JP4782897B1 - Air conditioning - Google Patents

Air conditioning Download PDF

Info

Publication number
JP4782897B1
JP4782897B1 JP2011086983A JP2011086983A JP4782897B1 JP 4782897 B1 JP4782897 B1 JP 4782897B1 JP 2011086983 A JP2011086983 A JP 2011086983A JP 2011086983 A JP2011086983 A JP 2011086983A JP 4782897 B1 JP4782897 B1 JP 4782897B1
Authority
JP
Japan
Prior art keywords
metal
thomson
heat
type semiconductor
ultrafine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011086983A
Other languages
Japanese (ja)
Other versions
JP2014029892A (en
Inventor
隆彌 渡邊
Original Assignee
隆彌 渡邊
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to PCT/JP2011/074622 priority Critical patent/WO2012140800A1/en
Application filed by 隆彌 渡邊 filed Critical 隆彌 渡邊
Priority to JP2011086983A priority patent/JP4782897B1/en
Application granted granted Critical
Publication of JP4782897B1 publication Critical patent/JP4782897B1/en
Priority to JP2013509735A priority patent/JPWO2012140800A1/en
Publication of JP2014029892A publication Critical patent/JP2014029892A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

【課題】
建築物や移動体車両の壁や窓の内側面にトムソン素子を配置する。
【解決手段】
建築物や移動体車両の壁や窓に生じる放射や輻射による熱を利用した冷暖房装置において、壁や窓の内側面に透明性金属として銅超微粒子とn型半導体として酸化スズまたは酸化インジウムからなる超微粒子を堆積させる。金属+n型半導体+金属からなるトムソン素子をポリマーフィルム内に少なくとも1個以上配置し、トムソン素子の電圧印加方向による電流の流れの方向で熱電能(ゼーベック係数)の差による吸熱あるいは発熱を発現させるようにする冷暖房装置である。
【効果】
以上のとおり、本発明の冷暖房装置は、短時間でかつ製造コストも劇的に低減できるので、その工業的価値は極めて高い。
【選択図】 図1
【Task】
Thomson elements are placed on the walls and windows of buildings and mobile vehicles.
[Solution]
In an air-conditioning system using heat generated by radiation or radiation generated on a wall or window of a building or a mobile vehicle, the inner surface of the wall or window is made of copper ultrafine particles as a transparent metal and tin oxide or indium oxide as an n-type semiconductor. Deposit ultrafine particles. Arrange at least one Thomson element consisting of metal + n-type semiconductor + metal in the polymer film to develop heat absorption or heat generation due to the difference in thermoelectric power (Seebeck coefficient) in the direction of current flow depending on the voltage application direction of the Thomson element. It is the air conditioner which makes it.
【effect】
As described above, the air conditioning apparatus of the present invention has a very high industrial value because it can dramatically reduce the manufacturing cost in a short time.
[Selection] Figure 1

Description

本発明は、建築物や移動体車両の壁や窓に生じる放射や輻射による熱を利用した冷暖房装置において、建築物や移動体車両の壁や窓の内側面に透明性金属と透明性n型半導体からなる超微粒子を分散堆積させて積層させた金属+n型半導体+金属からなるサンドイッチ構造のトムソン素子に電流を流して、熱電能(ゼーベック係数)の差による吸熱あるいは発熱を発現させるようにした冷暖房システムに関する。 The present invention relates to a cooling / heating device using heat generated by radiation or radiation generated on a wall or window of a building or a mobile vehicle, and a transparent metal and a transparent n-type on the inner surface of the wall or window of the building or mobile vehicle. Current was passed through a sandwich structure Thomson element consisting of metal + n-type semiconductor + metal laminated with ultrafine particles made of semiconductor dispersed and deposited, and heat absorption or heat generation due to differences in thermoelectric power (Seebeck coefficient) was developed. It relates to an air conditioning system.

