JP2566910B2 - Flat sensor - Google Patents
Flat sensorInfo
- Publication number
- JP2566910B2 JP2566910B2 JP60181474A JP18147485A JP2566910B2 JP 2566910 B2 JP2566910 B2 JP 2566910B2 JP 60181474 A JP60181474 A JP 60181474A JP 18147485 A JP18147485 A JP 18147485A JP 2566910 B2 JP2566910 B2 JP 2566910B2
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- type semiconductor
- flat sensor
- upper electrode
- semiconductor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000004065 semiconductor Substances 0.000 claims description 22
- 239000000758 substrate Substances 0.000 claims description 13
- 229910021417 amorphous silicon Inorganic materials 0.000 claims description 10
- 229910045601 alloy Inorganic materials 0.000 claims description 8
- 239000000956 alloy Substances 0.000 claims description 8
- 238000000605 extraction Methods 0.000 claims description 4
- 229910021478 group 5 element Inorganic materials 0.000 claims 1
- 239000011669 selenium Substances 0.000 description 8
- 238000000151 deposition Methods 0.000 description 6
- 238000001514 detection method Methods 0.000 description 6
- 229920001971 elastomer Polymers 0.000 description 6
- 239000005060 rubber Substances 0.000 description 6
- 238000000034 method Methods 0.000 description 5
- 230000004044 response Effects 0.000 description 5
- UHYPYGJEEGLRJD-UHFFFAOYSA-N cadmium(2+);selenium(2-) Chemical compound [Se-2].[Cd+2] UHYPYGJEEGLRJD-UHFFFAOYSA-N 0.000 description 4
- 230000008021 deposition Effects 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 229910052711 selenium Inorganic materials 0.000 description 3
- 125000006850 spacer group Chemical group 0.000 description 3
- 229910000676 Si alloy Inorganic materials 0.000 description 2
- 229910020328 SiSn Inorganic materials 0.000 description 2
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 2
- 229910006404 SnO 2 Inorganic materials 0.000 description 2
- 229910017875 a-SiN Inorganic materials 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910000967 As alloy Inorganic materials 0.000 description 1
- -1 ITO Chemical class 0.000 description 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910001215 Te alloy Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- BEQNOZDXPONEMR-UHFFFAOYSA-N cadmium;oxotin Chemical compound [Cd].[Sn]=O BEQNOZDXPONEMR-UHFFFAOYSA-N 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000013081 microcrystal Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Landscapes
- Character Input (AREA)
- Light Receiving Elements (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、特に光または熱に対する感度に優れ、かつ
位置の検出にも応用が可能な平面センサーに関する。TECHNICAL FIELD The present invention relates to a flat sensor which has particularly high sensitivity to light or heat and can be applied to position detection.
マイクロプロセッサー及び周辺装置の開発は目ざまし
いものがあり、近年コンピュータにセンサーを接続させ
て計測の自動化などが行なわれている。このばあい、従
来から、光半導体を数多く並べそれらの出力をモニター
する方式、あるいはいわゆる平面デジタイザーなどを用
い、圧力、容量、温度の変化をとらえその検出点の位置
を産出させる方式のものが多い。これらのセンサーは多
くの場合、微小センサーの集合体と考えられ、多数本の
配線とICの用意が必要とされる。一方、安価でかつ多く
のICを必要としないデジタイザーが、導電性ゴムを用い
て開発されている。これは、2枚の導電性ゴムをスペー
サーによって分離しておき、上から圧力をかけることに
よってこの上下の2枚のゴムが電気的に接続され、この
ときに起こる上下の導電性ゴムの両端の電位あるいは電
流値の変化を読み取るものである。この導電性ゴムを使
用したセンサーは安価かつ単純である反面、ゴムを使用
していること、スペーサーが不可欠なこと、基本的には
機械的な力で作動させなければならないことなどが欠点
として挙げられる。したがって検出の精度が低い、安定
性に欠ける、応答が遅いなど利用上の問題点が存在し
た。The development of microprocessors and peripheral devices is remarkable, and in recent years, sensors have been connected to computers to automate measurement. In this case, conventionally, there are many methods in which a large number of optical semiconductors are arranged and their outputs are monitored, or a so-called flat digitizer is used to detect changes in pressure, capacity, and temperature and produce the position of the detection point. . These sensors are often considered as a collection of minute sensors, and many wires and ICs are required. On the other hand, inexpensive digitizers that do not require many ICs have been developed using conductive rubber. This is because the two conductive rubbers are separated by a spacer, and by applying pressure from above, the two rubbers above and below are electrically connected, and the two ends of the upper and lower conductive rubbers that occur at this time are connected. This is to read the change in electric potential or current value. Although this sensor using conductive rubber is cheap and simple, it has the disadvantages that it uses rubber, that a spacer is indispensable, and that it must be mechanically operated. To be Therefore, there were problems in use such as low detection accuracy, lack of stability, and slow response.
