JPS59183516A - Negative feedback circuit of agc amplifier - Google Patents

Negative feedback circuit of agc amplifier

Info

Publication number
JPS59183516A
JPS59183516A JP58057482A JP5748283A JPS59183516A JP S59183516 A JPS59183516 A JP S59183516A JP 58057482 A JP58057482 A JP 58057482A JP 5748283 A JP5748283 A JP 5748283A JP S59183516 A JPS59183516 A JP S59183516A
Authority
JP
Japan
Prior art keywords
circuit
voltage
output
difference
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58057482A
Other languages
Japanese (ja)
Other versions
JPH0324814B2 (en
Inventor
Hiroshi Ihara
伊原 博司
Tamio Tomosugi
友杉 民夫
Masahiro Ouchi
大内 雅弘
Tsutomu Kamoto
加本 務
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Nippon Telegraph and Telephone Corp
Original Assignee
NEC Corp
Nippon Telegraph and Telephone Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Telegraph and Telephone Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP58057482A priority Critical patent/JPS59183516A/en
Publication of JPS59183516A publication Critical patent/JPS59183516A/en
Publication of JPH0324814B2 publication Critical patent/JPH0324814B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers
    • H03G3/20Automatic control
    • H03G3/30Automatic control in amplifiers having semiconductor devices
    • H03G3/3005Automatic control in amplifiers having semiconductor devices in amplifiers suitable for low-frequencies, e.g. audio amplifiers

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Control Of Amplification And Gain Control (AREA)
  • Amplifiers (AREA)

Abstract

PURPOSE:To attain purely a differential offset by utilizing a signal being a difference of maximum values between a non-inverting output and an inverting output and correcting an offset voltage to eliminate the effect of a common mode signal including a DC voltage at the output side. CONSTITUTION:The non-inverting output signal 112 and the inverting output signal 113 are expressed respectively as VP=VPO+(Avi/2) and VN=VNO-(Avi/2), and in equations, where A is a differential gain of the amplifier, vi is an input signal voltage and VPO, VNO are respectively DC components. An output VP' of an amplitude detecting circuit 102 is expressed as VP'=VPO+(Avi'/2), where vi' is the maximum value of the input signal and an output VN' of a detecting circuit 103 is expressed as VN'=VNO. An output voltage VC of a difference circuit 106 via an adder circuit 104 is expressed as VC=VPO+VNO+(Avi'/2)- VT, where VT is a reference voltage. Since the sum VPO+VNO is constant, when the relation of VPO+VNO-VT=-(Avt'/2) is set where vt' is a reference voltage vt' converted into the input as the definition, the VC becomes as VC=A(vi'-vt')/ 2 and the effect of the DC offset voltage is not given onto an output voltage of the difference circuit.

Description

【発明の詳細な説明】 本発明はAGC(自動利得制御;  Automati
cGain Controlの略 )増幅器の負帰還回
路に関し、特にLSI化に適した差動型AGC増幅器に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides automatic gain control (AGC).
(Abbreviation for cGain Control)) It relates to a negative feedback circuit for an amplifier, and particularly to a differential AGC amplifier suitable for LSI integration.

従来この種の回路は個別部品で構成したり、混成集積回
路で構成する例が多く、また集積回路として実現されて
も小規模のものしかなかった。このため増幅回路間の結
合は交流結合方式(インダクタンスやキャパシタンスに
よる結合)が多く採用されていた。集積回路技術の進歩
と共に大規模なアナログ回路の集積化も可能となってき
ているが、周知のように段間にインダクタンスやキャパ
シタンスを用いる方式は集積化に適していないので、直
流結合方式を採用しなくてはならない。この場合には直
流オフセット電圧の補正が問題となる。
Conventionally, this type of circuit has often been constructed from individual components or a hybrid integrated circuit, and even if it has been realized as an integrated circuit, it has only been small-scale. For this reason, an AC coupling method (coupling using inductance or capacitance) was often used for coupling between amplifier circuits. As integrated circuit technology advances, it has become possible to integrate large-scale analog circuits, but as is well known, methods that use inductance or capacitance between stages are not suitable for integration, so a DC coupling method was adopted. I have to. In this case, correction of the DC offset voltage becomes a problem.

本発明は一段または多段に集積化された差動型AGC増
幅器に適した差動オフセット電圧補正回路ならびに利得
制御回路を含む負帰還回路を提供することを目的とする
ものであシ、特に単一極性のパルス信号を増幅する増幅
回路に適した負帰還回路を提供するものである。
An object of the present invention is to provide a negative feedback circuit including a differential offset voltage correction circuit and a gain control circuit suitable for a differential AGC amplifier integrated in one stage or in multiple stages. The present invention provides a negative feedback circuit suitable for an amplifier circuit that amplifies polar pulse signals.

内部回路が直流結合された差動型AGC増幅器では利得
制御を行う場合、出力信号の中に含まれる直流成分を除
去して、信号電圧のみを検出して負帰還信号とし、利得
制御を行なわなくてはならない。また差動オフセット電
圧を補正するためには差動オフセット電圧のみを検出し
て負帰還信号とする必要がある。本発明はこの二つの負
帰還動作を効果的に行うだめの新しい回路方式を提供す
るものである。
When performing gain control in a differential AGC amplifier whose internal circuit is DC-coupled, the DC component contained in the output signal is removed and only the signal voltage is detected as a negative feedback signal, without performing gain control. must not. Furthermore, in order to correct the differential offset voltage, it is necessary to detect only the differential offset voltage and use it as a negative feedback signal. The present invention provides a new circuit system that can effectively perform these two negative feedback operations.

本発明は一段または多段の差動型AGC増幅回路の正相
出力電圧および逆相出力電圧の振幅を検出する二つの振
幅検出回路、該二つの振幅検出回路の出力の和をとる和
回路、上記二つの振幅検出回路の出力の差をとる第一の
差回路、上記和回路の出力と基準電圧との差をとる第二
の差回路とを含み、上記第一の差回路の出力信号を利用
して上記差動型AGC増幅回路のオフセット電圧を制御
し、上記第二の差回路の出力信号を利用して上記差動型
A G C増幅器の利得を制御することを特徴とするA
GC増幅器負帰還回路である。
The present invention provides two amplitude detection circuits for detecting the amplitudes of a positive-phase output voltage and a negative-phase output voltage of a single-stage or multi-stage differential type AGC amplifier circuit, a summation circuit for calculating the sum of the outputs of the two amplitude detection circuits, and the above-mentioned A first difference circuit that takes the difference between the outputs of the two amplitude detection circuits, and a second difference circuit that takes the difference between the output of the summation circuit and a reference voltage, and uses the output signal of the first difference circuit. to control the offset voltage of the differential type AGC amplifier circuit, and control the gain of the differential type AGC amplifier using the output signal of the second difference circuit.
This is a GC amplifier negative feedback circuit.

第1図に本発明によるA G C増幅器負帰還回路の系
統図を示す。101は差動型AGC増幅回路であり、1
09および110がその正相入力端および逆相入力端、
112および113がその正相出力端および逆相出力端
である。また111 は利得制御入力端である。102
および103はそれぞれ正相出力112  の振幅検出
回路および逆相出力113の振幅検出回路である。10
4は和回路で振幅検出回路102および103の出力の
和をとる回路である。105 は第一の差回路で振幅検
出回路102および103 の出力の差をとる回路であ
る。106は第二の差回路で和回路104の出力と基準
電圧■T(114)との差をとる回路である。107 
は増幅回路で第1の差回路105 の出力を増幅し、直
流オフセット補正信号として差動型AGC増幅回路10
1の逆相入力端110に与えるものである。
FIG. 1 shows a system diagram of an AGC amplifier negative feedback circuit according to the present invention. 101 is a differential AGC amplifier circuit;
09 and 110 are its positive phase input terminal and negative phase input terminal,
112 and 113 are its positive phase output terminal and negative phase output terminal. Further, 111 is a gain control input terminal. 102
and 103 are an amplitude detection circuit for the positive phase output 112 and an amplitude detection circuit for the negative phase output 113, respectively. 10
4 is a summation circuit which calculates the sum of the outputs of the amplitude detection circuits 102 and 103. 105 is a first difference circuit which takes the difference between the outputs of the amplitude detection circuits 102 and 103. 106 is a second difference circuit which takes the difference between the output of the summation circuit 104 and the reference voltage T (114). 107
is an amplifier circuit that amplifies the output of the first difference circuit 105 and outputs it as a DC offset correction signal to the differential AGC amplifier circuit 10.
This is applied to the negative phase input terminal 110 of No. 1.

108 も垢幅回路で第二の差回路106の出力を増幅
し、利得制御信号として差動型AGC増幅回路101の
利得制御入力端111に与える。
108 also amplifies the output of the second difference circuit 106 with a wide width circuit and applies it to the gain control input terminal 111 of the differential type AGC amplifier circuit 101 as a gain control signal.

次に上述のAGC増幅器負帰還回路の動作を簡単に説明
する。正相出力信号112および逆相出力信号113 
をそれぞれ次式で表わす。
Next, the operation of the above-mentioned AGC amplifier negative feedback circuit will be briefly explained. Positive phase output signal 112 and negative phase output signal 113
are expressed by the following formulas.

但し■1および■、は正相および逆相出力端の全電圧で
VPoおよびVNoはそれぞれの直流分である。Aは増
幅器の差動利得でVi は入力端104に与えられた信
号電圧である。振幅検出回路102同様に最大値検出回
路103  の出力■ は■=■ ・・・叫・・藺・・
四回・・・・叩・・・・・・・曲(3)N     N
However, (1) and (2) are the total voltages at the positive-phase and negative-phase output terminals, and VPo and VNo are their respective DC components. A is the differential gain of the amplifier, and Vi is the signal voltage applied to the input terminal 104. Similarly to the amplitude detection circuit 102, the output ■ of the maximum value detection circuit 103 is ■=■ ...scream... 藺...
Four times...Tap...Song (3) N N
.

となる。従って和回路104  を経て第2の差回路1
06 の出力電圧■。は基準電圧を■ア として■  
A 〜v c =v p o + V N O+ −Av 
iVT・・川・・川(4)と表わされる。ここで差動増
幅回路の特性から■ 十■ は一定であるから入力換算
の基準電PON。
becomes. Therefore, the second difference circuit 1 is passed through the sum circuit 104.
06 output voltage■. Assuming that the reference voltage is ■A,■
A~vc=vpo+VNO+-Av
It is expressed as iVT...kawa...kawa (4). Here, from the characteristics of the differential amplifier circuit, ■ 10■ is constant, so it is the reference voltage PON in terms of input.

圧v1を定義して とすれば となシ第2の差回路106の出力電圧は入力信号v1と
基準電圧Vl  との差にのみ比例するようにすること
ができ、直流オフセット電圧の影響を無(することがで
きる。
If the voltage v1 is defined, the output voltage of the second difference circuit 106 can be made proportional only to the difference between the input signal v1 and the reference voltage Vl, and the influence of the DC offset voltage can be ignored. (can do.

他方第1の差回路105の出力電圧■、はとな多入力換
算直流オフセット電圧VFo を定義し ■Po−■、。=AVFo ・・・・・・・・・・・・
・・・・・・・・・・・・・・・(8)とすると(方式
は 1へ VF=A(V、。−Tvi)・・・・・・・・・・・・
・・・・・・・・・・・・(9)VFoが入力信号の振
幅に比べて小さいとすれば となり第1の差回路105 の出力は入力信号の最大値
の一十倍に等しくなる すなわち本方式のオフセット補正回路は入力側に換算し
て入力信号のピーク値の一4倍の残留オフセットが生ず
るように働くので差動回路の直線部分を最も有効に利用
することができる。従ってユニポーラ信号を増幅する場
合に極めて有効である。
On the other hand, the output voltage (■) of the first difference circuit 105 and the multi-input converted DC offset voltage VFo are defined as (Po-■). =AVFo・・・・・・・・・・・・
・・・・・・・・・・・・・・・ (8) (The method is 1 VF=A(V,.-Tvi)・・・・・・・・・・・・
(9) If VFo is smaller than the amplitude of the input signal, then the output of the first difference circuit 105 will be equal to 10 times the maximum value of the input signal. That is, the offset correction circuit of this system works so as to generate a residual offset of 14 times the peak value of the input signal on the input side, so that the linear portion of the differential circuit can be used most effectively. Therefore, it is extremely effective when amplifying unipolar signals.

次に振幅検出回路の実施例を第2図に示す、トランジス
タ201.202 、抵抗204.205が差動増幅回
路を構成しトランジスタ203.抵抗206およびコン
デンサ207が最大電圧保持回路を構成する。入力端2
08に入力する信号電圧はコンデンサ207 が保持す
る電圧よシ高い場合にのみエミッタフォロア203を活
性化し抵抗206  を通して新しい電圧をコンデンサ
207 に充電し最大電圧を保持する。
Next, the transistor 201.202 and the resistor 204.205 configure a differential amplification circuit, which shows the embodiment of the amplitude detection circuit in Fig. 2. Resistor 206 and capacitor 207 constitute a maximum voltage holding circuit. Input end 2
Only when the signal voltage input to 08 is higher than the voltage held by capacitor 207, emitter follower 203 is activated, a new voltage is charged to capacitor 207 through resistor 206, and the maximum voltage is maintained.

第3図に和回路104の実施例を示す抵抗301゜30
2が和回路を構成し、トランジスタ303と抵抗304
 は和回路の出力バッファ回路としてのエミッタフォロ
ア回路を構成する。今入力端305に電圧V□を印加し
入力端306に電圧■2を印加したとすると出力端30
7に得られる電圧■6は、抵抗301および302が等
しいとし、トランジスタ3030ベース電流を無視しそ
のペースエミッタ電圧降下をVBEとすれば V6=  (V工+■2)−VF、B・・・・・・・・
・・・・・・・(11)となシ和電圧が得られる(■B
F、は直流レベルシフトと解釈すればよい)第一の差回
路105 および第二の差回路106 として広く知ら
れている差動回路を用いればその増幅機能を利用して増
幅回路107.108を兼用することも可能である。
FIG. 3 shows an embodiment of the summation circuit 104.Resistor 301°30
2 constitutes a sum circuit, transistor 303 and resistor 304
constitutes an emitter follower circuit as an output buffer circuit of the sum circuit. Now, if voltage V□ is applied to the input terminal 305 and voltage ■2 is applied to the input terminal 306, then the output terminal 30
The voltage 6 obtained at 7 is calculated by assuming that the resistors 301 and 302 are equal, ignoring the base current of the transistor 3030, and setting its pace emitter voltage drop to VBE, then V6 = (V + 2) - VF, B...・・・・・・
......(11) The sum voltage can be obtained (■B
F can be interpreted as a DC level shift) If a differential circuit widely known as the first difference circuit 105 and the second difference circuit 106 is used, the amplification function can be used to create the amplifier circuits 107 and 108. It is also possible to use both.

また第二の差回路106は増幅回路108と混在し、基
準電圧■1などが表面上明確に区別できなくなる場合も
あっても、本発明の範囲内である。
Further, even if the second difference circuit 106 is mixed with the amplifier circuit 108 and the reference voltage (1) etc. cannot be clearly distinguished on the surface, this is within the scope of the present invention.

以上に説明した本発明によるAGC増幅器負帰還回路の
特長は次に要約される。
The features of the AGC amplifier negative feedback circuit according to the present invention described above are summarized below.

(1)正相出力および逆相出力の最大値の差の信号を利
用して、オフセット電圧の補正を行うことによって、出
力側における直流電圧を含む同相信号の影響を除去する
ことができ、純粋に差動オフセットの補正が可能となる
(1) By correcting the offset voltage using the signal of the difference between the maximum values of the positive-phase output and the negative-phase output, the influence of the common-mode signal including the DC voltage on the output side can be removed, Purely differential offset correction becomes possible.

(2)更に正相出力および差相出力の最大値の差信号に
よってオフセット電圧の補正を行うことによって、単一
極性入力信号の振幅の1/2に相当する残留オフセット
電圧を残すことができ、差動増幅回路の直線部分を最も
有効に信号増幅に使うことができる。
(2) By further correcting the offset voltage using the difference signal between the maximum values of the positive phase output and the differential phase output, it is possible to leave a residual offset voltage equivalent to 1/2 of the amplitude of the single polarity input signal, The linear portion of the differential amplifier circuit can be used most effectively for signal amplification.

(3)正相出力および逆相出力の最大値の和信号と基準
電圧■1との差によって利得制御を行うことによって、
差動オフセット電圧による利得制御への影響を除去する
ことができ、純粋に出力信号電圧に依存した利得制御が
可能となる。
(3) By performing gain control based on the difference between the sum signal of the maximum value of the positive phase output and negative phase output and the reference voltage ■1,
The influence of the differential offset voltage on gain control can be removed, and gain control that depends purely on the output signal voltage becomes possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明によるAGC増幅器負帰還回路の構成例
を示し、第2図は振幅検出回路の実施例を示し、第3図
は和回路の実施例を示す。 なお図において、101 ・・・・・・差動型AGC増
幅回路、102.103・・・・・・検出回路、104
 ・・・・・・和回路、105・・・・・・第1の差回
路、106・・・・・・第2の差回路、107.108
・・・・・・増幅回路、109,1.10・・・・・・
入力端、111・・・・・・利得制御入力端、112゜
113・・・・・・出力端、114・・・・・・基準電
圧VT、  201゜202.203・・・・・・トラ
ンジスタ、204.205 。 206・・・・・・抵抗、207・・・・・・コンデン
サ、208 ・・・・・・入力端、209・・・・・・
出力端、301 、302,304・・・・・・抵抗、
303・・・・・・トランジスタ、305.306・・
・・・・入力端、307・・・・・・出力端、である。 ・′フ・ 代理人 弁理士  内 原   晋
FIG. 1 shows a configuration example of an AGC amplifier negative feedback circuit according to the present invention, FIG. 2 shows an embodiment of an amplitude detection circuit, and FIG. 3 shows an embodiment of a summation circuit. In the figure, 101... differential type AGC amplifier circuit, 102, 103... detection circuit, 104
...sum circuit, 105...first difference circuit, 106...second difference circuit, 107.108
......Amplification circuit, 109, 1.10...
Input terminal, 111... Gain control input terminal, 112° 113... Output terminal, 114... Reference voltage VT, 201° 202.203... Transistor , 204.205. 206...Resistor, 207...Capacitor, 208...Input terminal, 209...
Output end, 301, 302, 304...Resistance,
303...Transistor, 305.306...
. . . input terminal, 307 . . . output terminal.・'F・ Agent: Susumu Uchihara, patent attorney

Claims (1)

【特許請求の範囲】[Claims] 差動型AGC増幅回路の正相出力電圧および逆相出力電
圧の振幅を検出する二つの振幅検出回路と、該二つの振
幅検出回路の出力の和をとる和回路と、該二つの振幅検
出回路の出力の差をとる第一の差回路と、前記和回路の
出力と基準電圧との差をとる第二の差回路とを含み、前
記第一の差回路の出力信号を利用して前記差動型AGC
増幅回路のオフセット電圧を制御し、前記第二の差回路
の出力信号を利用して前記差動ghaC増幅回路の利得
を制御することを特徴とするAGC増幅器負帰還回路。
Two amplitude detection circuits that detect the amplitudes of the positive-phase output voltage and the negative-phase output voltage of the differential AGC amplifier circuit, a summation circuit that sums the outputs of the two amplitude detection circuits, and the two amplitude detection circuits. and a second difference circuit that takes the difference between the output of the sum circuit and a reference voltage, and uses the output signal of the first difference circuit to calculate the difference. Dynamic AGC
An AGC amplifier negative feedback circuit, characterized in that the offset voltage of the amplifier circuit is controlled, and the gain of the differential ghaC amplifier circuit is controlled using the output signal of the second difference circuit.
JP58057482A 1983-04-01 1983-04-01 Negative feedback circuit of agc amplifier Granted JPS59183516A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58057482A JPS59183516A (en) 1983-04-01 1983-04-01 Negative feedback circuit of agc amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58057482A JPS59183516A (en) 1983-04-01 1983-04-01 Negative feedback circuit of agc amplifier

Publications (2)

Publication Number Publication Date
JPS59183516A true JPS59183516A (en) 1984-10-18
JPH0324814B2 JPH0324814B2 (en) 1991-04-04

Family

ID=13056927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58057482A Granted JPS59183516A (en) 1983-04-01 1983-04-01 Negative feedback circuit of agc amplifier

Country Status (1)

Country Link
JP (1) JPS59183516A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61114610A (en) * 1984-11-08 1986-06-02 Mitsubishi Electric Corp Dc amplifier with automatic gain control
FR2642918A1 (en) * 1989-02-09 1990-08-10 Cit Alcatel Wide-band amplifier circuit with automatic gain control
FR2677512A1 (en) * 1991-06-07 1992-12-11 Cit Alcatel BROADBAND AMPLIFIER CIRCUIT WITH AUTOMATIC GAIN AND OFFSET VOLTAGE CONTROL.
US6304144B1 (en) 1998-07-10 2001-10-16 Fujitsu Limited Differential amplification circuit
WO2001097374A1 (en) * 2000-06-12 2001-12-20 Mitsubishi Denki Kabushiki Kaisha Amplifier circuit
JP2008223901A (en) * 2007-03-13 2008-09-25 Kojima Press Co Ltd Clip

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61114610A (en) * 1984-11-08 1986-06-02 Mitsubishi Electric Corp Dc amplifier with automatic gain control
JPH0356482B2 (en) * 1984-11-08 1991-08-28
FR2642918A1 (en) * 1989-02-09 1990-08-10 Cit Alcatel Wide-band amplifier circuit with automatic gain control
FR2677512A1 (en) * 1991-06-07 1992-12-11 Cit Alcatel BROADBAND AMPLIFIER CIRCUIT WITH AUTOMATIC GAIN AND OFFSET VOLTAGE CONTROL.
US5218320A (en) * 1991-06-07 1993-06-08 Alcatel N.V. Wideband amplifier circuit having automatic gain and offset voltage control
US6304144B1 (en) 1998-07-10 2001-10-16 Fujitsu Limited Differential amplification circuit
WO2001097374A1 (en) * 2000-06-12 2001-12-20 Mitsubishi Denki Kabushiki Kaisha Amplifier circuit
US6674328B2 (en) 2000-06-12 2004-01-06 Mitsubishi Denki Kabushiki Kaisha Amplifier circuit
JP2008223901A (en) * 2007-03-13 2008-09-25 Kojima Press Co Ltd Clip

Also Published As

Publication number Publication date
JPH0324814B2 (en) 1991-04-04

Similar Documents

Publication Publication Date Title
JPH04212070A (en) Circuit for measuring level of input electric signal
JPS59183516A (en) Negative feedback circuit of agc amplifier
JPS6041882B2 (en) An amplifier comprising first and second amplification elements
GB2040052A (en) Edectrical signal processing
JPS59183511A (en) Offset voltage control circuit
JPH0156385B2 (en)
JPH08250955A (en) Equalizer amplifier circuit
JP2000031758A (en) Balanced amplifier circuit
JPH11330875A (en) Amplifying circuit and light receiver using the same
JPH062334Y2 (en) Balanced amplifier
JPS58213568A (en) Circuit for correcting video clamp
JPH05226949A (en) Amplifier circuit
JPS63273021A (en) Ac light component amplifier
JPH0681005B2 (en) Logarithmic detection circuit
JP3423150B2 (en) Level detection circuit
JPS6143807A (en) Dc feedback system
JPH0435212A (en) Balanced/unbalanced conversion circuit
JPH08250943A (en) Balanced amplifier circuit
JPH04200006A (en) Gain control amplifier
JPH0629747A (en) Frequency discriminator circuit
JPH05292140A (en) Four-phase psk demodulator
JPH02234505A (en) Automatic gain control circuit
JPS57123709A (en) Btl amplifier
JPS63236975A (en) Duty ratio measuring instrument
JPH0474887B2 (en)