トムソン素子の特性の中でもっとも重要な冷却量は、一般的に次式で表される。
冷却量= トムソン効果−ジュール熱−熱伝導損失
ここで、Q:冷却量[W]、α:トムソン素子のゼーベック係数[V/K]、Tc 低温側表面温度[K]、I:電流値[A]、R:内部抵抗[Ω]、K:トムソン素子の熱通過率[W/m2K]、S:トムソン素子の表面積[m2]、ΔT:トムソン素子両面の温度差[K]
したがって、トムソン素子の能力を効率良く取り出すためには、ジュール熱の発生を極力抑えるような使い方をすることと、トムソン素子両面の温度差を極力少なくすることである。
The most important cooling amount among the characteristics of the Thomson element is generally expressed by the following equation.
Cooling amount = Thomson effect-Joule heat-Heat conduction loss
Here, Q: cooling amount [W], α: Seebeck coefficient [V / K] of Thomson element, Tc low temperature side surface temperature [K], I: current value [A], R: internal resistance [Ω], K: heat transmission rate of Thomson element [W / m 2 K], S: surface area of Thomson element [m 2 ], ΔT: temperature difference [K] on both sides of Thomson element
Therefore, in order to efficiently take out the capability of the Thomson element, it is necessary to use it so as to suppress the generation of Joule heat as much as possible and to reduce the temperature difference between both sides of the Thomson element as much as possible.

酸化スズ、酸化インジウムは、n型半導体で高い導電性を持っており、かつ可視光領域の吸収が少ないため、透明帯電防止膜や透明電極として用いられている。導電性を改善するため、酸化スズにはアンチモンを、酸化インジウムにはスズをドープする。前者をATO(アンチモン・ティン・オキサイド)、後者をITO(インジウム・ティン・オキサイド)という。透明導電膜は、一般に、物理的成膜法により作られるが、超微粒子の場合は、高分子バインダーに分散し、塗布することにより成膜する。その場合、ATOは、10〜1010Ω/□、ITOは、10〜10Ω/□の表面抵抗の導電膜を得ることができる。超微粒子は、粒径が10nm〜1nmで、超微粒子分散系の性質である活発なブラウン運動による拡散沈着が生じる。この膜の導電性は物理的成膜法に比べて劣るが、波長380nm〜780nmの可視光透過率が高く透明性には優れている。 Tin oxide and indium oxide are n-type semiconductors, have high conductivity, and have little absorption in the visible light region, so that they are used as transparent antistatic films and transparent electrodes. In order to improve conductivity, tin oxide is doped with antimony and indium oxide is doped with tin. The former is called ATO (antimony tin oxide) and the latter is called ITO (indium tin oxide). The transparent conductive film is generally produced by a physical film formation method, but in the case of ultrafine particles, the film is formed by dispersing and coating in a polymer binder. In that case, a conductive film having a surface resistance of 10 5 to 10 10 Ω / □ can be obtained from ATO, and 10 2 to 10 5 Ω / □ can be obtained from ITO. The ultrafine particles have a particle diameter of 10 nm to 1 nm, and diffusion deposition occurs due to active Brownian motion, which is a property of the ultrafine particle dispersion. Although the conductivity of this film is inferior to that of physical film formation, it has high visible light transmittance at a wavelength of 380 nm to 780 nm and excellent transparency.

熱エネルギーは、熱の移動に伴う3つの移動形態がある。1つめは「熱伝導」である。熱エネルギーは微視的に見ると、物質を構成する個々の分子の運動である。この運動が次々に隣の分子に伝搬されていくのが、熱伝導による伝熱である。熱伝導による熱の伝わりやすさは、物質固有の値の熱伝導率で表される。2つめは「対流」である。固体内の分子はその位置を変えることができないため、「熱伝導」により徐々に熱エネルギーが伝搬されるが、流体内の分子は自由に動き回ることができる。このため、熱エネルギーを持った分子が移動することによって、熱を伝えることができる。対流による固体面と流体の間の熱交換を対流熱伝達と呼ぶ。3つめは「熱放射」(輻射)である。これは熱伝導や対流と大きく異なり、電磁波による熱エネルギーの放出である。絶対零度の物体以外、何等かの熱エネルギーを熱放射している。 Thermal energy has three forms of movement accompanying the movement of heat. The first is “heat conduction”. When viewed microscopically, thermal energy is the movement of the individual molecules that make up a substance. It is heat transfer by heat conduction that this movement is propagated to the neighboring molecules one after another. The ease with which heat is transferred by heat conduction is expressed by the thermal conductivity of the value specific to the substance. The second is “convection”. Since the molecules in the solid cannot change their positions, the thermal energy is gradually propagated by “heat conduction”, but the molecules in the fluid can move around freely. For this reason, heat can be transferred by the movement of molecules with thermal energy. Heat exchange between the solid surface and the fluid by convection is called convective heat transfer. The third is “thermal radiation” (radiation). This is very different from heat conduction and convection, and is the release of thermal energy by electromagnetic waves. Except for objects of absolute zero, some heat energy is radiated.

