JP2597676B2 - Composite operational amplifier - Google Patents

Composite operational amplifier

Info

Publication number
JP2597676B2
JP2597676B2 JP24381988A JP24381988A JP2597676B2 JP 2597676 B2 JP2597676 B2 JP 2597676B2 JP 24381988 A JP24381988 A JP 24381988A JP 24381988 A JP24381988 A JP 24381988A JP 2597676 B2 JP2597676 B2 JP 2597676B2
Authority
JP
Japan
Prior art keywords
operational amplifier
input
resistor
output
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24381988A
Other languages
Japanese (ja)
Other versions
JPH0294705A (en
Inventor
秀雄 日下部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP24381988A priority Critical patent/JP2597676B2/en
Publication of JPH0294705A publication Critical patent/JPH0294705A/en
Application granted granted Critical
Publication of JP2597676B2 publication Critical patent/JP2597676B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manipulation Of Pulses (AREA)

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 高速、高精度のパルス増幅器(電子ビーム露光装置の
偏向増幅器) (従来の技術) 従来技術を図2に示す。図2に於て高速演算増幅器
(OP11)1のマイナス入力の誤差を高増幅度演算増幅器
(OP21)2により検出し、高速演算増幅器(OP11)1の
プラス入力に補正する。パルスが抵抗(R11)3に入力
された時、高速演算増幅器(OP11)1の遅延により、高
速演算増幅器(OP11)1のマイナス入力には微分波形が
発生する。この微分波形は抵抗(R51)4、容量(C1)
5、高速度演算増幅器(OP21)2により積分され、高速
演算増幅器(OP11)1のプラス入力を変動させ、出力誤
差を大きくする。また、この誤差は入力の振幅に依存す
る。
[Purpose of the Invention] (Industrial application field) High-speed and high-precision pulse amplifier (deflection amplifier of electron beam exposure apparatus) (Prior art) FIG. 2 shows a conventional technique. In FIG. 2, the error of the negative input of the high-speed operational amplifier (OP11) 1 is detected by the high-amplification operational amplifier (OP21) 2 and corrected to the positive input of the high-speed operational amplifier (OP11) 1. When the pulse is input to the resistor (R11) 3, a differential waveform is generated at the minus input of the high-speed operational amplifier (OP11) 1 due to the delay of the high-speed operational amplifier (OP11) 1. This differential waveform has resistance (R51) 4 and capacitance (C1)
5. The positive input of the high-speed operational amplifier (OP11) 1 is varied by being integrated by the high-speed operational amplifier (OP21) 2, thereby increasing the output error. This error also depends on the amplitude of the input.

(発明が解決しようとする課題) 高速演算増幅器(OP11)1の遅延により、発生する微
分波形を抑えて高速、高精度の複合演算増幅器をえる。
(Problems to be Solved by the Invention) Due to the delay of the high-speed operational amplifier (OP11) 1, a differential waveform to be generated is suppressed and a high-speed, high-accuracy composite operational amplifier is obtained.

〔発明の構成〕[Configuration of the invention]

(課題を解決するための手段) 高速演算増幅器の遅延時間を考慮した誤差検出出力を
高増幅度演算増幅器により高速演算増幅器のプラス入力
に補正を加えた複合演算増幅器 (作用) 高速演算増幅器の遅延により誤差検出の高増幅度演算
増幅器に発生する微分波形をスピードアップ・コンデン
サC1で抑えた複合演算増幅器 (実施例) 第1図は複合演算増幅器を示す回路構成図である。図
中11、12は演算増幅器(OP)、16は外部入力端子、17は
外部出力端子、21〜25は抵抗R1〜R5、26〜27はコンデン
サC、C1を示す。
(Means for Solving the Problems) A composite operational amplifier in which an error detection output in consideration of a delay time of a high-speed operational amplifier is corrected to a plus input of the high-speed operational amplifier by a high-amplification operational amplifier. FIG. 1 is a circuit diagram showing a composite operational amplifier in which a differential waveform generated in a high-amplification operational amplifier for error detection is suppressed by a speed-up capacitor C1. In the figure, 11 and 12 are operational amplifiers (OP), 16 is an external input terminal, 17 is an external output terminal, 21 to 25 are resistors R1 to R5, and 26 to 27 are capacitors C and C1.

OP11の−入力端と外部入力端子16との間には抵抗R1が
接続され、外部出力端17に接続されたOP11の出力端と−
入力端との間には抵抗R2が接続されている。外部入力端
子16と外部出力端子との間には抵抗R4とコンデンサC1と
が並列接続され、この並列接続と抵抗R3が直列に接続さ
れている。抵抗R3、R4の接続点は抵抗R5を介してOP12の
−入力端に接続されている。OP12の+入力端は接地さ
れ、−入力端と出力端の間にコンデンサCが接続されて
いる。OP12、抵抗R5、コンデンサCから積分回路が構成
され、この積分回路の出力がOP11の+入力端に与えられ
る。
A resistor R1 is connected between the-input terminal of OP11 and the external input terminal 16, and the output terminal of OP11 connected to the external output terminal 17 is connected to-
A resistor R2 is connected between the input terminal and the input terminal. A resistor R4 and a capacitor C1 are connected in parallel between the external input terminal 16 and the external output terminal, and the parallel connection and the resistor R3 are connected in series. A connection point between the resistors R3 and R4 is connected to a negative input terminal of the OP12 via a resistor R5. The positive input terminal of OP12 is grounded, and a capacitor C is connected between the negative input terminal and the output terminal. OP12, a resistor R5, and a capacitor C form an integration circuit, and the output of this integration circuit is given to the + input terminal of OP11.