本発明の目的は、上記従来技術では克服できなかった
応答速度、検出の精度、安定度を改良することにある。
本発明によれば、安価でかつ大面積の安定な平面センサ
ーがえられる。An object of the present invention is to improve response speed, detection accuracy, and stability that cannot be overcome by the above-mentioned conventional techniques.
According to the present invention, it is possible to obtain a stable flat sensor that is inexpensive and has a large area.
本発明では、応答速度を速めるために、機械的な力を
利用せず、光または熱によって物性が変化する半導体材
料を用いる。また精度および安定度を改良するためにス
ペーサーなど不安定性の原因となるものを除き、平面セ
ンサー全体を均一な構造とするため、下部電極上に均一
に半導体を堆積する方法を採用した。また、暗時または
非加熱時に半導体を流れる電流値の変化あるいは半導体
各部の電位の変化を低く抑えるため、バイアス電圧の印
加時にも微小電流しか流れない構造すなわち電極/pinip
/電極構造を採用し雑音を抑制した。In the present invention, in order to increase the response speed, a semiconductor material whose physical properties are changed by light or heat is used without using mechanical force. In addition, in order to improve accuracy and stability, a method of uniformly depositing a semiconductor on the lower electrode was adopted in order to make the entire planar sensor a uniform structure, except for those that cause instability such as spacers. In addition, in order to suppress changes in the value of the current that flows in the semiconductor or changes in the potential of each part of the semiconductor during darkness or non-heating, a structure in which only a minute current flows even when a bias voltage is applied, that is, electrode / pinip
/ Adopted an electrode structure to suppress noise.
本発明の実施例を説明する。絶縁性基板または絶縁材
料でコーティングした導電性基板(以下「基板」とい
う)上に金属または導電性化合物を下部電極として堆積
させ、そのシート抵抗が10Ω/□以上1MΩ/□以下、好
ましくは100Ω/□以上50kΩ/□以下となるようにす
る。この基板上に、大面積にわたって堆積させることが
可能な半導体、たとえばa−Se、CdSe、CdS、ZnO、ZnS
e、a−As2S3、a−セレンヒ素合金、a−セレンテルル
合金、有機半導体、a−シリコン合金などを均一に薄膜
状に堆積させる。ここで「a−」はアモルファスを意味
する。以下、このようにして堆積させた半導体を、信号
を検出する中心的役割を果たすという意味で「センサー
部」という。An embodiment of the present invention will be described. A metal or a conductive compound is deposited as a lower electrode on an insulating substrate or a conductive substrate coated with an insulating material (hereinafter referred to as "substrate"), and the sheet resistance is 10 Ω / □ or more and 1 MΩ / □ or less, preferably 100 Ω / □ or more and 50 kΩ / □ or less. Semiconductors such as a-Se, CdSe, CdS, ZnO, ZnS that can be deposited over a large area on this substrate.
e, a-As 2 S 3 , a-selenium arsenic alloy, a-selenium tellurium alloy, organic semiconductor, a-silicon alloy, etc. are uniformly deposited in a thin film form. Here, "a-" means amorphous. Hereinafter, the semiconductor thus deposited is referred to as a "sensor section" in the sense that it plays a central role in detecting a signal.
