronous counter circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2331583A JP2616230B2 (en) 1990-11-28 1990-11-28 Asynchronous counter circuit

Publications (2)

Publication Number Publication Date
JPH04196921A JPH04196921A (en) 1992-07-16
JP2616230B2 true JP2616230B2 (en) 1997-06-04

Family

ID=18245279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2331583A Expired - Lifetime JP2616230B2 (en) 1990-11-28 1990-11-28 Asynchronous counter circuit

Country Status (1)

Country Link
JP (1) JP2616230B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5421772B2 (en) * 1973-10-25 1979-08-02

Also Published As

Publication number Publication date
JPH04196921A (en) 1992-07-16

Similar Documents

Publication Publication Date Title
JPH06502264A (en) Dynamically switchable multi-frequency clock generator
JPS648374B2 (en)
JP2641276B2 (en) Two-stage synchronizer
JP2616230B2 (en) Asynchronous counter circuit
JP3380329B2 (en) Digital data arbitration device
JP2642566B2 (en) System controller clock regeneration circuit
JPS61501661A (en) Parallel synchronous operation
JPH04160818A (en) Frequency divider
JP3382329B2 (en) Odd counter circuit
JPH0758732A (en) Bit buffer circuit
JPS6160456B2 (en)
JPH02192315A (en) Pulse generator
JPH0423021A (en) Timer circuit
JPH03266109A (en) Counter output transfer system
JPH02209010A (en) Timing pulse generating circuit
JPH0336812A (en) Synchronizing circuit
JPS59207724A (en) Input circuit
JPH02164126A (en) Periodic signal generator
JPS6313195A (en) High speed memory device
JPS63204836A (en) Clock crossover circuit
JPH01103026A (en) Counter
JPH04177936A (en) Synchronizing signal circuit and magnetic disk device provided with the circuit
JPH0485796A (en) Control circuit for shift path
JPS6395518A (en) Clock exchanging circuit
JPH01297747A (en) Bus tracer