OP11の特性が A(S)=A1/(1+sT) で、入力e1が加わってもOP12の出力e5が変化せず、e5=
0の場合、第1図は第2図と等価である。
The characteristic of OP11 is A (S) = A1 / (1 + sT). Even if input e1 is added, output e5 of OP12 does not change, and e5 =
In the case of 0, FIG. 1 is equivalent to FIG.

第2図の回路のラプラス変換は (e1−e3)/R1=(e3−e2)/R2 …(1) e2=−e3*A(s) …(2) A(s)=A1/(1+sT) …(3) である。(1)(3)式を(2)に代入し、e2について
整理すると e2=−(R2/R1)*A1*e1/{1+A1+(R1/R2)} +{(R1+R2)*sT/R2} …(4) となる。一般にA1》1であるから e2=−(R2/R1)*e2/{1+sT(R1+R2)/(A1*R
2)} となる。T1={(R1+R2)/(R2*A1)}*Tとおけば e2={−(R2/R1)/(1+sT)}e1 …(6) (6)式のステップ応答は e2={−(R2/R1)/(1+sT)}(e1/s) …(7) となる。(7)式をラプラス逆変換すると e2=−(R2/R1){1−exp(−t/T1)} …(8) となる。
The Laplace transform of the circuit of FIG. 2 is (e1-e3) / R1 = (e3-e2) / R2 (1) e2 = -e3 * A (s) (2) A (s) = A1 / (1 + sT) ) (3) Substituting the equations (1) and (3) into (2) and rearranging for e2, e2 =-(R2 / R1) * A1 * e1 / {1 + A1 + (R1 / R2)} + {(R1 + R2) * sT / R2} ... (4) Generally, A1 >> 1, so e2 = − (R2 / R1) * e2 / {1 + sT (R1 + R2) / (A1 * R
2) It becomes}. T1 = {(R1 + R2) / (R2 * A1)} * T e2 = {− (R2 / R1) / (1 + sT)} e1 (6) The step response of equation (6) is e2 = {− ( R2 / R1) / (1 + sT)} (e1 / s) (7) When the equation (7) is subjected to Laplace inversion, e2 = − (R2 / R1) {1−exp (−t / T1)} (8)

第3図は出力e2を補正を説明するための回路である。
入力e1にステップ電圧を入力した時のe2((8)式で決
まる波形)、e4、OP12の出力e5の波形を第4図に示す。
FIG. 3 is a circuit for explaining the correction of the output e2.
FIG. 4 shows the waveforms of e2 (waveform determined by equation (8)), e4, and output e5 of OP12 when a step voltage is input to input e1.

e4、e5の波形で破線はコンデンサC1がない場合、実線
はコンデンサC1で補正した場合の波形である。このよう
な過渡期にはOP12の出力e2は応答しないのが理想であ
る。そこで、コンデンサC1の容量を調整して、OP12の出
力e5が変化しないようにする。
In the waveforms of e4 and e5, the broken line is the waveform when the capacitor C1 is not provided, and the solid line is the waveform when the correction is performed by the capacitor C1. Ideally, the output e2 of the OP12 does not respond during such a transition period. Therefore, the capacity of the capacitor C1 is adjusted so that the output e5 of the OP12 does not change.

第1図に戻って、演算増幅器OP12の出力e5は入力e1、
演算増幅器OP11の出力e2の過渡期に無関係になり、演算
増幅器OP11の高速性を損なうことなく、演算増幅器OP12
の大きな増幅度により、演算増幅器OP11のドリフト、サ
ーマルテールを改善する。
Returning to FIG. 1, the output e5 of the operational amplifier OP12 is the input e1,
It becomes irrelevant to the transition period of the output e2 of the operational amplifier OP11, and without impairing the high-speed performance of the operational amplifier OP11,
Improves the drift and thermal tail of the operational amplifier OP11.

〔発明の効果〕〔The invention's effect〕

演算増幅器OP12の出力e5は入力e1、演算増幅器OP11の
出力e2の過渡期に無関係になり、増幅度の低い演算増幅
器OP11のドリフト、サーマルテールを増幅度の大きい演
算増幅器OP12で改善する。一方、演算増幅器OP11の高速
性は損なわれることなく、高精度で、かつ高速な複合演
算増幅器が実現できる。
The output e5 of the operational amplifier OP12 becomes irrelevant to the transition period of the input e1 and the output e2 of the operational amplifier OP11, and the drift and thermal tail of the operational amplifier OP11 with low amplification are improved by the operational amplifier OP12 with high amplification. On the other hand, a high-accuracy and high-speed composite operational amplifier can be realized without impairing the high-speed performance of the operational amplifier OP11.