p−n接合のできる材料の組合わせを用いて、p−i
−n−i−pまたはn−i−−i−nで示される単位を
少なくとも1つ有する構造となるような堆積を行なう。
たとえばアモルファスシリコン合金であれば、太陽電池
の例のようにp−i−n構造を容易に作成できる。この
p−i−n構造にさらにi−p構造を堆積させて上記p
−i−n−i−p構造が作成できる。またa−SeとCdSe
を組合せてp−i−n−i−p構造とするとき、a−Se
とCdSeの組合せはセレン整流器の例にもあるように整流
作用を示す。この場合にはi層を必要とせずa−Se/CdS
e/a−Seの構造でもよいが耐圧特性が少し劣ることがあ
る。またポリクシルタルシリコンを用いたp−i−n−
i−p構造も容易に大面積化することができる。あるい
はマイクロクリスタルSiH(μc−SiH)を用いてp(a
−Si合金)/i(a−Si合金)/μc−SiH/i(a−Si合
金)/p(a−Si合金)などの構造としてもよい。このば
あい、a−Si合金とは具体的には、a−Si:H、a−Si:
F:H、a−SiC:H、a−SiC:F:H、a−SiGe:H、a−SiGe:
F:H、a−SiSn:H、a−SiSn:F:H、a−SiN:H、a−SiN:
F:H、a−SiO:H、a−SiO:F:Hなどをいう。Using a combination of materials capable of pn junction, pi
Deposition is performed so that a structure having at least one unit represented by -n-ip or n-i-i-n is obtained.
For example, with an amorphous silicon alloy, a pin structure can be easily created as in the case of a solar cell. By further depositing an ip structure on the p-i-n structure,
An -i-n-i-p structure can be created. Also, a-Se and CdSe
A to form a p-i-n-i-p structure, a-Se
The combination of CdSe and CdSe exhibits a rectifying action as in the example of a selenium rectifier. In this case, i-layer is not required and a-Se / CdS
The structure of e / a-Se may be used, but the withstand voltage characteristic may be slightly inferior. In addition, p-i-n- using polyxyltal silicon
The i-p structure can be easily enlarged. Alternatively, using microcrystal SiH (μc-SiH), p (a
-Si alloy) / i (a-Si alloy) / [mu] c-SiH / i (a-Si alloy) / p (a-Si alloy). In this case, the a-Si alloy is specifically a-Si: H, a-Si:
F: H, a-SiC: H, a-SiC: F: H, a-SiGe: H, a-SiGe:
F: H, a-SiSn: H, a-SiSn: F: H, a-SiN: H, a-SiN:
F: H, a-SiO: H, a-SiO: F: H and the like.
センサー部の表面に堆積される上部電極であるが、こ
の電極の用途は、下地の基板および下部電極の用途にか
かわる。つまり、光センサーとして用いるばあい、基板
側あるいは上部側の少なくとも一方が透明または半透明
なものであることが必要である。したがって、たとえ
ば、上部電極側から光を取り入れるならば上部電極に透
明性が必要となり、上部電極として金属、たとえばCr、
Ni、Al、Ag、Au、Mg、Pt、Pb、Mo、Ir、Cuなどを半透明
に、または導電性化合物、たとえばITO、ITO/SnO2、SnO
2、カドミウム錫酸化物などを透明もしくは半透明に堆
積させる必要がある。The upper electrode is deposited on the surface of the sensor unit, and the use of this electrode is related to the use of the base substrate and the lower electrode. That is, when used as an optical sensor, at least one of the substrate side and the upper side needs to be transparent or semitransparent. Therefore, for example, if light is taken in from the upper electrode side, the upper electrode needs to be transparent, and metal such as Cr,
Translucent Ni, Al, Ag, Au, Mg, Pt, Pb, Mo, Ir, Cu, etc., or conductive compounds such as ITO, ITO / SnO 2 , SnO
2. It is necessary to deposit cadmium tin oxide transparently or semi-transparently.
第1a図に、このようにして作成された電極/p−i−n
−i−p/電極構造を示す。Fig. 1a shows the electrode / p-i-n thus prepared.