電流を流すと熱を吸収する。そんな便利な冷却部品がトムソン素子(電子冷却素子)である。金属とn型半導体の接合について考えると、接合前は金属とn型半導体のフェルミ準位は異なるが、接合による電子の移動(拡散)によりフェルミ準位が一致する。この電子移動により金属とn型半導体からなる系の電子のエネルギー分布が均一になる。次にn型半導体の両側を金属により接合し、エネルギー帯に外部から電圧印加により金属とn型半導体からなる回路に電流を流すと、接合部の一部に吸熱が、そして他方には発熱が生じる。金属のマイナス電極から半導体の伝導帯に電子が移動する際、フェルミ準位とn型半導体の伝導帯のエネルギーレベルの差に相当するエネルギーを吸収するため、吸熱が生じる。反対にn型半導体の伝導帯にある電子がプラス電極の金属の伝導帯に移る場合は発熱する。なおp型半導体は、キャリアが正孔であるため、n型半導体に比べ応答速度は遅い。
具体例として、非特許文献2のペルチェモジュールの特性例を図2に示す。
このトムソン素子を用いた電子冷却システムは、建築物や移動体車両の壁や窓に生じる放射や輻射による熱を利用した冷暖房システムに活用できる。
また本発明は、2011年3月11日に東北地方大震災で被災し、逼迫したこれからの日本の電力環境を根源から救うシステムと成りうる。
When current is passed, it absorbs heat. Such a convenient cooling component is a Thomson element (electronic cooling element). Considering the junction between a metal and an n-type semiconductor, the Fermi level of the metal and the n-type semiconductor is different before the junction, but the Fermi level matches due to the movement (diffusion) of electrons through the junction. Due to this electron transfer, the energy distribution of the system consisting of metal and n-type semiconductor becomes uniform. Next, when both sides of the n-type semiconductor are joined by metal and current is passed through the circuit made of metal and n-type semiconductor by applying voltage from the outside to the energy band, heat is absorbed in a part of the joint and heat is generated in the other. Arise. When electrons move from the metal negative electrode to the semiconductor conduction band, heat is absorbed because energy corresponding to the difference in energy level between the Fermi level and the conduction band of the n-type semiconductor is absorbed. Conversely, when electrons in the conduction band of the n-type semiconductor move to the metal conduction band of the positive electrode, heat is generated. Note that the response speed of a p-type semiconductor is slower than that of an n-type semiconductor because carriers are holes.
As a specific example, a characteristic example of the Peltier module of Non-Patent Document 2 is shown in FIG.
The electronic cooling system using the Thomson element can be used for an air conditioning system that uses heat generated by radiation or radiation generated on a wall or window of a building or a mobile vehicle.
In addition, the present invention can be a system that saves the power environment of Japan in the future, which was damaged by the Great Tohoku Earthquake on March 11, 2011, from the root.

特開平8−292309号公報JP-A-8-292309 特許第4338956号公報Japanese Patent No. 4338956

三浦良一「トムソン効果を利用した電氣接點の温度分布」北海道大學工學部彙報 1951−11−15Ryoichi Miura “Temperature distribution of electric contact using Thomson effect” Vocational Report, Hokkaido University 1951-11-15 国峰尚樹「電子機器の熱流体解析入門」日刊工業新聞社 2009年9月30日Naoki Kunimine “Introduction to Thermal Fluid Analysis of Electronic Equipment” Nikkan Kogyo Shimbun, September 30, 2009

建築物や移動体車両の壁や窓に生じる放射や輻射による熱を利用した冷暖房装置において、建築物や移動体車両の壁や窓の内側面に透明性金属と透明性n型半導体からなる超微粒子を分散堆積させて積層させた金属+n型半導体+金属からなるサンドイッチ構造のトムソン素子に電流を流して、熱電能(ゼーベック係数)の差による吸熱あるいは発熱を発現させるようにした冷暖房システムに関する。 In an air-conditioning system that uses heat generated by radiation or radiation generated on a wall or window of a building or mobile vehicle, an inner surface of the wall or window of the building or mobile vehicle is made of a transparent metal and a transparent n-type semiconductor. The present invention relates to a cooling and heating system in which current is passed through a sandwich structure Thomson element composed of metal + n-type semiconductor + metal in which fine particles are dispersed and deposited to generate heat absorption or heat generation due to a difference in thermoelectric power (Seebeck coefficient).