【図面の簡単な説明】[Brief description of the drawings]

第1図は複合演算増幅器の回路構成図、第2図は複合演
算増幅器の回路構成図、第3図は複合演算増幅器の説明
図、第4図は複合演算増幅器の各部の波形図である。 OP11…演算増幅器高速タイプ OP12…演算増幅器高精度タイプ
FIG. 1 is a circuit configuration diagram of the composite operational amplifier, FIG. 2 is a circuit configuration diagram of the composite operational amplifier, FIG. 3 is an explanatory diagram of the composite operational amplifier, and FIG. 4 is a waveform diagram of each part of the composite operational amplifier. OP11: High-speed operational amplifier type OP12: High-precision operational amplifier type

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】大信号を増幅する高速であるが直流増幅度
の少ない第一の演算増幅器と小信号を増幅する直流増幅
度の大きい第二の演算増幅器とを合成した複合演算増幅
器において、入力電圧は抵抗R1、第一の演算増幅器の出
力電圧は抵抗R2を通して第一の演算増幅器のマイナス入
力に入力され、主に高速分を得、更に入力電圧は抵抗R3
(R3=k*R1、kは正の実数)と抵抗R5を通して第二の
演算増幅器のマイナス入力に、第一の演算増幅器の出力
電圧は抵抗R4(R4=k*R2)と並列に接続された容量C
1、抵抗R5を通して第二の演算増幅器のマイナス入力に
入力され、第二の演算増幅器のプラス入力は接地し、第
二の演算増幅器の出力電圧は容量Cを通して第二の演算
増幅器のマイナス入力に接続され、また第二の演算増幅
器の出力電圧は第一の演算増幅器のプラス入力に入力さ
れ、高速と高精度を得ることを特徴とする複合演算増幅
器。
1. A composite operational amplifier comprising a first operational amplifier which amplifies a large signal and has a high DC amplification degree but a low DC amplification degree and a second operational amplifier which amplifies a small signal and has a large DC amplification degree. The voltage is input to the negative input of the first operational amplifier through a resistor R1 and the output voltage of the first operational amplifier through a resistor R1.
(R3 = k * R1, k is a positive real number) and the negative input of the second operational amplifier through the resistor R5, and the output voltage of the first operational amplifier is connected in parallel with the resistor R4 (R4 = k * R2). Capacity C
1. Input to the negative input of the second operational amplifier through the resistor R5, the positive input of the second operational amplifier is grounded, and the output voltage of the second operational amplifier is connected to the negative input of the second operational amplifier through the capacitor C. A combined operational amplifier, wherein the output voltage of the second operational amplifier is connected to the plus input of the first operational amplifier to obtain high speed and high accuracy.
JP24381988A 1988-09-30 1988-09-30 Composite operational amplifier Expired - Lifetime JP2597676B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24381988A JP2597676B2 (en) 1988-09-30 1988-09-30 Composite operational amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24381988A JP2597676B2 (en) 1988-09-30 1988-09-30 Composite operational amplifier

Publications (2)

Publication Number Publication Date
JPH0294705A JPH0294705A (en) 1990-04-05
JP2597676B2 true JP2597676B2 (en) 1997-04-09

Family

ID=17109400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24381988A Expired - Lifetime JP2597676B2 (en) 1988-09-30 1988-09-30 Composite operational amplifier

Country Status (1)

Country Link
JP (1) JP2597676B2 (en)

Also Published As

Publication number Publication date
JPH0294705A (en) 1990-04-05

Similar Documents

Publication Publication Date Title
US4246497A (en) Phase measuring circuit
JP3664041B2 (en) Amplifier circuit for charge sensor
US4025867A (en) Capacitance magnification circuit
JPH0828644B2 (en) Active phase equalizer
JP2972552B2 (en) Detection circuit and detection method for capacitive sensor
JP2597676B2 (en) Composite operational amplifier
JP2809856B2 (en) Feedback emphasis circuit
JP2681559B2 (en) Speed measuring device
JPS59183516A (en) Negative feedback circuit of agc amplifier
JP3048745B2 (en) Analog input device
JP2993532B2 (en) Excitation circuit of Wheatstone bridge type load cell
JPH0240850A (en) Deflection amplifying circuit of electron beam exposure device
JPS60675Y2 (en) Signal addition circuit
JPH0418481B2 (en)
JPS6184519A (en) Position signal detecting device
RU1830492C (en) Capacious transformation of sensors into voltage
RU2025893C1 (en) Measurement amplifier with controlled gain factor
JPS6241453Y2 (en)
JPH0212744Y2 (en)
JPS62270Y2 (en)
JPH0441530B2 (en)
JPH0773171B2 (en) Complex operational amplifier circuit
JPS6117619Y2 (en)
JPS6238336Y2 (en)
JP2570391Y2 (en) Pressure sensor circuit

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20080109

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 12