-I-p / electrode structure is shown.
平面センサーの検出信号の取り出し方法を第1b図によ
り説明する。同図のように下部電極の相対する2つのエ
ッジ(3a)および(3b)からと、それから直角に回転さ
せた上部電極の相対する2つのエッジ(5a)および(5
b)からとのそれぞれ1本ずつ計4本のシグナル取出し
線を設ける。このように本発明の平面センサーはシグナ
ル取り出しの数が非常に少なく、デバイスの構造も簡単
なことが特徴である。また、本平面センサーを光センサ
ーとしてではなく、熱センサーとして用いるばあいは光
を照射する必要は全くなく、電極としてはシート抵抗値
が10Ω/□〜1MΩ/□好ましくは100Ω/□以上1MΩ/
□以下のものであればよい。A method of extracting the detection signal of the flat sensor will be described with reference to FIG. 1b. As shown in the figure, two opposite edges (3a) and (3b) of the lower electrode and two opposite edges (5a) and (5
b) Provide a total of four signal output lines, one each from and. As described above, the planar sensor of the present invention is characterized in that the number of signals taken out is very small and the device structure is simple. Further, when the flat sensor is used as a heat sensor instead of as an optical sensor, it is not necessary to irradiate light, and the electrode has a sheet resistance value of 10 Ω / □ to 1 MΩ / □, preferably 100 Ω / □ or more and 1 MΩ /
□ The following items are acceptable.
以下に具体的実施例をあげて説明するが、これによっ
て本発明が限定されるものではない。Specific examples will be described below, but the present invention is not limited thereto.
実施例1 ガラス基板(コーニング7059)上にCr金属を電子ビー
ム蒸着法により蒸着し、シート抵抗、600Ω/□の導電
性基板を作成した。この上にグロー放電分解法によりa
−SiHをp−i−n−i−p構造となるよう堆積させ
た。Example 1 Cr metal was vapor-deposited on a glass substrate (Corning 7059) by an electron beam vapor deposition method to prepare a conductive substrate having a sheet resistance of 600 Ω / □. Then, a glow discharge decomposition method
-SiH was deposited to have a p-i-n-i-p structure.
グロー放電分解の条件は、 p層:放電パワー 30W 基板温度 250℃ SiH4圧力 0.1Torr(40SCCM) 1000PPM B2H6/H2圧力 0.2Torr (100SCCM) 全圧力 0.3Torr 堆積時間 3分 i層:放電パワー 40W 基板温度 250℃ SiH4圧力 0.2Torr(80SCCM) 全圧力 0.2Torr 堆積時間 20分 n層:放電パワー 40W 基板温度 250℃ SiH4圧力 0.1Torr(40SCCM) 1000PPM PH3/H2圧力 0.2Torr (100SCCM) 全圧力 0.3Torr 堆積時間 5分 であった。なお下部電極上にはCVDマスクを置いて、全
面にa−SiHが堆積するのを防いでいる。これは下部電
極のシグナル取り出し部をマスクするためである。この
ようにしてガラス/Cr/p−i−n−i−p構造を作成
し、さらにこの最上部のp層表面にCrを下地電極とほぼ
同じ条件で蒸着させた。上部Cr電極のシート抵抗は560
Ω/□であった。上部電極のシグナルとり出し部を設
け、平面センサーを完成させた。The conditions for glow discharge decomposition are: p layer: discharge power 30W substrate temperature 250 ° C SiH 4 pressure 0.1Torr (40SCCM) 1000PPM B 2 H 6 / H 2 pressure 0.2Torr (100SCCM) total pressure 0.3Torr deposition time 3 minutes i layer: Discharge power 40W Substrate temperature 250 ℃ SiH 4 pressure 0.2Torr (80SCCM) Total pressure 0.2Torr Deposition time 20 minutes n layer: Discharge power 40W Substrate temperature 250 ℃ SiH 4 pressure 0.1Torr (40SCCM) 1000PPM PH 3 / H 2 pressure 0.2Torr (100 SCCM) Total pressure 0.3 Torr Deposition time was 5 minutes. A CVD mask is placed on the lower electrode to prevent a-SiH from being deposited on the entire surface. This is to mask the signal extraction portion of the lower electrode. In this way, a glass / Cr / pin-ip structure was formed, and Cr was vapor-deposited on the surface of the uppermost p layer under substantially the same conditions as the base electrode. The sheet resistance of the upper Cr electrode is 560
It was Ω / □. The signal extraction part of the upper electrode was provided, and the flat sensor was completed.
20℃の温度で本平面センサー上に、He−Neレーザ光を
スポット照射し、オシロスコープにより電圧の変化を見
たところ応答速度が充分速く、ブラウン管でパルス応答
の立上りが10msであることがわかった。He-Ne laser light was spot-irradiated on this flat sensor at a temperature of 20 ° C, and when the voltage change was observed by an oscilloscope, it was found that the response speed was sufficiently fast and the rise of the pulse response was 10 ms in the cathode ray tube. .
つぎに、このセンサーの耐熱テストを行なったところ
200℃の高温下で100時間経過後もその性能に大きな変化
は見られなかった。またHe−Neレーザ光の照射位置をず
らしながら位置センサー精度を確認したところ0.1mmの
スポットの変位まで12ビットのA/D変換器で読み取れる
ことがわかった。これは、従来技術に比して充分な精度
であることがわかった。Next, when the heat resistance test of this sensor was performed
No significant change was observed in the performance after 100 hours at a high temperature of 200 ° C. The accuracy of the position sensor was confirmed while shifting the irradiation position of the He-Ne laser light, and it was found that even a displacement of the spot of 0.1 mm could be read by a 12-bit A / D converter. This has been found to be of sufficient accuracy compared to the prior art.
以上のように半導体を使用することにより、安定性に
すぐれた、大面積の平面センサーをえることができ、こ
れを用いて応答性が速く、高精度の位置検出を行なうこ
とができる。As described above, by using the semiconductor, it is possible to obtain a large-area flat sensor having excellent stability, and by using this, it is possible to perform position detection with high responsiveness and high accuracy.
第1a図は平面センサーの構造を示す側面図、第1b図は同
上図面である。 (図面の主要符号) (1):基板 (2):下部電極 (51):P型半導体 (52):i型半導体 (53):n型半導体 (54):i型半導体 (55):P型半導体 (6):上部電極FIG. 1a is a side view showing the structure of the flat sensor, and FIG. 1b is the same as above. (Main symbols in the drawing) (1): Substrate (2): Lower electrode (51): P-type semiconductor (52): i-type semiconductor (53): n-type semiconductor (54): i-type semiconductor (55): P Type semiconductor (6): Upper electrode
Claims (4)
下の値をもつ下部電極、P型半導体、真性半導体、n型
半導体、真性半導体、P型半導体を順次設け、その上に
シート抵抗が10Ω/□以上1MΩ/□以下の上部電極が設
けられており、前記上部電極の、相対して離間する2つ
の位置に一対の取出し電極を配置し、前記下部電極の、
前記2つの位置と交差する方向にある位置に他の一対の
取出し電極を対向配置してなることを特徴とする平面セ
ンサー。1. A lower electrode having a sheet resistance of 10 Ω / □ or more and 1 MΩ or less, a P-type semiconductor, an intrinsic semiconductor, an n-type semiconductor, an intrinsic semiconductor, and a P-type semiconductor are sequentially provided on a substrate, and the sheet resistance is provided thereon. Is provided with an upper electrode of 10 Ω / □ or more and 1 MΩ / □ or less, and a pair of extraction electrodes are arranged at two positions spaced apart from each other on the upper electrode,
A flat sensor, wherein another pair of extraction electrodes are arranged to face each other at a position that intersects with the two positions.
ファスシリコン合金、前記真性半導体がアモルファスシ
リコン合金、および前記n型半導体がV族元素を含むア
モルファスシリコン合金である特許請求の範囲第1項記
載の平面センサー。2. The P-type semiconductor is an amorphous silicon alloy containing a group III element, the intrinsic semiconductor is an amorphous silicon alloy, and the n-type semiconductor is an amorphous silicon alloy containing a group V element. The plane sensor described.