本発明の冷暖房装置は、建築物や移動体車両の壁や窓の内側面に透明性金属と透明性n型半導体からなる超微粒子を分散させ、透明性金属と透明性n型半導体含有薄膜のコート液とし、超微粒子を積層状に堆積させた薄膜とする金属+n型半導体+金属からなるサンドイッチ構造の薄膜からなるトムソン素子を構成し、このトムソン素子に電流を流し、熱電能(ゼーベック係数)の差による吸熱あるいは発熱を発現させたものである。本発明は、夏場は建築物や移動体車両の吸熱現象を利用して冷房用とし、冬場は発熱現象を利用した暖房システムを構築する。 The air-conditioning apparatus of the present invention disperses ultrafine particles of a transparent metal and a transparent n-type semiconductor on the inner surface of a wall or window of a building or a mobile vehicle, A Thomson device consisting of a thin film of metal + n-type semiconductor + metal, which is a thin film in which ultrafine particles are deposited in layers, is used as a coating solution, and a current is passed through this Thomson device to produce thermoelectric power (Seebeck coefficient). Endothermic or exothermic due to the difference. The present invention constructs a heating system that uses the heat absorption phenomenon of a building or a mobile vehicle for cooling in summer and uses a heat generation phenomenon in winter.

以上説明したように本発明の冷暖房装置は、建築物や移動体車両の壁や窓に生じる放射や輻射による熱を利用した冷暖房装置において、建築物や移動体車両の壁や窓の内側面に透明性金属と透明性n型半導体からなる超微粒子を積層状に分散堆積させ接合し、この接合させた金属+n型半導体+金属からなるサンドイッチ構造のトムソン素子をDC電流の流れる方向で、熱電能(ゼーベック係数)の差による吸熱あるいは発熱を発現させるようにした冷暖房システムである。本発明の冷暖房装置は、短時間でかつ製造コストも劇的に低減できるので、その工業的価値は極めて高い。 As described above, the air-conditioning apparatus of the present invention is an air-conditioning apparatus that uses heat generated by radiation or radiation generated on a wall or window of a building or a mobile vehicle. Ultra-fine particles made of transparent metal and transparent n-type semiconductor are dispersed and deposited in a laminated form, bonded, and the Thomson element having a sandwich structure of the joined metal + n-type semiconductor + metal in the direction of DC current flow. This is an air-conditioning system that generates heat or heat due to a difference in Seebeck coefficient. Since the air conditioning apparatus of the present invention can dramatically reduce the manufacturing cost in a short time, its industrial value is extremely high.

本発明の冷暖房装置は、建築物や移動体車両の壁や窓の内側面に透明性金属と透明性n型半導体からなる超微粒子を積層状に堆積させ接合させた金属+n型半導体+金属からなるサンドイッチ構造のトムソン素子にDC電流を流して、熱電能(ゼーベック係数)の差による吸熱あるいは発熱を発現させるようにしたトムソン素子を利用するもので、大面積に形成するプリンテッド・エレクトロニクスにより、建築物や移動体車両の壁や窓の内側面に印刷した発熱・吸熱セルで、夏場は吸熱現象を利用する冷房用、冬場は発熱現象を利用した暖房システムを構築できる。 The cooling / heating apparatus of the present invention is made of metal + n-type semiconductor + metal obtained by depositing and joining ultrafine particles made of a transparent metal and a transparent n-type semiconductor on the inner surface of a wall or window of a building or a mobile vehicle. By using a Thomson element that causes heat absorption or heat generation due to a difference in thermoelectric power (Seebeck coefficient) by passing a DC current through the sandwich structure Thomson element, printed electronics formed in a large area, Heat generation and heat absorption cells are printed on the walls and windows of buildings and mobile vehicles. Heating systems that use the heat absorption phenomenon can be built in the summer and heating systems that use the heat generation phenomenon in the winter.

以下、本発明の実施例について図面を用いて詳細に説明する。図1は、本発明の冷暖房装置の断面図である。101は、建築物や移動体車両の窓である。102と106は、ペルチェ素子を挟み込んでいるラミネートである。トムソン素子は、トムソン効果を発生させる銅超微粒子103と銅超微粒子105でn型半導体104を挟んだサンドイッチ構造を形成している。銅超微粒子103と銅超微粒子105は、波長380nm〜780nmの可視光線で透過率が90%以上あることから、光に対してほぼ透明とみなせる。この銅超微粒子103と銅超微粒子105は、シート抵抗値が0.2Ω/□以下である。n型半導体104の酸化インジウムは、n型半導体で高い導電性を持っており、かつ可視光領域の吸収も少ない。導電性を改善するため、酸化インジウムにはスズをドープし、ITO(インジウム・ティン・オキサイド)としている。この超微粒子は、高分子バインダーに分散、塗布することにより成膜している。ITOは、10〜10Ω/□の表面抵抗の導電膜である。膜の熱電能は−130[μV/K]である。この膜の導電性は物理的成膜法に比べて劣るが、可視光透過率が高く透明性に優れ、比較的低コストで大面積に塗布できる。107は、DC電源であり、トムソン素子を構成する銅超微粒子103と銅超微粒子105の間に電圧を印加してトムソン効果を起こさせる。図1の回路接続では、トムソン素子は、吸熱108と発熱109を発現する。建築物や移動体車両の窓の内側面に配置されたトムソン素子のDC電源107を逆にすれば、発熱108と吸熱109となる。室外110の温度が60℃の場合、室内の温度が20℃の温度差にするには、トムソン素子にジュール熱損失+熱伝導損失を含めて、5Wの熱量を供給できれば良い。このときのトムソン素子の長さは、約1mになる。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a cross-sectional view of an air conditioning apparatus according to the present invention. 101 is a window of a building or a mobile vehicle. Reference numerals 102 and 106 denote laminates sandwiching a Peltier element. The Thomson element has a sandwich structure in which an n-type semiconductor 104 is sandwiched between copper ultrafine particles 103 and copper ultrafine particles 105 that generate the Thomson effect. The copper ultrafine particles 103 and the copper ultrafine particles 105 are visible light having a wavelength of 380 nm to 780 nm and have a transmittance of 90% or more, and thus can be regarded as almost transparent to light. The copper ultrafine particles 103 and the copper ultrafine particles 105 have a sheet resistance value of 0.2Ω / □ or less. Indium oxide of the n-type semiconductor 104 is an n-type semiconductor and has high conductivity, and has little absorption in the visible light region. In order to improve conductivity, indium oxide is doped with tin to form ITO (indium tin oxide). The ultrafine particles are formed by dispersing and coating in a polymer binder. ITO is a conductive film having a surface resistance of 10 2 to 10 5 Ω / □. The thermoelectric power of the film is −130 [μV / K]. Although the conductivity of this film is inferior to that of physical film formation, it has high visible light transmittance and excellent transparency, and can be applied over a large area at a relatively low cost. Reference numeral 107 denotes a DC power source, which applies a voltage between the copper ultrafine particles 103 and the copper ultrafine particles 105 constituting the Thomson element to cause the Thomson effect. In the circuit connection of FIG. 1, the Thomson element develops heat absorption 108 and heat generation 109. If the Thomson element DC power supply 107 disposed on the inner surface of the window of the building or mobile vehicle is reversed, heat generation 108 and heat absorption 109 are obtained. When the temperature of the outdoor 110 is 60 ° C., in order to make the temperature difference of the indoor temperature 20 ° C., it is only necessary to supply 5 T of heat including Joule heat loss + heat conduction loss to the Thomson element. The length of the Thomson element at this time is about 1 m.

本発明の冷暖房装置である。It is the air conditioning apparatus of this invention. 従来のペルチェモジュールの特性例である。It is an example of the characteristic of the conventional Peltier module.