る暗電流の値が、いずれの極性においても印加電圧5Vか
つ20℃の温度条件下において1×10-12A/cm2以上1×10
-2A/cm2以下である特許請求の範囲第1項記載の平面セ
ンサー。3. The value of the dark current flowing between the upper electrode and the lower electrode is 1 × 10 −12 A / cm 2 or more under an applied voltage of 5 V and a temperature condition of 20 ° C. regardless of the polarity. × 10
The flat sensor according to claim 1, which is -2 A / cm 2 or less.
とも一方が光に対して透明または半透明な電極であるこ
とを特徴とする特許請求の範囲第1項記載の平面センサ
ー。4. The flat sensor according to claim 1, wherein at least one of the upper electrode and the lower electrode is an electrode transparent or semitransparent to light.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60181474A JP2566910B2 (en) | 1985-08-19 | 1985-08-19 | Flat sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60181474A JP2566910B2 (en) | 1985-08-19 | 1985-08-19 | Flat sensor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6242470A JPS6242470A (en) | 1987-02-24 |
JP2566910B2 true JP2566910B2 (en) | 1996-12-25 |
Family
ID=16101385
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60181474A Expired - Lifetime JP2566910B2 (en) | 1985-08-19 | 1985-08-19 | Flat sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2566910B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4205757A1 (en) * | 1991-02-26 | 1992-08-27 | Nippon Denso Co | DEVICE FOR DETECTING THE POSITION AND INTENSITY OF LIGHT AND SOLID COMPONENT ELEMENT FOR USE THEREOF |
JPH0669536A (en) * | 1992-08-21 | 1994-03-11 | Nippondenso Co Ltd | Manufacture of light-position detection device |
JP4782897B1 (en) * | 2011-04-11 | 2011-09-28 | 隆彌 渡邊 | Air conditioning |
WO2012140800A1 (en) * | 2011-04-11 | 2012-10-18 | Watanabe Takaya | Cooling and heating device |
JP4856282B1 (en) * | 2011-07-30 | 2012-01-18 | 隆彌 渡邊 | Air conditioning |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58141561A (en) * | 1982-02-18 | 1983-08-22 | Semiconductor Energy Lab Co Ltd | Semiconductor device |
-
1985
- 1985-08-19 JP JP60181474A patent/JP2566910B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS6242470A (en) | 1987-02-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2435251C2 (en) | Front electrode with layer of thin metal film and high-work function buffer layer for use in photovoltaic device and production method thereof | |
Fortunato et al. | Large-area 1D thin-film position-sensitive detector with high detection resolution | |
CN102074593A (en) | Solar cell | |
JP2986875B2 (en) | Integrated solar cell | |
JP2566910B2 (en) | Flat sensor | |
JPH06318723A (en) | Photovoltaic element and its manufacture | |
JP2001053329A (en) | Pin-type photoelectric conversion element | |
JP2786600B2 (en) | Thin film solar cell and method for manufacturing the same | |
EP0567111A1 (en) | Electrode of a photovoltaic element and method for forming the same | |
JP3653379B2 (en) | Photovoltaic element | |
JPH0122991B2 (en) | ||
JPH0221664B2 (en) | ||
US5458695A (en) | Solar cell and process for fabricating the same | |
JP2680577B2 (en) | Photovoltaic device | |
JP2744680B2 (en) | Manufacturing method of thin film solar cell | |
JPH0125234B2 (en) | ||
JP3398161B2 (en) | Photoelectric conversion device | |
JPS6152992B2 (en) | ||
JPH05145095A (en) | Photovoltaic element | |
JP2673021B2 (en) | Solar cell | |
JPH0434832B2 (en) | ||
JP2000353817A (en) | Integrated photoelectric conversion device and its manufacture | |
JPH02148773A (en) | Optical sensor | |
JP2889963B2 (en) | Contact image sensor | |
JPH021866Y2 (en) |