101 建築物及び移動体車両の窓
102 ラミネート膜
103 銅
104 ITOまたはATO
105 銅
106 ラミネート膜
107 直流電源
108 吸熱
109 発熱
110 室外
101 Windows of buildings and mobile vehicles
102 Laminate film
103 copper
104 ITO or ATO
105 copper
106 Laminate film
107 DC power supply
108 endotherm
109 fever
110 outdoor

Claims (1)

建築物や移動体車両の壁や窓に生じる放射や輻射による熱を利用した冷暖房装置において、前記構造物の壁や窓の内側面に透明性金属として銅超微粒子とn型半導体として酸化スズまたは酸化インジウムからなる超微粒子を堆積させ、金属+n型半導体+金属からなるトムソン素子をポリマーフィルム内に少なくとも1個以上配置し各々のトムソン素子を回路配線してラミネート構造とし、前記トムソン素子の電圧印加方向による電流の流れの方向で熱電能(ゼーベック係数)の差による吸熱あるいは発熱を発現させるようにしたことを特徴とする冷暖房装置。 In a cooling and heating apparatus using heat generated by radiation or radiation generated on a wall or window of a building or a mobile vehicle, copper ultrafine particles as a transparent metal and tin oxide as an n-type semiconductor on the inner surface of the wall or window of the structure depositing ultrafine particles composed of indium oxide, and a laminate structure Thomson element made of metal + n-type semiconductor + metal by circuit wiring Thomson elements each arranged at least one more in the polymer film, the voltage application of the Thomson device An air-conditioning apparatus characterized by causing heat absorption or heat generation due to a difference in thermoelectric power (Seebeck coefficient) in the direction of current flow depending on the direction.
JP2011086983A 2011-04-11 2011-04-11 Air conditioning Expired - Fee Related JP4782897B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2011/074622 WO2012140800A1 (en) 2011-04-11 Cooling and heating device
JP2011086983A JP4782897B1 (en) 2011-04-11 2011-04-11 Air conditioning
JP2013509735A JPWO2012140800A1 (en) 2011-04-11 2011-10-26 Air conditioning

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011086983A JP4782897B1 (en) 2011-04-11 2011-04-11 Air conditioning

Publications (2)

Publication Number Publication Date
JP4782897B1 true JP4782897B1 (en) 2011-09-28
JP2014029892A JP2014029892A (en) 2014-02-13

Family

ID=44798113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011086983A Expired - Fee Related JP4782897B1 (en) 2011-04-11 2011-04-11 Air conditioning

Country Status (1)

Country Link
JP (1) JP4782897B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4856282B1 (en) * 2011-07-30 2012-01-18 隆彌 渡邊 Air conditioning
JP4965736B1 (en) * 2011-12-23 2012-07-04 隆彌 渡邊 Thermoelectric converter
WO2013094237A1 (en) * 2011-12-23 2013-06-27 Watanabe Takaya Thomson elements with quantum nanojunctions and method for producing same
JP5735695B1 (en) * 2014-10-22 2015-06-17 隆彌 渡邊 Manufacturing method of air conditioner

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH717849B1 (en) * 2020-09-15 2024-06-14 Graphenaton Tech Sa Heating device for a building.

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6242470A (en) * 1985-08-19 1987-02-24 Kanegafuchi Chem Ind Co Ltd Planar sensor
JPH03114467A (en) * 1989-09-29 1991-05-15 Shimizu Corp Aroma supply apparatus
JPH07139750A (en) * 1993-11-15 1995-05-30 Shimizu Corp Removing device of sensible heat load on window surface
JP2000269561A (en) * 1999-03-19 2000-09-29 Asahi Chem Ind Co Ltd Composite structure
JP2003229607A (en) * 2002-02-01 2003-08-15 Hiroshima Pref Gov Thermomodule and method for manufacturing the same
JP2004273489A (en) * 2003-03-05 2004-09-30 Atsushi Suzuki Thermoelectric conversion module and its manufacturing method
JP2005235831A (en) * 2004-02-17 2005-09-02 Toyota Central Res & Dev Lab Inc P-type semiconductor and semiconductor device
JP2008060488A (en) * 2006-09-04 2008-03-13 Kansai Paint Co Ltd One-side electrode thermoelectric conversion module
WO2008146689A1 (en) * 2007-05-23 2008-12-04 Toyota Jidosha Kabushiki Kaisha Temperature adjusting device
JP2009527643A (en) * 2006-02-23 2009-07-30 ピコデオン・リミテッド・オサケユキテュア element
JP2009259806A (en) * 2008-03-28 2009-11-05 Furukawa Electric Co Ltd:The Method of manufacturing porous copper sintered film, and porous copper sintered film

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6242470A (en) * 1985-08-19 1987-02-24 Kanegafuchi Chem Ind Co Ltd Planar sensor
JPH03114467A (en) * 1989-09-29 1991-05-15 Shimizu Corp Aroma supply apparatus
JPH07139750A (en) * 1993-11-15 1995-05-30 Shimizu Corp Removing device of sensible heat load on window surface
JP2000269561A (en) * 1999-03-19 2000-09-29 Asahi Chem Ind Co Ltd Composite structure
JP2003229607A (en) * 2002-02-01 2003-08-15 Hiroshima Pref Gov Thermomodule and method for manufacturing the same
JP2004273489A (en) * 2003-03-05 2004-09-30 Atsushi Suzuki Thermoelectric conversion module and its manufacturing method
JP2005235831A (en) * 2004-02-17 2005-09-02 Toyota Central Res & Dev Lab Inc P-type semiconductor and semiconductor device
JP2009527643A (en) * 2006-02-23 2009-07-30 ピコデオン・リミテッド・オサケユキテュア element
JP2008060488A (en) * 2006-09-04 2008-03-13 Kansai Paint Co Ltd One-side electrode thermoelectric conversion module
WO2008146689A1 (en) * 2007-05-23 2008-12-04 Toyota Jidosha Kabushiki Kaisha Temperature adjusting device
JP2009259806A (en) * 2008-03-28 2009-11-05 Furukawa Electric Co Ltd:The Method of manufacturing porous copper sintered film, and porous copper sintered film

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4856282B1 (en) * 2011-07-30 2012-01-18 隆彌 渡邊 Air conditioning
JP4965736B1 (en) * 2011-12-23 2012-07-04 隆彌 渡邊 Thermoelectric converter
WO2013094237A1 (en) * 2011-12-23 2013-06-27 Watanabe Takaya Thomson elements with quantum nanojunctions and method for producing same
JP5735695B1 (en) * 2014-10-22 2015-06-17 隆彌 渡邊 Manufacturing method of air conditioner
WO2016063563A1 (en) * 2014-10-22 2016-04-28 隆彌 渡邊 Method for making air conditioner

Also Published As

Publication number Publication date
JP2014029892A (en) 2014-02-13

Similar Documents

Publication Publication Date Title
Hong et al. Wearable thermoelectrics for personalized thermoregulation
JP4782897B1 (en) Air conditioning
Varghese et al. High-performance and flexible thermoelectric films by screen printing solution-processed nanoplate crystals
Kraemer et al. High-performance flat-panel solar thermoelectric generators with high thermal concentration
Xia et al. Thermoelectric generator using space cold source
KR102182765B1 (en) Thermoelectric conversion element
WO2014026100A2 (en) Solar radiation control and energy harvesting film
Chen et al. Structural design of nanowire wearable stretchable thermoelectric generator
KR20120019536A (en) Thermoelectric module comprising thermoelectric element doped with nanoparticles and manufacturing method of the same
Ishii et al. Simultaneous harvesting of radiative cooling and solar heating for transverse thermoelectric generation
WO2018143178A1 (en) Thermoelectric conversion module
WO2018042708A1 (en) Thermoelectric conversion device and electronic device
JPWO2012140800A1 (en) Air conditioning
JP4856282B1 (en) Air conditioning
US20090007954A1 (en) Temperature differential panel
Dong et al. Time-dependent photovoltaic-thermoelectric hybrid systems
Zhu et al. Comprehensive analysis of radiative cooling enabled thermoelectric energy harvesting
Inayat et al. Power generation from thermoelectric system-embedded Plexiglas for green building technology
WO2020022228A1 (en) Thermoelectric conversion unit
CN109411592A (en) Thermoelectric material structure
CN206332058U (en) Thermoelectric material structure
JP3175039B2 (en) Thermoelectric conversion module, laminated thermoelectric conversion device, thermoelectric power generation subunit, and power generation system
Deshmukh et al. An overview of the applications and performance characteristics of the thermoelectric devices
Dhakshayani et al. A systemic study on Thallium based 3D halide perovskite with enhanced figure of merit
Han et al. A Conformable and Stretchable Thermoelectric Generator for Efficient Body Heat Harvesting

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4782897

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees