JP2009259806A - Method of manufacturing porous copper sintered film, and porous copper sintered film - Google Patents

Method of manufacturing porous copper sintered film, and porous copper sintered film Download PDF

Info

Publication number
JP2009259806A
JP2009259806A JP2009073892A JP2009073892A JP2009259806A JP 2009259806 A JP2009259806 A JP 2009259806A JP 2009073892 A JP2009073892 A JP 2009073892A JP 2009073892 A JP2009073892 A JP 2009073892A JP 2009259806 A JP2009259806 A JP 2009259806A
Authority
JP
Japan
Prior art keywords
copper
sintered film
porous
film
porous copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009073892A
Other languages
Japanese (ja)
Other versions
JP5290826B2 (en
Inventor
Shunji Masumori
俊二 増森
Hidemichi Fujiwara
英道 藤原
Yusuke Yamada
悠介 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2009073892A priority Critical patent/JP5290826B2/en
Publication of JP2009259806A publication Critical patent/JP2009259806A/en
Application granted granted Critical
Publication of JP5290826B2 publication Critical patent/JP5290826B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a copper particulate dispersed solution with high dispersibility and superior conductivity even after baking at a comparatively low temperature below 250°C after arrangement and drying on a substrate, and capable of providing a conductive member with little impurity, and to provide a method of forming a conductive circuit with high conductivity by a heating calcination method of applying a metal particulate dispersed liquid on a substrate. <P>SOLUTION: The method of manufacturing the porous copper sintered film is characterized in that a copper particulate dispersed solution L of dispersing copper particulates wherein a mean particle size of primary particles is 1-500 nm in a solvent S configured such that it becomes a concentration of 2-70 mass% is applied on the substrate, the copper particulates are sintered by inserting the substrate applied with the copper particulate dispersed solution L into a furnace heated to 160-500°C and quickly heating it in an inert gas atmosphere, and the sintered film with porosity of 40-70% is formed on the substrate. A porous copper sintered film being one example of the porous copper sintered film is indicated in the figure. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、多孔質銅焼結膜製造法、及び該製造法等により得られる多孔質銅焼結膜に関する。
多孔質銅焼結膜等の低抵抗透明導電膜は、液晶ディスプレイ(LCD;Liquid Crystal Display)、有機エレクトロルミネッセンス(有機EL(OEL);Organic Electro-Luminescence)等のフラットパネルディスプレイ(FPD;Flat Panel Display)用透明導電膜として利用することができる。
The present invention relates to a method for producing a porous copper sintered film, and a porous copper sintered film obtained by the production method and the like.
Low resistance transparent conductive films such as porous copper sintered films are used in flat panel displays (FPDs) such as liquid crystal displays (LCDs) and organic electroluminescence (OELs). ) Transparent conductive film.

液晶表示素子、EL表示素子等の表示素子類の電極として、光透過性を有する導電性材料が使用されている。このような光透過性の導電性材料として、酸化インジウム−酸化錫系(ITO)、酸化アンチモン−酸化錫系(ATO)等が知られており、真空蒸着法、スパッタリング法、CVD(化学蒸着;Chemical Vapor Deposition)法、ディップコーティング法、スプレー法、スピンコーティング法等により、ガラス等の基板に付着させて製造されている。
ディップコーティング法によりITO透明導電膜を製造する際に基板への塗布液として有機溶媒に金属の有機酸塩を溶解させたもの広く使用されている。また、ディップコーティング法による酸化インジウム膜の形成方法として、塩化インジウムに塩化スズを5mol%程度添加して水溶液等に溶解したものを使用する方法も公知であるが、塩化インジウムを使用すると、形成された膜が白濁するおそれがある。この白濁防止のために、スプレー溶液にフッ化水素酸を添加してフッ化インジウム系膜を形成する方法(特許文献1)や、無機塩として硝酸インジウムを用いる方法(特許文献2、特許文献3)が開示されている。
A light-transmitting conductive material is used as an electrode of display elements such as a liquid crystal display element and an EL display element. As such a light-transmitting conductive material, indium oxide-tin oxide system (ITO), antimony oxide-tin oxide system (ATO), etc. are known, and vacuum deposition, sputtering, CVD (chemical vapor deposition; It is manufactured by being attached to a substrate such as glass by a chemical vapor deposition method, a dip coating method, a spray method, a spin coating method, or the like.
When an ITO transparent conductive film is produced by a dip coating method, a solution obtained by dissolving a metal organic acid salt in an organic solvent is widely used as a coating solution for a substrate. In addition, as a method of forming an indium oxide film by dip coating, a method of using about 5 mol% of tin chloride added to indium chloride and dissolving it in an aqueous solution or the like is also known, but it is formed when indium chloride is used. The film may become cloudy. In order to prevent the white turbidity, a method of forming an indium fluoride-based film by adding hydrofluoric acid to a spray solution (Patent Document 1), or a method using indium nitrate as an inorganic salt (Patent Document 2, Patent Document 3). ) Is disclosed.

上記の特許文献3では、膜の導電性を向上させるために塩化第二スズ以外の有機スズ化合物を用いている。また、下記特許文献4には、インジウムの無機塩含む溶液に有機アミノシランエステルを添加する方法が開示されているが、該方法では、原料のアミノシランエステルに含まれる珪素が最終的に二酸化珪素として大量に残存して、体積抵抗率は非常に大きい値となる。   In the above Patent Document 3, an organic tin compound other than stannic chloride is used in order to improve the conductivity of the film. Further, Patent Document 4 below discloses a method of adding an organic aminosilane ester to a solution containing an inorganic salt of indium. However, in this method, a large amount of silicon contained in the raw material aminosilane ester is finally obtained as silicon dioxide. The volume resistivity becomes a very large value.

特開昭51−75991号公報JP 51-75991 A 特開昭55−51737号公報JP-A-55-51737 特開昭63−9018号公報JP-A 63-9018 特開平6−96687号公報JP-A-6-96687

前記ディップコーティング法、及びスピンコーティング法等の塗布法は、平滑性の高い高品質の透明導電膜を与えて大面積化に対応が可能である。これらの方法で酸化インジウム膜を形成する場合、その形成用原料として主に用いられる硝酸インジウムは、蒸発しにくい利点を有するが、熱分解温度が高いので、優れた導電性が得られない問題点がある。例えば、特許文献2に記載された硝酸インジウムを原料とする方法では、1回の塗布の膜厚が最低で40nmの膜を数回塗布して抵抗を小さくすることが開示されているが、体積抵抗率は4.5×10−2Ω・cm程度と大きい。従って、ITO膜の低抵抗化が求められている。それには焼結温度を上げ、膜厚を厚くする必要がある。しかし、焼成温度を上げると基板の選択が限定され、一方、膜厚を厚くすると透明性が損なわれるという問題がある。また、透明導電膜には資源の少ないインジウムを用いたITO膜が主に用いられており資源枯渇の問題が存在する。 The coating methods such as the dip coating method and the spin coating method can provide a high-quality transparent conductive film with high smoothness and can cope with a large area. When forming an indium oxide film by these methods, indium nitrate, which is mainly used as a raw material for forming it, has the advantage of being difficult to evaporate, but has a problem that excellent conductivity cannot be obtained because of its high thermal decomposition temperature. There is. For example, in the method using indium nitrate as a raw material described in Patent Document 2, it is disclosed that a film having a minimum coating thickness of 40 nm is applied several times to reduce the resistance. The resistivity is as large as about 4.5 × 10 −2 Ω · cm. Therefore, a reduction in resistance of the ITO film is required. For this purpose, it is necessary to increase the sintering temperature and the film thickness. However, raising the firing temperature limits the choice of substrate, while increasing the film thickness has the problem of loss of transparency. In addition, the transparent conductive film is mainly made of an ITO film using indium with less resources, and there is a problem of resource depletion.

従来の透明導電膜に使用される材料では、低温加熱では焼結後の電気抵抗(シート抵抗)が数kΩ/□と大きく、また、電気抵抗が小さいものを得ようとすると焼結の際に高温加熱(例えば、300℃程度以上)が必要なため、LCD、有機EL等のフラットパネルディスプレイの分野における透明導電膜の形成には使用できないという問題がある。そのため、低温で焼結でき、低抵抗値を有する透明導電膜及びその製造法が求められている。
本発明の目的は、インジウムを原料とするITO膜を使用することなく、焼結温度を低くすることが可能であり、かつ、焼結後の電気抵抗(シート抵抗)が小さい薄膜状透明導電性膜の製造法及び得られた低抵抗透明導電膜を提供することにある。
In the material used for the conventional transparent conductive film, the electrical resistance (sheet resistance) after sintering is as high as several kΩ / □ at low temperature heating, and if it is attempted to obtain a material with low electrical resistance, Since high temperature heating (for example, about 300 ° C. or higher) is required, there is a problem that it cannot be used for forming a transparent conductive film in the field of flat panel displays such as LCD and organic EL. Therefore, a transparent conductive film that can be sintered at a low temperature and has a low resistance value and a method for producing the same are demanded.
An object of the present invention is a thin film-like transparent conductive material capable of lowering the sintering temperature without using an ITO film made of indium, and having a small electric resistance (sheet resistance) after sintering. It is in providing the manufacturing method of a film | membrane, and the obtained low resistance transparent conductive film.

本発明者らは、上記事情に鑑み、ナノサイズ(1μm以下)の銅微粒子分散溶液を種々の条件下で加熱処理により焼結を行ってきた結果、銅微粒子が分散された分散溶液を基材に塗布後、急速加熱することにより電気抵抗が低く、光透過性の高い多孔質銅薄膜の製造法を見出し、本発明を完成させるに至った。
すなわち本発明は、以下の(1)〜(17)に記載する発明を要旨とする。
(1)一次粒子の平均粒径が1〜500nmである銅微粒子が2〜70質量%の濃度となるように溶媒(S)に分散させた銅微粒子分散溶液(L)を基材に塗布し、次に該銅微粒子分散溶液(L)が塗布された基材を160〜500℃に加熱された不活性ガス雰囲気中の炉内に挿入して急速加熱することにより銅微粒子を焼結して、空隙率が40〜70%である焼結膜を基材上に形成することを特徴とする、多孔質銅焼結膜の製造方法(以下、第1の態様ということがある)。
(2)前記銅微粒子分散溶液(L)が塗布された基材を不活性ガス雰囲気下にある容器内に収納して、前記加熱された炉内に挿入することを特徴とする、前記(1)に記載の多孔質銅焼結膜の製造方法。
(3)前記不活性ガスが窒素ガス又はアルゴンガスであり、容器がガラス製容器であることを特徴とする、前記(2)に記載の多孔質銅焼結膜の製造方法。
(4)基材上の塗布液の厚みが、1μm〜3mmの範囲であることを特徴とする、前記(1)ないし(3)のいずれか1に記載の多孔質銅焼結膜の製造方法。
(5)多孔質銅焼結膜の波長460nmの光の膜厚方向への光透過率が30%以上であることを特徴とする、前記(1)ないし(4)のいずれか1に記載の多孔質銅焼結膜の製造方法。
(6)多孔質銅焼結膜のシート抵抗値が0.01〜5Ω/□であることを特徴とする、前記(1)ないし(5)のいずれか1に記載の多孔質銅焼結膜の製造方法。
(7)前記銅微粒子分散溶液(L)が銅微粒子の表面の少なくとも一部が炭素、水素、酸素、及び窒素原子からなる化合物から選択された分散剤(高分子化合物を含む)で覆われて、沸点が60℃以上400℃以下の分散溶媒(混合溶媒を含む)(S)に分散されていることを特徴とする、前記(1)ないし(5)のいずれか1に記載の多孔質銅焼結膜の製造方法。
(8)前記分散溶媒(S)が、分子中に1及び/もしくは2以上の水酸基を有するアルコール(A)からなる有機溶媒(S1)、又は分子中に1及び/もしくは2以上の水酸基を有するアルコール(A)20〜40体積%、並びにアミド基を有する有機溶媒(B)60〜80体積%を含む混合溶媒(S2)である、前記(1)ないし(7)のいずれか1に記載の多孔質銅焼結膜の製造方法。
(9)前記有機溶媒(A)がエチレングリコール、ジエチレングリコール、1,2−プロパンジオール、1,3−プロパンジオール、1,2−ブタンジオール、1,3−ブタンジオール、1,4−ブタンジオール、2−ブテン−1,4−ジオール、2,3−ブタンジオール、ペンタンジオール、ヘキサンジオール、オクタンジオール、グリセロール、1,1,1−トリスヒドロキシメチルエタン、2−エチル−2−ヒドロキシメチル−1,3−プロパンジオール、1,2,6−ヘキサントリオール、1,2,3−ヘキサントリオール、1,2,4−ブタントリオール、トレイトール、エリスリトール、ペンタエリスリトール、ペンチトール、及びヘキシトールの中から選択される1種又は2種以上である、前記(8)に記載の多孔質銅焼結膜の製造方法。
(10)前記有機溶媒(B)がN−メチルアセトアミド、N−メチルホルムアミド、N−メチルプロパンアミド、ホルムアミド、N,N−ジメチルアセトアミド、1,3−ジメチル−2−イミダゾリジノン、N,N−ジメチルホルムアミド、1−メチル−2−ピロリドン、ヘキサメチルホスホリックトリアミド、2−ピロリジノン、ε−カプロラクタム、及びアセトアミドの中から選択される1種又は2種以上である、前記(8)に記載の多孔質銅焼結膜の製造方法。
In view of the above circumstances, the present inventors have sintered a nano-size (1 μm or less) copper fine particle dispersion solution by heat treatment under various conditions. As a result, the base material is a dispersion solution in which copper fine particles are dispersed. After the coating, a method for producing a porous copper thin film having low electrical resistance and high light transmittance by rapid heating was found, and the present invention was completed.
That is, the gist of the present invention is the invention described in the following (1) to (17).
(1) A copper fine particle dispersion solution (L) dispersed in a solvent (S) so that copper fine particles having an average primary particle size of 1 to 500 nm have a concentration of 2 to 70% by mass is applied to a substrate. Next, the base material coated with the copper fine particle dispersion (L) is inserted into a furnace in an inert gas atmosphere heated to 160 to 500 ° C. and rapidly heated to sinter the copper fine particles. A method for producing a porous sintered copper film (hereinafter sometimes referred to as a first embodiment), wherein a sintered film having a porosity of 40 to 70% is formed on a substrate.
(2) The substrate coated with the copper fine particle dispersion (L) is housed in a container under an inert gas atmosphere and inserted into the heated furnace (1) The manufacturing method of the porous copper sintered film as described in 1).
(3) The method for producing a porous sintered copper film according to (2), wherein the inert gas is nitrogen gas or argon gas, and the container is a glass container.
(4) The method for producing a porous sintered copper film according to any one of (1) to (3), wherein the thickness of the coating solution on the substrate is in the range of 1 μm to 3 mm.
(5) The porous structure according to any one of (1) to (4), wherein the porous copper sintered film has a light transmittance of 30% or more in the film thickness direction of light having a wavelength of 460 nm. Of manufacturing a sintered copper film.
(6) The porous copper sintered film according to any one of (1) to (5), wherein the sheet resistance value of the porous copper sintered film is 0.01 to 5Ω / □. Method.
(7) At least a part of the surface of the copper fine particle dispersion (L) is covered with a dispersant (including a polymer compound) selected from a compound consisting of carbon, hydrogen, oxygen, and nitrogen atoms. The porous copper according to any one of (1) to (5), wherein the porous copper is dispersed in a dispersion solvent (including a mixed solvent) (S) having a boiling point of 60 ° C. or higher and 400 ° C. or lower. A method for producing a sintered film.
(8) The dispersion solvent (S) has an organic solvent (S1) composed of an alcohol (A) having 1 and / or 2 or more hydroxyl groups in the molecule, or 1 and / or 2 or more hydroxyl groups in the molecule. Any one of the above (1) to (7), which is a mixed solvent (S2) containing 20 to 40% by volume of alcohol (A) and 60 to 80% by volume of an organic solvent (B) having an amide group. A method for producing a porous sintered copper film.
(9) The organic solvent (A) is ethylene glycol, diethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 2-butene-1,4-diol, 2,3-butanediol, pentanediol, hexanediol, octanediol, glycerol, 1,1,1-trishydroxymethylethane, 2-ethyl-2-hydroxymethyl-1, Selected from 3-propanediol, 1,2,6-hexanetriol, 1,2,3-hexanetriol, 1,2,4-butanetriol, threitol, erythritol, pentaerythritol, pentitol, and hexitol The porous copper sintered film according to (8), which is one or more types Manufacturing method.
(10) The organic solvent (B) is N-methylacetamide, N-methylformamide, N-methylpropanamide, formamide, N, N-dimethylacetamide, 1,3-dimethyl-2-imidazolidinone, N, N -Described in (8) above, which is one or more selected from dimethylformamide, 1-methyl-2-pyrrolidone, hexamethylphosphoric triamide, 2-pyrrolidinone, ε-caprolactam, and acetamide. Manufacturing method of porous copper sintered film.

(11)一次粒子の平均粒径が1〜500nmである銅微粒子を焼結させて得られた、空隙率が40〜70%、波長460nmの光の膜厚方向への光透過率が30%以上、かつシート抵抗値が0.01〜5Ω/□であることを特徴とする多孔質銅焼結膜(以下、第2の態様ということがある)。
(12)一次粒子の平均粒径が1〜500nmである銅微粒子が分散している銅微粒子分散溶液(L)を基材上に塗布後、160〜500℃に加熱された炉内で不活性ガス雰囲気下に焼結して得られる、前記(11)に記載の多孔質銅焼結膜。
(13)波長460nmの光の膜厚方向への透過率が50%以上で、かつシート抵抗値が0.01〜5Ω/□である前記(11)又は(12)に記載の多孔質銅焼結膜。
(14)焼結膜の密度が、1.5〜5.5g/cmの範囲である前記(11)ないし(13)のいずれか1に記載の多孔質銅焼結膜。
(15)焼結膜の厚みが、50nm〜10μmの範囲である前記(11)ないし(14)のいずれか1に記載の多孔質銅焼結膜。
(16)フラットパネルディスプレイ(FPD)用透明導電膜に用いられる前記(11)ないし(15)のいずれか1に記載の多孔質銅焼結膜。
(17)前記焼結膜が、銅微粒子と透明性粒子との混合物により形成されていることを特徴とする前記(11)ないし〜(16)のいずれか1に記載の多孔質銅焼結膜。
(11) The light transmittance in the film thickness direction of light having a porosity of 40 to 70% and a wavelength of 460 nm obtained by sintering copper fine particles having an average primary particle diameter of 1 to 500 nm is 30%. A porous copper sintered film having a sheet resistance value of 0.01 to 5Ω / □ as described above (hereinafter sometimes referred to as a second embodiment).
(12) After applying a copper fine particle dispersion (L) in which copper fine particles having an average primary particle diameter of 1 to 500 nm are dispersed on a substrate, the inert particles are heated in a furnace heated to 160 to 500 ° C. The porous copper sintered film according to (11), which is obtained by sintering in a gas atmosphere.
(13) Porous copper firing as described in (11) or (12) above, wherein the transmittance in the film thickness direction of light having a wavelength of 460 nm is 50% or more and the sheet resistance value is 0.01 to 5Ω / □. conjunctiva.
(14) The porous copper sintered film according to any one of (11) to (13), wherein a density of the sintered film is in a range of 1.5 to 5.5 g / cm 3 .
(15) The porous copper sintered film according to any one of (11) to (14), wherein the sintered film has a thickness in a range of 50 nm to 10 μm.
(16) The porous copper sintered film according to any one of (11) to (15), which is used for a transparent conductive film for a flat panel display (FPD).
(17) The porous copper sintered film according to any one of (11) to (16), wherein the sintered film is formed of a mixture of copper fine particles and transparent particles.

本発明の多孔質銅焼結膜の製造方法によれば、ナノ粒子から空隙率が極めて高い多孔質銅焼結膜を製造することが可能である。本発明の多孔質銅焼結膜は、公知の多孔質銅焼結膜よりは空隙率が極めて高い、光の透過性と導電性に優れた焼結膜であり、LCD、有機EL等のフラットパネルディスプレイの分野における光透過性の導電膜として使用可能である。
また、銅は銀に比べて、可視光領域(波長380〜750nm程度)において、白色光(460nm付近)の反射率が低く、より効率よく光を透過することができる。
According to the method for producing a porous copper sintered film of the present invention, it is possible to produce a porous copper sintered film having extremely high porosity from nanoparticles. The porous copper sintered film of the present invention is a sintered film having a much higher porosity than the known porous copper sintered film and excellent in light transmission and conductivity, and is used for flat panel displays such as LCD and organic EL. It can be used as a light transmissive conductive film in the field.
Further, copper has a lower reflectance of white light (near 460 nm) in the visible light region (wavelength of about 380 to 750 nm) than silver, and can transmit light more efficiently.

本発明の多孔質銅焼結膜の1例である、実施例3で得られた多孔質銅焼結膜の走査電子顕微鏡(SEM)写真を斜視図として図1に示す。A scanning electron microscope (SEM) photograph of the porous copper sintered film obtained in Example 3, which is an example of the porous copper sintered film of the present invention, is shown in FIG. 1 as a perspective view. 従来技術の多孔質銅焼結膜の1例である比較例1で得られた多孔質銅焼結膜の走査電子顕微鏡(SEM)写真を斜視図として図2に示す。FIG. 2 shows a scanning electron microscope (SEM) photograph of the porous copper sintered film obtained in Comparative Example 1, which is an example of a conventional porous copper sintered film, as a perspective view. 本発明の多孔質銅焼結膜の1例である、実施例6で得られた多孔質銅焼結膜の走査電子顕微鏡(SEM)写真を斜視図として図3に示す。A scanning electron microscope (SEM) photograph of the porous copper sintered film obtained in Example 6, which is an example of the porous copper sintered film of the present invention, is shown in FIG. 3 as a perspective view. 本発明の多孔質銅焼結膜の1例である、実施例8で得られた多孔質銅焼結膜の概念図として図4に示す。FIG. 4 shows a conceptual diagram of the porous copper sintered film obtained in Example 8, which is an example of the porous copper sintered film of the present invention.

〔1〕第1の態様である「多孔質銅焼結膜の製造方法」について
第1の態様である「多孔質銅焼結膜の製造方法」は、一次粒子の平均粒径が1〜500nmである銅微粒子が2〜70質量%の濃度となるように溶媒(S)に分散させた銅微粒子分散溶液(L)を基材に塗布し、次に該銅微粒子分散溶液(L)が塗布された基材を160〜500℃に加熱された不活性ガス雰囲気中の炉内に挿入して急速加熱することにより銅微粒子を焼結して、空隙率が40〜70%である焼結膜を基材上に形成することを特徴とする。
以下、本発明の多孔質銅焼結膜の製造方法について説明する。
[1] About “Method for Producing Porous Copper Sintered Membrane” as First Aspect “The method for producing porous copper sintered membrane”, which is the first embodiment, has an average primary particle diameter of 1 to 500 nm. The copper fine particle dispersion solution (L) dispersed in the solvent (S) so that the concentration of copper fine particles was 2 to 70% by mass was applied to the substrate, and then the copper fine particle dispersion solution (L) was applied. The base material is inserted into a furnace in an inert gas atmosphere heated to 160 to 500 ° C. and rapidly heated to sinter the copper fine particles, and a sintered film having a porosity of 40 to 70% is used as the base material. It is formed on the top.
Hereinafter, the manufacturing method of the porous copper sintered film of this invention is demonstrated.

(1)銅微粒子分散溶液(L)
(i)銅微粒子の製造
銅微粒子の製造方法は特に限定されるものではないが、一次粒子の平均粒径が1〜500nmの微粒子(P)が形成できれば電解還元と無電解還元のいずれをも採用することができ、
該電解還元と無電解還元方法は、公知の方法を採用することができる。この場合銅イオンは、液相還元されて分散剤(D)で覆われた銅微粒子として水溶液中に分散して存在する。
使用可能な銅イオンとして、一価又は二価の銅イオンを形成する水酸化銅、硝酸銅、亜硝酸塩、酢酸銅、蟻酸銅、アンモニウム塩、クエン酸銅、しゅう酸銅、グルコン酸銅、硝酸銅、蟻酸銅、安息香酸銅、酒石酸銅、酸化銅、オレイン酸銅、アセチルアセトン銅から選択された1種又は2種以上の使用が好ましく、実用上、酢酸銅(II)の1水和物((CHCOO)Cu・1HO)の使用が特に望ましい。還元反応溶液中の好ましい銅イオン濃度は、0.01〜4.0モル/リットルである。銅イオン濃度が0.01モル/リットル未満では、銅粒子の生成量が低減し反応相からの銅微粒子の収率が低下するという不都合を生じ、4.0モル/リットルを超えると生成される粒子間での粗大な凝集がおこるおそれがある。よリ好ましい銅イオン濃度は、0.05〜0.5モル/リットルである。
(1) Copper fine particle dispersion (L)
(I) Production of copper fine particles The method for producing copper fine particles is not particularly limited. However, as long as fine particles (P) having an average primary particle diameter of 1 to 500 nm can be formed, both electrolytic reduction and electroless reduction can be performed. Can be adopted,
As the electrolytic reduction and electroless reduction methods, known methods can be adopted. In this case, the copper ions are dispersed in the aqueous solution as copper fine particles which are liquid phase reduced and covered with the dispersant (D).
Usable copper ions include copper hydroxide, copper nitrate, nitrite, copper acetate, copper formate, ammonium salt, copper citrate, copper oxalate, copper gluconate, nitric acid that form monovalent or divalent copper ions It is preferable to use one or more selected from copper, copper formate, copper benzoate, copper tartrate, copper oxide, copper oleate, and acetylacetone copper, and practically a monohydrate of copper (II) acetate ( The use of (CH 3 COO) 2 Cu · 1H 2 O) is particularly desirable. A preferable copper ion concentration in the reduction reaction solution is 0.01 to 4.0 mol / liter. If the copper ion concentration is less than 0.01 mol / liter, the production amount of copper particles is reduced and the yield of copper fine particles from the reaction phase is lowered. There is a risk of coarse aggregation between particles. A more preferable copper ion concentration is 0.05 to 0.5 mol / liter.

電解還元の場合には、例えば、金属イオンを含む水溶液中に設けられたアノードとカソード間に電位を加えることによりカソード付近に、後述する分散剤(D)でその表面が覆われた銅微粒子を形成することができる。無電解還元は、例えば、分散剤(D)と金属イオンとを含む水溶液中に還元剤を添加して還元反応を行い、分散剤(D)でその表面が覆われた銅微粒子を形成することができる。
還元剤の例としては、水素化ホウ素ナトリウム、ヒドラジン、ジメチルアミノボラン、トリメチルアミノボラン等が挙げられ、これらの2種以上を併用することもできる。尚、液相還元水溶液には、反応溶媒として水以外の親水性溶液を配合してもよい。
In the case of electrolytic reduction, for example, by applying a potential between an anode and a cathode provided in an aqueous solution containing metal ions, copper fine particles whose surfaces are covered with a dispersant (D) described later are applied in the vicinity of the cathode. Can be formed. In electroless reduction, for example, a reducing agent is added to an aqueous solution containing a dispersant (D) and metal ions to perform a reduction reaction to form copper fine particles whose surface is covered with the dispersant (D). Can do.
Examples of the reducing agent include sodium borohydride, hydrazine, dimethylaminoborane, trimethylaminoborane and the like, and two or more of these can be used in combination. In addition, you may mix | blend hydrophilic solutions other than water with a liquid phase reducing aqueous solution as a reaction solvent.

(ii)銅微粒子の平均粒径
微粒子(P)の一次粒子の平均粒径の制御は、例えば還元反応により微粒子(P)を形成する場合には、還元反応に使用する金属イオン、分散剤(D)、還元剤の種類と配合濃度の調整、及び金属イオンを還元反応させる際の、かく拌速度、温度、時間、pH等の調整により行うことが可能である。
上記した電解還元により得られる銅微粒子は、粒子径が1〜500nm程度の範囲にあり、その形状は凝集性の少ない微粒子である。
ここで、一次粒子の平均粒径とは、二次粒子を構成する個々の金属等の微粒子の一次粒子の直径の意味である。該一次粒子の直径は、透過電子顕微鏡(TEM;Transmission Electron Microscope)を用いて測定することができる。また、平均粒径とは、一次粒子の数平均粒径を意味する。
(Ii) Average particle size of copper fine particles Control of the average particle size of the primary particles of the fine particles (P) can be achieved, for example, when the fine particles (P) are formed by a reduction reaction, D), adjustment of the type and concentration of the reducing agent, and adjustment of the stirring speed, temperature, time, pH and the like when the metal ions are reduced.
The copper fine particles obtained by the above electrolytic reduction have a particle diameter in the range of about 1 to 500 nm, and the shape thereof is a fine particle with little cohesiveness.
Here, the average particle diameter of primary particles means the diameter of primary particles of fine particles such as individual metals constituting secondary particles. The diameter of the primary particles can be measured using a transmission electron microscope (TEM). Moreover, an average particle diameter means the number average particle diameter of a primary particle.

(iii)分散剤(D)
本発明において、還元反応により銅微粒子を形成する際に、分散剤を使用する。
分散剤は、水に対して溶解性を有していると共に、反応系中で析出した銅微粒子の表面を覆うように存在して、銅微粒子の凝集を防止して分散性を良好に維持する作用を有する。
分散剤の添加量は、還元反応水溶液から生成する銅微粒子の濃度にもよるが、該銅原子100重量部に対して、0.1〜500重量部が好ましく、5〜100重量部がより好ましい。分散剤の添加量が前記0.1未満では凝集を抑制する効果が十分に得られない場合があり、一方、前記500重量部を超える場合には、分散上に支障がなくとも、微粒子分散水溶液を塗布後、乾燥・焼成時に、過剰の分散剤が、銅微粒子の焼結を阻害して、膜質の緻密さを低下する場合があると共に、分散剤の焼成残渣が、金属被膜中に残存して、導電性を低下するおそれがある。
本発明の分散剤は上記作用を有し、かつ水溶液中で上記作用を奏するものであれば、特に制限されるものではない。
(Iii) Dispersant (D)
In the present invention, a dispersant is used when forming copper fine particles by a reduction reaction.
The dispersant is soluble in water and is present so as to cover the surface of the copper fine particles deposited in the reaction system, thereby preventing the copper fine particles from aggregating and maintaining good dispersibility. Has an effect.
Although the addition amount of a dispersing agent is based also on the density | concentration of the copper fine particle produced | generated from reduction reaction aqueous solution, 0.1-500 weight part is preferable with respect to 100 weight part of this copper atom, and 5-100 weight part is more preferable. . When the added amount of the dispersant is less than 0.1, the effect of suppressing aggregation may not be sufficiently obtained. On the other hand, when the amount exceeds 500 parts by weight, the fine particle-dispersed aqueous solution may be used without any problem in dispersion. After coating, during drying and firing, an excessive dispersant may inhibit the sintering of the copper fine particles and reduce the denseness of the film quality, and the firing residue of the dispersant remains in the metal film. As a result, the conductivity may be reduced.
The dispersant of the present invention is not particularly limited as long as it has the above action and exhibits the above action in an aqueous solution.

分散剤としては、その化学構造にもよるが分子量が100〜100,000程度の、水に対して溶解性を有し、かつ水溶液で銅イオンから還元反応で析出した銅微粒子を良好に分散させることが可能なもので、かつ炭素原子、水素原子、酸素原子、及び窒素原子から選択された2種以上の原子からなる化合物(高分子化合物も含む)の分散剤が好ましい。
上記分散剤として好ましいのは、ポリビニルピロリドン、ポリエチレンイミン等のアミン系の高分子;ポリアクリル酸、カルボキシメチルセルロース等のカルボン酸基を有する炭化水素系高分子;ポリアクリルアミド等のアクリルアミド;ポリビニルアルコール、ポリエチレンオキシド、更にはデンプン、及びゼラチンの中から選択される1種又は2種以上である。
上記例示した分散剤化合物の具体例として、ポリビニルピロリドン(分子量:1000〜500、000)、ポリエチレンイミン(分子量:100〜100,000)、カルボキシメチルセルロース(アルカリセルロースのヒドロキシル基Na塩のカルボキシメチル基への置換度:0.4以上、分子量:1000〜100,000)、ポリアクリルアミド(分子量:100〜6,000,000)、ポリビニルアルコール(分子量:1000〜100,000)、ポリエチレングリコール(分子量:100〜50,000)、ポリエチレンオキシド(分子量:50,000〜900,000)、ゼラチン(平均分子量:61,000〜67,000)、水溶性のデンプン等が挙げられる。
As a dispersing agent, although depending on its chemical structure, it has a molecular weight of about 100 to 100,000, has good solubility in water, and well disperses copper fine particles precipitated by reduction reaction from copper ions in an aqueous solution. And a dispersant of a compound (including a polymer compound) composed of two or more atoms selected from a carbon atom, a hydrogen atom, an oxygen atom, and a nitrogen atom.
The dispersant is preferably an amine polymer such as polyvinylpyrrolidone or polyethyleneimine; a hydrocarbon polymer having a carboxylic acid group such as polyacrylic acid or carboxymethylcellulose; an acrylamide such as polyacrylamide; One or more selected from ethylene oxide, starch, and gelatin.
Specific examples of the dispersant compound exemplified above include polyvinylpyrrolidone (molecular weight: 1000 to 500,000), polyethyleneimine (molecular weight: 100 to 100,000), carboxymethylcellulose (to the carboxymethyl group of the hydroxyl group Na salt of alkali cellulose). Substitution degree: 0.4 or more, molecular weight: 1000 to 100,000, polyacrylamide (molecular weight: 100 to 6,000,000), polyvinyl alcohol (molecular weight: 1000 to 100,000), polyethylene glycol (molecular weight: 100) -50,000), polyethylene oxide (molecular weight: 50,000-900,000), gelatin (average molecular weight: 61,000-67,000), water-soluble starch and the like.

前記液相還元は、分散剤(D)が溶解している水溶液中で、電解還元又は還元剤を使用した無電解還元による銅イオンの還元であることが好ましい。尚、上記電解還元又は還元剤を使用した無電解還元は公知の技術を採用することが出来る。
ここで、本発明における「分散剤(D)が溶解している水溶液中」とは、分散剤(D)を予め溶解した反応系中に、金属イオンと還元剤とを添加してもよく、分散剤(D)、金属イオン、及び還元剤をそれぞれ別の容器で水溶液に溶解させ、更に他の反応容器にそれぞれを添加して還元反応を行ってもよい。本発明における分散剤(D)は銅微粒子の分散安定性を向上させ、銅微粒子生成の収率を向上する効果があるので、銅微粒子が形成される際、又は直後に反応系に存在していることが好ましい。
The liquid phase reduction is preferably reduction of copper ions by electrolytic reduction or electroless reduction using a reducing agent in an aqueous solution in which the dispersant (D) is dissolved. In addition, a well-known technique can be employ | adopted for the electroless reduction using the said electrolytic reduction or a reducing agent.
Here, “in the aqueous solution in which the dispersant (D) is dissolved” in the present invention may be that a metal ion and a reducing agent may be added to a reaction system in which the dispersant (D) is dissolved in advance. The dispersing agent (D), metal ion, and reducing agent may be dissolved in an aqueous solution in separate containers, and each may be added to another reaction container to perform a reduction reaction. Since the dispersant (D) in the present invention has the effect of improving the dispersion stability of the copper fine particles and improving the yield of copper fine particle production, it is present in the reaction system when or immediately after the copper fine particles are formed. Preferably it is.

(iv)銅微粒子の回収
上記還元反応終了後に、反応水溶液中に凝集促進剤(F)を添加して分散剤(D)の分散作用を減じ、粗微粒子を該水溶液中で沈殿させると共に必要により水、又はアルコール溶液等で洗浄して回収、又は粗微粒子を該水溶液中で沈殿させて回収後に必要により水、又はアルコール溶液等で洗浄して、その表面が分散剤(D)で覆われた銅微粒子を得ることが出来る。以下に、前記した凝集促進剤(F)について説明する。
(Iv) Recovery of copper fine particles After the completion of the above reduction reaction, an aggregation accelerator (F) is added to the aqueous reaction solution to reduce the dispersing action of the dispersant (D), and coarse particles are precipitated in the aqueous solution. Washed with water or an alcohol solution, etc., or recovered, or the coarse particles were precipitated in the aqueous solution and then washed with water or an alcohol solution if necessary, and the surface was covered with the dispersant (D). Copper fine particles can be obtained. Hereinafter, the above-described aggregation accelerator (F) will be described.

このような凝集促進剤(F)として、酸化性物質又はハロゲン化合物を使用することができる。
前記酸化性物質としては、酸素ガス、過酸化水素、硝酸等が例示できる。
前記ハロゲン化合物としては、塩化メチル、塩化メチレン、クロロホルム、四塩化炭素、塩化エチル、1,1−ジクロルエタン、1,2−ジクロルエタン、1,1−ジクロルエチレン、1,2−ジクロルエチレン、トリクロルエチレン、四塩化アセチレン、エチレンクロロヒドリン、1,2−ジクロルプロパン、塩化アリル、クロロプレン、クロルベンゼン、塩化ベンジル、o−ジクロルベンゼン、m−ジクロルベンゼン、p−ジクロルベンゼン、α−クロルナフタリン、β−クロルナフタリン、ブロモホルム、及びブロムベンゼンの中から選択される1種又は2種以上が例示できる。このような凝集促進剤(F)を使用することにより、還元反応水溶液から銅微粒子を効率よく分離、回収することができる。
前記回収操作は遠心分離等の操作によりろ過して回収される。液相還元で還元剤を使用した場合等、不純物を除去する必要がある場合には、分散剤(D)が完全に除去されないような条件で、水又はアルコールによる洗浄を行い、不純物を除去して分散剤(D)でその表面が覆われた銅微粒子を得ることができる。
As such an aggregation accelerator (F), an oxidizing substance or a halogen compound can be used.
Examples of the oxidizing substance include oxygen gas, hydrogen peroxide, and nitric acid.
Examples of the halogen compound include methyl chloride, methylene chloride, chloroform, carbon tetrachloride, ethyl chloride, 1,1-dichloroethane, 1,2-dichloroethane, 1,1-dichloroethylene, 1,2-dichloroethylene, and trichloro. Ethylene, acetylene tetrachloride, ethylene chlorohydrin, 1,2-dichloropropane, allyl chloride, chloroprene, chlorobenzene, benzyl chloride, o-dichlorobenzene, m-dichlorobenzene, p-dichlorobenzene, α- Examples thereof include one or more selected from chloronaphthalene, β-chloronaphthalene, bromoform, and bromobenzene. By using such an aggregation accelerator (F), copper fine particles can be efficiently separated and recovered from the aqueous reduction reaction solution.
The recovery operation is recovered by filtration through an operation such as centrifugation. When it is necessary to remove impurities, such as when a reducing agent is used in liquid phase reduction, the impurities are removed by washing with water or alcohol under conditions that do not completely remove the dispersant (D). Thus, copper fine particles whose surface is covered with the dispersant (D) can be obtained.

(v)銅微粒子の再分散
銅微粒子分散溶液(L)(以下、「分散溶液(L)」ということがある)は、上記した製造方法等により得られる、一次粒子の平均粒径が1〜500nmである銅微粒子を分散溶媒(S)に分散させて、その濃度が2〜70質量%となる分散溶液(L)を得る。
尚、銅微粒子濃度が2質量%未満では、急速加熱による焼結の機械的強度が低くなるという不都合を生じ、一方、70質量%を超えると高い空隙率の多孔質銅薄膜を得ることが困難となるおそれがある。分散溶液(L)に使用可能な分散溶媒(S)は、沸点が60℃以上であることが好ましく、また、該分散溶液を基材上に塗布後、焼結した際に不純物の残存量を低減化できる、(イ)炭素原子と水素原子、(ロ)炭素原子、水素原子及び酸素原子、(ハ)炭素原子、水素原子及び窒素原子、又は(ニ)炭素原子、水素原子、酸素原子及び窒素原子からなる化合物の1種、又は2種以上の溶媒を使用することが好ましい。
従って、分散溶媒(S)は、分子中に1及び/もしくは2以上の水酸基を有するアルコール(A)からなる有機溶媒(S1)、又は分子中に1及び/もしくは2以上の水酸基を有するアルコール(A)20〜40体積%、並びにアミド基を有する有機溶媒(B)60〜80体積%を含む混合溶媒(S2)であることがより好ましい。
(V) Redispersion of copper fine particles The copper fine particle dispersion solution (L) (hereinafter sometimes referred to as “dispersion solution (L)”) has an average primary particle size of 1 to 1 obtained by the production method described above. Copper fine particles of 500 nm are dispersed in the dispersion solvent (S) to obtain a dispersion solution (L) having a concentration of 2 to 70% by mass.
When the copper fine particle concentration is less than 2% by mass, the mechanical strength of sintering by rapid heating is lowered. On the other hand, when it exceeds 70% by mass, it is difficult to obtain a porous copper thin film having a high porosity. There is a risk of becoming. The dispersion solvent (S) that can be used in the dispersion solution (L) preferably has a boiling point of 60 ° C. or higher. Further, the residual amount of impurities when the dispersion solution is applied on a substrate and then sintered is determined. (B) carbon atom, hydrogen atom and oxygen atom, (c) carbon atom, hydrogen atom and nitrogen atom, or (d) carbon atom, hydrogen atom, oxygen atom and It is preferable to use one type of compound consisting of nitrogen atoms or two or more types of solvents.
Accordingly, the dispersion solvent (S) is an organic solvent (S1) composed of an alcohol (A) having 1 and / or 2 or more hydroxyl groups in the molecule, or an alcohol having 1 and / or 2 or more hydroxyl groups in the molecule ( A) A mixed solvent (S2) containing 20 to 40% by volume and an organic solvent having an amide group (B) 60 to 80% by volume is more preferable.

前記有機溶媒(A)は、エチレングリコール、ジエチレングリコール、1,2−プロパンジオール、1,3−プロパンジオール、1,2−ブタンジオール、1,3−ブタンジオール、1,4−ブタンジオール、2−ブテン−1,4−ジオール、2,3−ブタンジオール、ペンタンジオール、ヘキサンジオール、オクタンジオール、グリセロール、1,1,1−トリスヒドロキシメチルエタン、2−エチル−2−ヒドロキシメチル−1,3−プロパンジオール、1,2,6−ヘキサントリオール、1,2,3−ヘキサントリオール、1,2,4−ブタントリオール、トレイトール、エリスリトール、ペンタエリスリトール、ペンチトール、及びヘキシトールの中から選択される1種又は2種以上が例示できる。
前記有機溶媒(B)がN−メチルアセトアミド、N−メチルホルムアミド、N−メチルプロパンアミド、ホルムアミド、N,N−ジメチルアセトアミド、1,3−ジメチル−2−イミダゾリジノン、N,N−ジメチルホルムアミド、1−メチル−2−ピロリドン、ヘキサメチルホスホリックトリアミド、2−ピロリジノン、ε−カプロラクタム、及びアセトアミドの中から選択される1種又は2種以上が例示できる。
The organic solvent (A) is ethylene glycol, diethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 2- Butene-1,4-diol, 2,3-butanediol, pentanediol, hexanediol, octanediol, glycerol, 1,1,1-trishydroxymethylethane, 2-ethyl-2-hydroxymethyl-1,3- 1 selected from propanediol, 1,2,6-hexanetriol, 1,2,3-hexanetriol, 1,2,4-butanetriol, threitol, erythritol, pentaerythritol, pentitol, and hexitol Species or two or more types can be exemplified.
The organic solvent (B) is N-methylacetamide, N-methylformamide, N-methylpropanamide, formamide, N, N-dimethylacetamide, 1,3-dimethyl-2-imidazolidinone, N, N-dimethylformamide 1-methyl-2-pyrrolidone, hexamethylphosphoric triamide, 2-pyrrolidinone, ε-caprolactam, and acetamide can be exemplified.

(vi)銅微粒子分散溶液(L)の撹拌による分散性の向上
かくして得られた分散溶液(L)中には、一次粒子の平均粒径1〜500nmの銅微粒子が少なくともその表面の一部が分散剤で覆われて水溶液中に、二次凝集性が少ない状態で分散されているが、更に撹拌して分散性を向上するのが望ましい。分散溶液(L)の撹拌方法としては、公知の撹拌方法を採用することができるが、超音波照射方法を採用するのが好ましい。
上記超音波照射時間は、特に制限はなく任意に選択することが可能である。例えば、超音波照射時間を5〜60分間の間で任意に設定すると照射時間が長い方が平均二次凝集サイズが小さくなる傾向にある。更に超音波照射時間を長くすると分散性は一層向上する。
かくして得られた分散溶液(L)は、銅微粒子が分散剤に覆われた状態で水溶液中に分散している。このような分散剤が銅微粒子を分散させるメカニズムは完全に解明されているものではないが、例えば分散剤に存在する官能基の非共有電子対を有する原子部分が銅微粒子の表面に吸着して、分子層を形成し、互いに銅微粒子同士の接近をさせない、斥力が発生していることが予想される。
(Vi) Improvement of dispersibility by stirring of the copper fine particle dispersion (L) In the dispersion solution (L) thus obtained, copper fine particles having an average primary particle diameter of 1 to 500 nm are at least partially on the surface. Although it is covered with a dispersing agent and dispersed in an aqueous solution in a state of low secondary aggregation, it is desirable to further improve the dispersibility by stirring. As a stirring method of the dispersion solution (L), a known stirring method can be employed, but it is preferable to employ an ultrasonic irradiation method.
The ultrasonic irradiation time is not particularly limited and can be arbitrarily selected. For example, if the ultrasonic irradiation time is arbitrarily set between 5 and 60 minutes, the average secondary aggregation size tends to be smaller as the irradiation time is longer. Further, when the ultrasonic wave irradiation time is lengthened, the dispersibility is further improved.
The dispersion solution (L) thus obtained is dispersed in the aqueous solution with the copper fine particles covered with the dispersant. The mechanism by which such a dispersing agent disperses copper fine particles is not completely elucidated, but for example, an atomic part having an unshared electron pair of a functional group present in the dispersing agent is adsorbed on the surface of the copper fine particles. It is expected that repulsive force is generated that forms a molecular layer and does not allow copper fine particles to approach each other.

(2)基材上への銅微粒子分散溶液(L)の塗布
(i)基材
銅微粒子分散溶液(L)を塗布する被処理基板である基材には、通常用いられるガラス基材や耐熱性合成樹脂からなる基材を挙げることができ、その形状としては平板、立体物、フィルム等が挙げられる。耐熱性合成樹脂としては、ポリイミド、エポキシ樹脂、ポリカーボネート、フッ素樹脂等を用いることができる。この被処理基材は、分散溶液(L)を塗布する前に、純水や超音波等を用いて塗布面を洗浄することが好ましい。
(2) Application of copper fine particle dispersion solution (L) onto a base material (i) Base material For a base material that is a substrate to be coated with a copper fine particle dispersion solution (L), commonly used glass base materials and heat resistance Examples of the shape include flat plates, three-dimensional objects, and films. As the heat resistant synthetic resin, polyimide, epoxy resin, polycarbonate, fluororesin, or the like can be used. The substrate to be treated is preferably washed with pure water or ultrasonic waves before applying the dispersion solution (L).

(ii)銅微粒子分散溶液(L)の基材上への塗布
本発明の分散溶液(L)は、例えば、スピン塗布、スプレー塗布、インクジェット塗布、浸漬塗布、ロールコート法、スクリーン印刷法、滴下法等の公知の方法を用いて塗布することができる。
基材上への塗布膜の厚みは、銅微粒子分散溶液(L)中の銅微粒子の濃度、空隙率、多孔質銅焼結膜の厚み等により変わるものであり、一概に決定することはできないが、本発明の急速加熱で焼結膜を形成する際には、焼結性、空隙率、機械的強度等を考慮すると基材上の塗布液の厚みが、1μm〜3mmの範囲であることが望ましい。また、光透過性の観点から、1μm〜1mmの範囲であることが更に望ましい。さらに、1μm〜300μmの範囲であることがより好ましい。
なお、ここで急速加熱とは、例えば予め加熱された炉に分散溶液(L)を塗布した基材を挿入し、分散溶液(L)中の分散溶媒(S)を短時間で蒸発させると同時に銅微粒子同士の焼結を行う加熱過程をいう。すなわち、分散溶媒(S)を短時間で蒸発させる加熱処理を指す。
(Ii) Application of copper fine particle dispersion solution (L) onto a substrate The dispersion solution (L) of the present invention is, for example, spin coating, spray coating, ink jet coating, dip coating, roll coating, screen printing, or dropping. It can apply | coat using well-known methods, such as a method.
The thickness of the coating film on the substrate varies depending on the concentration of the copper fine particles in the copper fine particle dispersion solution (L), the porosity, the thickness of the porous copper sintered film, etc., and cannot be determined in general. When forming a sintered film by rapid heating of the present invention, it is desirable that the thickness of the coating solution on the substrate is in the range of 1 μm to 3 mm in consideration of sinterability, porosity, mechanical strength, etc. . Further, from the viewpoint of light transmittance, it is more desirable to be in the range of 1 μm to 1 mm. Furthermore, it is more preferable that it is in the range of 1 μm to 300 μm.
Here, the rapid heating means, for example, that a base material coated with the dispersion solution (L) is inserted into a preheated furnace and the dispersion solvent (S) in the dispersion solution (L) is evaporated in a short time. A heating process in which copper fine particles are sintered together. That is, it refers to a heat treatment for evaporating the dispersion solvent (S) in a short time.

(3)基材上の銅微粒子分散溶液(L)の焼結
第1の態様において、該銅微粒子分散溶液(L)が塗布された基材を160〜500℃に加熱された炉内に挿入して急速加熱することにより銅微粒子を焼結して、空隙率が40〜70%である焼結膜を基材上に形成することを特徴とする。
一般に、銅微粒子分散溶液(L)を焼結して導電性の焼結膜を形成する場合には、基材上に塗布された金属微粒子の分散溶液を先ず乾燥工程において加熱下に溶媒を除去し、その後、焼結工程において高温下に金属微粒子を焼結するが、本発明においては、特に乾燥工程は設けずに加熱された炉に、基材上に銅微粒子分散溶液(L)が塗布されたものを挿入して、急速加熱することを特徴とする。
このように、乾燥工程を設けずに、溶媒(S)の沸点以上の温度に加熱された炉内に基材上に塗布された銅微粒子分散溶液(L)を挿入することにより、溶媒(S)が沸騰現象を起こす一方、銅微粒子の焼結も進行し、その結果空隙率の高い多孔質の銅焼結膜が得られる。
(3) Sintering of the copper fine particle dispersion (L) on the base material In the first aspect, the base material coated with the copper fine particle dispersion solution (L) is inserted into a furnace heated to 160 to 500 ° C. Then, the copper fine particles are sintered by rapid heating, and a sintered film having a porosity of 40 to 70% is formed on the substrate.
In general, when forming a conductive sintered film by sintering the copper fine particle dispersion (L), the solvent is first removed by heating the metal fine particle dispersion applied on the substrate in the drying step. Thereafter, the metal fine particles are sintered at a high temperature in the sintering step. In the present invention, the copper fine particle dispersion solution (L) is applied on the base material in a heated furnace without particularly providing a drying step. It is characterized by inserting a bowl and heating rapidly.
Thus, without providing a drying step, by inserting the copper fine particle dispersion solution (L) applied on the base material into a furnace heated to a temperature equal to or higher than the boiling point of the solvent (S), the solvent (S ) Causes boiling phenomenon, while sintering of the copper fine particles proceeds, and as a result, a porous copper sintered film having a high porosity is obtained.

(i)焼結温度と焼結時間
本発明において、焼結温度は160〜500℃の範囲であるが、好ましい炉の加熱温度は、使用する溶媒(S)の沸点により異なる。厳密には、溶媒(S)の熱容量と炉内のガス等も含めた熱容量の影響も受けるが、相対的には溶媒(S)の量が少ないのでその熱容量も少なく、焼結条件としては炉の加熱温度条件が重要である。
炉の加熱温度は、160〜500℃の範囲であるが、更に溶媒(S)の蒸気圧が2×(1.01325×10−1)〜8×(1.01325×10−1)(MPa)(尚、1.01325×10−1(MPa)は1atmである。)となる温度で、かつ溶媒(S)が沸騰現象を生じる温度が好ましい。加熱温度が150℃以上であると銅微粒子の焼結が進行し、また溶媒(S)の蒸気圧が2×(1.01325×10−1)〜8×(1.01325×10−1)(MPa)となる温度範囲であると溶媒(S)が急速加熱されて、沸騰現象を起こすので、銅微粒子はより空隙率が高くなる形状での部分的焼結が進行すると推定される。焼結温度が高いほど光の透過率を向上できるが、一方、機械的強度は低下するので使用目的に応じた溶媒(S)と焼結温度を選択する必要がある。
(I) Sintering temperature and sintering time In this invention, although sintering temperature is the range of 160-500 degreeC, the heating temperature of a preferable furnace changes with boiling points of the solvent (S) to be used. Strictly speaking, it is also affected by the heat capacity of the solvent (S) and the heat capacity including the gas in the furnace, but since the amount of the solvent (S) is relatively small, the heat capacity is also small. The heating temperature condition is important.
Although the heating temperature of the furnace is in the range of 160 to 500 ° C., the vapor pressure of the solvent (S) is further 2 × (1.01325 × 10 −1 ) to 8 × (1.01325 × 10 −1 ) (MPa ) (Where 1.01325 × 10 −1 (MPa) is 1 atm), and the temperature at which the solvent (S) causes a boiling phenomenon is preferable. When the heating temperature is 150 ° C. or higher, the sintering of the copper fine particles proceeds, and the vapor pressure of the solvent (S) is 2 × (1.01325 × 10 −1 ) to 8 × (1.01325 × 10 −1 ). Since the solvent (S) is heated rapidly in the temperature range of (MPa) to cause a boiling phenomenon, it is presumed that the copper fine particles undergo partial sintering in a shape with a higher porosity. As the sintering temperature is higher, the light transmittance can be improved. On the other hand, since the mechanical strength is lowered, it is necessary to select a solvent (S) and a sintering temperature according to the purpose of use.

尚、炉の加熱温度は、基材上への銅微粒子分散溶液(L)の塗布厚みが厚いほど溶媒の蒸発時間が長くなるので、蒸発時間が長くなることを避けるために、炉の加熱は高めに設定することが望ましいが、電子機器用の基板上に銅微粒子分散溶液(L)を塗布して銅微粒子を焼結させる場合、又はフラットパネルディスプレイ(FPD)用透明導電膜に用いられる場合には250℃以下で焼結が可能となる、溶媒(S)を選択することが好ましい。上記加熱条件下での焼結後、焼結帯を炉から取り出して冷却されるが炉内での加熱時間は、3〜30分間程度である。3分間未満では銅微粒子の焼結が十分間に進行せず、一方、30分間以上加熱しても焼結が更に進行する可能性は低い。   The heating temperature of the furnace is such that the thicker the coating thickness of the copper fine particle dispersion solution (L) on the substrate, the longer the evaporation time of the solvent. Although it is desirable to set a high value, when copper fine particle dispersion (L) is applied on a substrate for electronic equipment to sinter the copper fine particles, or when used as a transparent conductive film for flat panel display (FPD) It is preferable to select a solvent (S) that enables sintering at 250 ° C. or lower. After sintering under the above heating conditions, the sintered zone is taken out of the furnace and cooled, but the heating time in the furnace is about 3 to 30 minutes. If it is less than 3 minutes, the sintering of the copper fine particles does not proceed sufficiently. On the other hand, the possibility that the sintering further proceeds even if heated for 30 minutes or more is low.

(ii)不活性ガス雰囲気下での焼結
本発明において、銅微粒子分散溶液(L)からの銅微粒子の焼結は必ずしも水素ガス等の還元性ガス雰囲気下で行う必要はなく、窒素ガス、アルゴンガス等の不活性ガス雰囲気下で行うことが可能である。また、本発明において、銅微粒子の焼結は炉内で急速加熱により行われるので、銅微粒子の高温雰囲気下で大気中の酸素により酸化反応を受けるのを防止するために、加熱された炉内に銅微粒子分散溶液(L)が塗布された基材を挿入する前にあらかじめ不活性雰囲気内に置かれることが望ましい。このように雰囲気を不活性ガス雰囲気とする手段は特に限定されるものではないが、具体例としては、片側に蓋の付いた外形形状が円筒状の耐熱性ガラス容器で、該蓋に窒素ガス供給口を設けておき、蓋の相対する面に窒素ガスの排出口が設けられた容器を使用することができる。該容器内に銅微粒子分散溶液(L)が塗布された基材を挿入し、蓋を装着して、窒素ガス流通下に所定の温度に加熱された炉内に挿入し、焼結終了後に炉から該耐熱性ガラス容器を取り出し、大気中で冷却し、基材上の焼結膜が室温まで冷却されたら、窒素ガスの流通を停止して、耐熱性ガラス容器内から多孔質銅焼結膜が形成された基材を取り出すことが出来る。
(Ii) Sintering under inert gas atmosphere In the present invention, the sintering of the copper fine particles from the copper fine particle dispersion solution (L) is not necessarily performed under a reducing gas atmosphere such as hydrogen gas, It can be performed in an inert gas atmosphere such as argon gas. In the present invention, since the copper fine particles are sintered by rapid heating in the furnace, in order to prevent the copper fine particles from undergoing an oxidation reaction due to oxygen in the atmosphere under a high temperature atmosphere, It is desirable that the substrate is placed in an inert atmosphere in advance before inserting the substrate coated with the copper fine particle dispersion (L). The means for making the atmosphere an inert gas atmosphere is not particularly limited, but a specific example is a heat-resistant glass container having a cylindrical outer shape with a lid on one side, and nitrogen gas is applied to the lid. A container having a supply port and a discharge port for nitrogen gas on the opposite surface of the lid can be used. A base material coated with the copper fine particle dispersion (L) is inserted into the container, a lid is attached, and the base is inserted into a furnace heated to a predetermined temperature under a nitrogen gas flow. The heat-resistant glass container is taken out from the substrate, cooled in the air, and when the sintered film on the substrate is cooled to room temperature, the flow of nitrogen gas is stopped and a porous copper sintered film is formed from the heat-resistant glass container. The formed base material can be taken out.

(iii)多孔質銅焼結膜
上記焼結操作により得られる多孔質銅焼結膜は、空隙率が40〜70%であり、可視光の透過性が高く、かつシート抵抗値が低く、機械的強度及び基材への密着性にも優れるものである。
本発明の第1の態様である「多孔質銅焼結膜の製造方法」により得られた「多孔質銅焼結膜」の走査電子顕微鏡(SEM;Scanning Electron Microscope)写真による斜視図の例を図1に、表面に垂直な断面の写真を図2に示す。これらの図から、多孔質銅焼結膜は、三次元的に連続して焼結していて、焼結膜の外部に開放されているので高い光の透過性が得られることが理解できる。尚、高い光の透過性を得るには空隙率は高い方が望ましいが、一方、多孔質銅焼結膜の機械的強度、及び基材への密着性を高める等のためには、空隙率を必要以上に高めることは好ましくない。
(Iii) Porous copper sintered film The porous copper sintered film obtained by the above sintering operation has a porosity of 40 to 70%, high visible light permeability, low sheet resistance, and mechanical strength. And it is excellent also in the adhesiveness to a base material.
FIG. 1 shows an example of a perspective view of a “porous copper sintered film” obtained by the “method for producing a porous copper sintered film” according to the first aspect of the present invention, taken with a scanning electron microscope (SEM) photograph. A photograph of a cross section perpendicular to the surface is shown in FIG. From these figures, it can be understood that the porous copper sintered film is continuously sintered three-dimensionally and opened to the outside of the sintered film, so that high light transmittance can be obtained. In order to obtain high light transmittance, a higher porosity is desirable. On the other hand, in order to increase the mechanical strength of the porous copper sintered film and the adhesion to the substrate, the porosity should be reduced. It is not preferable to raise more than necessary.

(iii-1)空隙率
上記製造方法により、空隙率が40〜70%の多孔質銅焼結膜を得ることが出来る。
尚、第1の態様において、多孔質銅焼結膜の空隙率は、焼結体の重量をその外容積で除した値をかさ密度とし、該密度から算出した値である。
空隙率が40〜70%の多孔質銅焼結膜は、銅微粒子分散溶液(L)中の銅微粒子の濃度、基材上への塗布膜の厚み、急速加熱条件の選択により制御することが可能である。
(iii-2)光透過率
上記製造方法により、波長460nmの光の膜厚方向への光透過率が30%、好ましくは50%以上である多孔質銅焼結膜を得ることが出来る。透過率は、高ければ高いほうがより好ましい。
尚、第1の態様において、多孔質銅焼結膜の光の透過率は、(イ)液晶ディスプレイのバックライトである白色LEDの輝度が最も高い波長である460nmの光を用いて、ガラス基材上に形成した多孔質銅薄膜の膜厚方向に通った光の強度(Ls)と該ガラス基材のみを通った光の強度(Lr)をそれぞれ測定し、(ロ)ガラス基材上に形成した多孔質銅薄膜の厚さ方向に通った光の強度(Ls)を該ガラス基材のみを通った光の強度(Lr)で除した値(Ls/Lr)である。尚、このような透過光の強度は、分光光度計を用いて測定することが出来る。
(Iii-1) Porosity A porous copper sintered film having a porosity of 40 to 70% can be obtained by the above production method.
In the first embodiment, the porosity of the sintered porous copper film is a value calculated from the density obtained by dividing the weight of the sintered body by its outer volume as the bulk density.
The porous copper sintered film having a porosity of 40 to 70% can be controlled by selecting the concentration of copper fine particles in the copper fine particle dispersion (L), the thickness of the coating film on the substrate, and the rapid heating conditions. It is.
(Iii-2) Light Transmittance A porous copper sintered film having a light transmittance in the film thickness direction of light having a wavelength of 460 nm of 30%, preferably 50% or more can be obtained by the above production method. The higher the transmittance, the more preferable.
In the first aspect, the light transmittance of the porous copper sintered film is as follows: (a) The light of 460 nm, which is the wavelength with the highest luminance of the white LED as the backlight of the liquid crystal display, is used. Measure the light intensity (Ls) in the film thickness direction of the porous copper thin film formed above and the light intensity (Lr) through only the glass substrate, and (b) form on the glass substrate. It is a value (Ls / Lr) obtained by dividing the intensity (Ls) of light passing in the thickness direction of the porous thin copper film by the intensity (Lr) of light passing only through the glass substrate. The intensity of such transmitted light can be measured using a spectrophotometer.

(iii-3)シート抵抗値
上記製造方法により、多孔質銅焼結膜のシート抵抗値が好ましくは0.01〜5(Ω/□)、より好ましくは0.01〜1(Ω/□)である多孔質銅焼結膜を得ることが出来る。更に好ましいのは0.01〜0.1(Ω/□)である。尚、第1の態様において、多孔質銅焼結膜のシート抵抗値は、JIS K7194(導電性プラスチックの4探針法による抵抗率試験方法)に準拠した4端子式シート抵抗測定により測定した値である。
(Iii-3) Sheet Resistance Value According to the above production method, the sheet resistance value of the porous copper sintered film is preferably 0.01 to 5 (Ω / □), more preferably 0.01 to 1 (Ω / □). A certain porous copper sintered film can be obtained. More preferred is 0.01 to 0.1 (Ω / □). In the first aspect, the sheet resistance value of the porous copper sintered film is a value measured by a four-terminal sheet resistance measurement in accordance with JIS K7194 (resistivity test method using a four-probe method of conductive plastic). is there.

〔2〕第2の態様である「多孔質銅焼結膜」について
第2の態様である「多孔質銅焼結膜」は、一次粒子の平均粒径が1〜500nmである銅微粒子を焼結させて得られた、空隙率が40〜70%、波長460nmの光の厚さ方向への光透過率が30%以上、かつシート抵抗が0.01〜5(Ω/□)であることを特徴とする。
以下、本発明の多孔質銅焼結膜について説明する。
(1)一次粒子の平均粒径が1〜500nmである銅微粒子
第2の態様における多孔質銅焼結膜は、一次粒子の平均粒径1〜500nmの銅微粒子が焼結されて形成されたものであれば製造方法が特に限定されるものではないが、例えば後述するように、銅微粒子分散溶液を基材に塗布後、不活性ガス雰囲気で焼結することにより製造することができる。このように銅微粒子分散溶液の焼結により多孔質銅焼結膜を形成する場合には、その空隙率、膜の厚みを任意に制御して製造することが可能である。
銅微粒子は、一次粒子の平均粒径1〜500nmの微粒子である。
ここで、一次粒子の平均粒径とは、二次粒子を構成する銅微粒子の一次粒子の直径の意味である。該一次粒子の直径は、透過電子顕微鏡(TEM;Transmission Electron Microscope)を用いて測定することができる。また、平均粒径とは、一次粒子の数平均粒径を意味する。微粒子の一次粒子の平均粒径は、1〜500nmであるが、製造と取り扱い等の実用的な面からは、1〜100nmの微粒子が好ましい。
また、上記銅微粒子に透明性粒子として、シリカ粒子単体並びにZr、Ti、Sn、Ce、Ta、Nb及びZnの金属酸化物群から選択される、1種または2種以上を添加させることができる。また、その好ましい平均粒子径は、0.5〜10μmであり、その添加量は、銅微粒子を含む全粒子中で0.1〜30wt%とすることが好ましい。
[2] About “Porous Copper Sintered Membrane” as Second Aspect “Porous Copper Sintered Membrane” as the second embodiment is a method in which copper fine particles having an average primary particle size of 1 to 500 nm are sintered. The porosity obtained is 40 to 70%, the light transmittance in the thickness direction of light having a wavelength of 460 nm is 30% or more, and the sheet resistance is 0.01 to 5 (Ω / □). And
Hereinafter, the porous copper sintered film of the present invention will be described.
(1) Copper fine particles having an average primary particle diameter of 1 to 500 nm The porous copper sintered film in the second aspect is formed by sintering copper fine particles having an average primary particle diameter of 1 to 500 nm. If so, the production method is not particularly limited. For example, as described later, the copper fine particle dispersion can be applied to a substrate and then sintered in an inert gas atmosphere. Thus, when forming a porous copper sintered film by sintering a copper fine particle dispersion solution, it is possible to manufacture by arbitrarily controlling the porosity and film thickness.
The copper fine particles are fine particles having an average primary particle diameter of 1 to 500 nm.
Here, the average particle size of the primary particles means the diameter of the primary particles of the copper fine particles constituting the secondary particles. The diameter of the primary particles can be measured using a transmission electron microscope (TEM). Moreover, an average particle diameter means the number average particle diameter of a primary particle. The average primary particle size of the fine particles is 1 to 500 nm, but from a practical aspect such as production and handling, fine particles of 1 to 100 nm are preferable.
In addition, as the transparent particles, one or more selected from silica particles alone and a metal oxide group of Zr, Ti, Sn, Ce, Ta, Nb, and Zn can be added to the copper fine particles. . Moreover, the preferable average particle diameter is 0.5-10 micrometers, and it is preferable that the addition amount shall be 0.1-30 wt% in all the particles containing a copper microparticle.

(2)空隙率
「多孔質銅焼結膜」の空隙率は、40〜70%である。
第2の態様における多孔質銅焼結膜の空隙率は、焼結体の重量をその外容積で除した値をかさ密度とし、該密度から算出した値である。
多孔質銅焼結膜における空隙は、光の透過性を高めるためには、三次元的に連続して焼結膜の外部に開放されていることが必要である。一方、空隙率は、多孔質銅焼結膜の機械的強度、及び基材への密着性を高めるためには高い方が望まれる。
空隙率が40〜70%の多孔質銅焼結膜は、銅微粒子分散溶液(L)中の銅微粒子の濃度、基材上への塗布膜の厚み、急速加熱条件の選択により制御することが可能であるが、LCD、有機EL等のフラットパネルディスプレイの分野における透明導電膜として使用するには空隙率が60〜70%の多孔質銅焼結膜が好ましい。
(2) Porosity The porosity of the “porous copper sintered film” is 40 to 70%.
The porosity of the porous copper sintered film in the second embodiment is a value calculated from the density obtained by dividing the weight of the sintered body by its outer volume as the bulk density.
The voids in the porous copper sintered film need to be continuously opened to the outside of the sintered film three-dimensionally in order to increase the light transmittance. On the other hand, a higher porosity is desired to increase the mechanical strength of the porous copper sintered film and the adhesion to the substrate.
The porous copper sintered film having a porosity of 40 to 70% can be controlled by selecting the concentration of copper fine particles in the copper fine particle dispersion (L), the thickness of the coating film on the substrate, and the rapid heating conditions. However, a porous copper sintered film having a porosity of 60 to 70% is preferred for use as a transparent conductive film in the field of flat panel displays such as LCD and organic EL.

(3)光の透過率
第2の態様における多孔質銅焼結膜の波長460nmの光の膜厚方向への光透過率は、30%以上、好ましくは50%以上である。透過率は、高ければ高いほうがより好ましい。
第2の態様における多孔質銅焼結膜の光の透過率は、(イ)液晶ディスプレイのバックライトである白色LEDの輝度が最も高い波長である460nmの光を用いて、ガラス基材上に形成した多孔質銅薄膜の厚さ方向に通った光の強度(Ls)と該ガラス基材のみを通った光の強度(Lr)をそれぞれ測定し、(ロ)光の透過率は、ガラス基材上に形成した多孔質銅薄膜の厚さ方向に通った光の強度(Ls)を該ガラス基材のみを通った光の強度(Lr)で除した値(Ls/Lr)である。尚、透過光の強度の測定には、公知の分光光度計を使用することができる。
(3) Light transmittance The light transmittance in the film thickness direction of light having a wavelength of 460 nm of the porous copper sintered film in the second aspect is 30% or more, preferably 50% or more. The higher the transmittance, the more preferable.
The light transmittance of the porous copper sintered film in the second aspect is (i) formed on a glass substrate using light of 460 nm, which is the wavelength with the highest luminance of the white LED that is the backlight of the liquid crystal display. The intensity (Ls) of light passing through the thickness direction of the porous thin copper film and the intensity (Lr) of light passing only through the glass substrate were respectively measured. It is a value (Ls / Lr) obtained by dividing the intensity (Ls) of light passing in the thickness direction of the porous copper thin film formed above by the intensity (Lr) of light passing only through the glass substrate. A known spectrophotometer can be used for measuring the intensity of transmitted light.

(4)シート抵抗値
第2の態様における多孔質銅焼結膜のシート抵抗値が0.01〜5(Ω/□)、好ましくは0.01〜1(Ω/□)である。より好ましいのは0.01〜0.1(Ω/□)である。
尚、第2の態様における多孔質銅焼結膜のシート抵抗値は、JIS K7194(導電性プラスチックの4探針法による抵抗率試験方法)に準拠した4端子式シート抵抗測定を用いて測定された値である。
(4) Sheet resistance value The sheet resistance value of the porous copper sintered film in the second embodiment is 0.01 to 5 (Ω / □), preferably 0.01 to 1 (Ω / □). More preferred is 0.01 to 0.1 (Ω / □).
In addition, the sheet resistance value of the porous copper sintered film in the second aspect was measured by using a four-terminal sheet resistance measurement in accordance with JIS K7194 (resistivity test method using a four-probe method of conductive plastic). Value.

(5)多孔質銅焼結膜の厚み
第2の態様における多孔質銅焼結膜の厚みは、50nm〜10μmの範囲が好ましい。また、光透過性の観点から、より好ましくは、50nm〜5μmであり、更に好ましくは、50nm〜500nmである。尚、第2の態様における多孔質銅焼結膜の厚みは、走査電子顕微鏡(SEM;Scanning Electron Microscope)を用いて測定された値であり、任意の5点について測定し、その平均値を平均厚みとする。
(5) Thickness of porous copper sintered film The thickness of the porous copper sintered film in the second aspect is preferably in the range of 50 nm to 10 μm. Moreover, from a light-transmissive viewpoint, More preferably, it is 50 nm-5 micrometers, More preferably, it is 50 nm-500 nm. In addition, the thickness of the porous copper sintered film in the second embodiment is a value measured using a scanning electron microscope (SEM), measured at any five points, and the average value is the average thickness. And

(6)密度
第2の態様における多孔質銅焼結膜の密度は、1.5〜5.5g/cmの範囲であることが好ましい。さらに、1.5〜3.5g/cmの範囲がより好ましい。尚、多孔質銅焼結膜の密度は、見掛け密度測定法(JIS C2141)に基づき測定した値である。
(7)用途
本発明の多孔質銅焼結膜は、液晶ディスプレイ(LCD)、有機エレクトロルミネッセンス(有機EL)等のフラットパネルディスプレイ(FPD)用透明導電膜として広く利用することができる。
(6) Density The density of the porous copper sintered film in the second aspect is preferably in the range of 1.5 to 5.5 g / cm 3 . Furthermore, the range of 1.5-3.5 g / cm < 3 > is more preferable. The density of the sintered porous copper film is a value measured based on the apparent density measurement method (JIS C2141).
(7) Applications The porous copper sintered film of the present invention can be widely used as a transparent conductive film for flat panel displays (FPD) such as liquid crystal displays (LCD) and organic electroluminescence (organic EL).

次に、実施例により本発明をより具体的に説明する。尚、本発明はこれらの実施例に限定されるものではない。
尚、評価方法、及び評価基準は下記の方法による。
(1)多孔質銅焼結膜の平均厚み
走査電子顕微鏡(SEM;Scanning Electron Microscope)を用いて測定した。任意の5点について測定し、その平均値を平均厚みとした。
(2)空隙率
多孔質銅焼結膜の空隙率は、焼結体の重量をその外容積で除した値をかさ密度とし、該密度からを算出した値である。
Next, the present invention will be described more specifically with reference to examples. The present invention is not limited to these examples.
The evaluation method and evaluation criteria are as follows.
(1) Average thickness of porous copper sintered film It measured using the scanning electron microscope (SEM; Scanning Electron Microscope). Measurement was performed on arbitrary five points, and the average value was defined as the average thickness.
(2) Porosity The porosity of the porous copper sintered film is a value calculated from the density obtained by dividing the weight of the sintered body by its outer volume as the bulk density.

(3)光の透過率
液晶ディスプレイのバックライトである白色LEDの輝度が最も高い波長である460nmの光を用いて、ガラス基材上に形成した多孔質銅焼結膜の厚さ方向に通った光の強度(Ls)と該ガラス基材のみを通った光の強度(Lr)をそれぞれ測定した。光の透過率は、ガラス基材上に形成した多孔質銅焼結膜の厚さ方向に通った光の強度(Ls)を該ガラス基材のみを通った光の強度(Lr)で除した値(Ls/Lr)として算出した。使用した分光光度計は、日立ハイテクノロジーズ(株)製、型式:U−4100型 固体試料測定システムである。
評価基準は以下の方法による。
◎:光の透過率が50%以上
○:光の透過率が30%以上、50%未満
×:光の透過率が30%未満
(3) Light transmittance The white LED, which is the backlight of the liquid crystal display, passed through the porous copper sintered film formed on the glass substrate in the thickness direction using 460 nm light, which has the highest luminance. The light intensity (Ls) and the light intensity (Lr) passing through only the glass substrate were measured. The light transmittance is a value obtained by dividing the intensity (Ls) of light passing in the thickness direction of the porous copper sintered film formed on the glass substrate by the intensity (Lr) of light passing only through the glass substrate. Calculated as (Ls / Lr). The spectrophotometer used is a model: U-4100 type solid sample measuring system manufactured by Hitachi High-Technologies Corporation.
Evaluation criteria are as follows.
◎: Light transmittance is 50% or more ○: Light transmittance is 30% or more and less than 50% ×: Light transmittance is less than 30%

(4)シート抵抗
JIS K7194(導電性プラスチックの4探針法による抵抗率試験方法)に「準拠した4端子式シート抵抗測定( 三菱化学(株)製、型式:ロレスタG P )を用いて測定した。
評価基準は以下の方法による。
◎:1(Ω/□)未満
○:1(Ω/□)以上、5(Ω/□)以下
×:5(Ω/□)超
(4) Sheet resistance Measured using JIS K7194 (resistivity test method by 4-probe method for conductive plastics) using “4-terminal sheet resistance measurement (Mitsubishi Chemical Corporation, model: Loresta G P)” did.
Evaluation criteria are as follows.
◎ Less than 1 (Ω / □) ○: 1 (Ω / □) or more, 5 (Ω / □) or less ×: More than 5 (Ω / □)

[実施例1]
(1)銅粒子分散溶液の調製
還元剤である水素化ホウ素ナトリウムが0.017モル/リットルの濃度で溶解している還元剤水溶液180ミリリットル(ml)に、分散剤であるポリビニルピロリドン(数平均分子量3500)を1.0g添加して撹拌し、次に窒素ガス雰囲気中で該還元剤水溶液に、酢酸銅((CHCOO)Cu・H0)0.6gを蒸留水20mlに溶解して得られた水溶液を滴下後、40℃で約5分間撹拌を行い、一次粒子の粒径が80〜180nmである銅微粒子の少なくとも表面の一部が分散剤で覆われた銅微粒子分散水溶液を得た。
銅微粒子濃度が1mg/mlである水溶液100mlを、酸素でバブリングして銅微粒子を凝集させた。凝集した銅微粒子を遠心分離により回収した。回収した銅微粒子80mgを2.5mlの再分散溶媒であるエチレングリコール溶液中に分散後、室温で超音波照射による撹拌を20分間行い、銅微粒子がエチレングリコール溶媒に3質量%の濃度で分散している銅粒子分散溶液(L1)を得た。尚、撹拌方法は、汎用のマグネチックスターラを用いて行った。
[Example 1]
(1) Preparation of a copper particle dispersion solution In 180 ml (ml) of a reducing agent aqueous solution in which sodium borohydride as a reducing agent is dissolved at a concentration of 0.017 mol / liter, polyvinylpyrrolidone (number average) as a dispersing agent is added. 1.0 g of molecular weight 3500) was added and stirred, and then 0.6 g of copper acetate ((CH 3 COO) 2 Cu · H 2 0) was dissolved in 20 ml of distilled water in the reducing agent aqueous solution in a nitrogen gas atmosphere. The obtained aqueous solution was dropped, and then stirred at 40 ° C. for about 5 minutes, and at least a part of the surface of the copper fine particles having a primary particle size of 80 to 180 nm was covered with a dispersant. Got.
100 ml of an aqueous solution having a copper fine particle concentration of 1 mg / ml was bubbled with oxygen to aggregate the copper fine particles. Aggregated copper fine particles were collected by centrifugation. After 80 mg of the collected copper fine particles are dispersed in 2.5 ml of an ethylene glycol solution which is a redispersion solvent, stirring is performed by ultrasonic irradiation for 20 minutes at room temperature, and the copper fine particles are dispersed in the ethylene glycol solvent at a concentration of 3% by mass. A copper particle dispersion solution (L1) was obtained. In addition, the stirring method was performed using the general purpose magnetic stirrer.

(2)多孔質銅焼結膜の作製
銅微粒子分散溶液(L1)0.22mlを、超音波を用いて十分に表面洗浄したガラス基材(面積:26mm×19mm)に滴下して、銅微粒子分散溶液(L1)が塗布されたガラス基材を得た。銅微粒子分散溶液が塗布されたガラス基材を、ガラス製管状容器(外径:120mm、長さ:1200mm)内に固定後、ガラス管内に窒素ガスを流通させてガラス管内を窒素ガス雰囲気にした。次に窒素ガスを流通させながら該ガラス製管状容器を250℃に加熱された電気管状炉(ニクロム線加熱ヒータ内臓、内径150mm)に挿入して15分間保持し、ガラス基材上の銅微粒子を焼結した。ガラス製管状容器を電気管状炉から取り出し、室温まで冷却後、ガラス製管状容器内への窒素ガスの流通を止め、ガラス製管状容器内から、表面に多孔質銅焼結膜が形成されたガラス基材(サンプルA)を引き抜いた。
(2) Production of porous copper sintered film 0.22 ml of copper fine particle dispersion solution (L1) was dropped onto a glass substrate (area: 26 mm × 19 mm) sufficiently cleaned using ultrasonic waves to disperse copper fine particles. A glass substrate coated with the solution (L1) was obtained. After fixing the glass substrate coated with the copper fine particle dispersion solution in a glass tubular container (outer diameter: 120 mm, length: 1200 mm), nitrogen gas was circulated in the glass tube to make the inside of the glass tube a nitrogen gas atmosphere. . Next, while flowing nitrogen gas, the glass tubular container was inserted into an electric tubular furnace heated to 250 ° C. (built-in nichrome wire heater, inner diameter 150 mm) and held for 15 minutes. Sintered. After the glass tubular container is removed from the electric tubular furnace and cooled to room temperature, the flow of nitrogen gas into the glass tubular container is stopped, and a glass substrate having a porous copper sintered film formed on the surface is formed from the glass tubular container. The material (sample A) was pulled out.

(3)多孔質銅焼結膜の評価
得られたサンプルAについて、膜厚、空隙率、波長460nmの光の厚さ方向への光透過率、及びシート抵抗についての評価を行った。結果をまとめて表1に示す。
多孔質銅焼結膜における空隙は、光の透過性を高めるためには、三次元的に連続して焼結膜の外部に開放されていることが必要である。一方、空隙率は、多孔質銅焼結膜の機械的強度、及び基材への密着性を高めるためには高い方が望まれる。
(3) Evaluation of porous copper sintered film About the obtained sample A, the film thickness, the porosity, the light transmittance in the thickness direction of light having a wavelength of 460 nm, and the sheet resistance were evaluated. The results are summarized in Table 1.
The voids in the porous copper sintered film need to be continuously opened to the outside of the sintered film three-dimensionally in order to increase the light transmittance. On the other hand, a higher porosity is desired to increase the mechanical strength of the porous copper sintered film and the adhesion to the substrate.

[実施例2、3]
(1)銅粒子分散溶液の調製
実施例2、3において、実施例1に記載した方法と同様の方法で銅微粒子がエチレングリコール溶媒に3質量%の濃度で分散している銅粒子分散溶液(L1)を用いた。
(2)多孔質銅焼結膜の作製
実施例2、3において、銅微粒子分散溶液(L1)0.20ml、0.14mlをそれぞれガラス基材(面積:26mm×19mm)に滴下した以外は実施例1に記載した方法と同様の方法で、銅微粒子分散溶液(L1)が塗布されたガラス基材をそれぞれ得た。各々の銅微粒子分散溶液が塗布されたガラス基材を、実施例1に記載した方法と同様にガラス製管状容器内に固定後、ガラス管内に窒素ガスを流通させてガラス管内を窒素ガス雰囲気にした。次に実施例2、3において、窒素ガスを流通させながら該ガラス製管状容器を280℃、330℃にそれぞれ加熱された電気管状炉に挿入して15分間保持し、ガラス基材上の銅微粒子を焼結した。ガラス製管状容器を電気管状炉から取り出し、室温まで冷却後、ガラス製管状容器内への窒素ガスの流通を止め、ガラス製管状容器内から、表面に多孔質銅焼結膜が形成されたガラス基材(サンプルB)、(サンプルC)を引き抜いた。
(3)多孔質銅焼結膜の評価
得られたサンプルB、Cについて、実施例1に記載した方法と同様の評価を行った。結果をまとめて表1に示す。又、実施例3で得られた多孔質銅焼結膜の走査電子顕微鏡(SEM;Scanning Electron Microscope)写真を斜視図として図1に示す。
[Examples 2 and 3]
(1) Preparation of Copper Particle Dispersion Solution In Example 2 and 3, a copper particle dispersion solution in which copper fine particles are dispersed in an ethylene glycol solvent at a concentration of 3% by mass in the same manner as described in Example 1 ( L1) was used.
(2) Production of porous copper sintered film In Examples 2 and 3, the examples except that 0.20 ml and 0.14 ml of the copper fine particle dispersion (L1) were respectively dropped onto the glass substrate (area: 26 mm × 19 mm). Glass substrates coated with the copper fine particle dispersion (L1) were obtained in the same manner as described in 1. After fixing the glass substrate coated with each copper fine particle dispersion solution in a glass tubular container in the same manner as described in Example 1, nitrogen gas was circulated in the glass tube to bring the inside of the glass tube into a nitrogen gas atmosphere. did. Next, in Examples 2 and 3, the glass tubular container was inserted into an electric tubular furnace heated to 280 ° C. and 330 ° C. while nitrogen gas was circulated, and held for 15 minutes. Was sintered. After the glass tubular container is removed from the electric tubular furnace and cooled to room temperature, the flow of nitrogen gas into the glass tubular container is stopped, and a glass substrate having a porous copper sintered film formed on the surface is formed from the glass tubular container. The material (sample B) and (sample C) were extracted.
(3) Evaluation of porous copper sintered film The obtained samples B and C were evaluated in the same manner as the method described in Example 1. The results are summarized in Table 1. Moreover, the scanning electron microscope (SEM; Scanning Electron Microscope) photograph of the porous copper sintered film obtained in Example 3 is shown as a perspective view in FIG.

[比較例1]
(1)銅粒子分散溶液の調製
実施例1に記載した方法と同様の方法で銅微粒子がエチレングリコール溶媒に3質量%の濃度で分散している銅粒子分散溶液(L1)を用いた。
(2)多孔質銅焼結膜の作製
銅微粒子分散溶液(L1)0.36mlをガラス基材(面積:26mm×19mm)に滴下した以外は実施例1に記載した方法と同様の方法で、銅微粒子分散溶液(L1)が塗布されたガラス基材を得た。銅微粒子分散溶液が塗布されたガラス基材を、実施例1に記載した方法と同様にガラス製管状容器内に固定後、ガラス管内に窒素ガスを流通させてガラス管内を窒素ガス雰囲気にした。室温の電気管状炉に挿入後、45分間かけて170℃まで昇温し、その温度で1時間維持する乾燥操作により、使用したエチレングリコール溶媒を蒸発除去した。その後、45分間かけて250℃まで昇温し、その温度に1時間保持して銅微粒子の焼結を行った。次に、電気管状炉からガラス製管状容器を引き抜き、表面に多孔質銅焼結膜が形成されたガラス基材(サンプルD)を得た。
(3)多孔質銅焼結膜の評価
得られたサンプルDについて、実施例1に記載した方法と同様の評価を行った。結果をまとめて表1に示す。又、比較例1で得られた多孔質銅焼結膜の電子顕微鏡(SEM)写真を斜視図として図2に示す。
[Comparative Example 1]
(1) Preparation of Copper Particle Dispersion Solution A copper particle dispersion solution (L1) in which copper fine particles are dispersed in an ethylene glycol solvent at a concentration of 3% by mass by the same method as described in Example 1 was used.
(2) Preparation of porous copper sintered film The copper fine particle dispersion solution (L1) was prepared in the same manner as described in Example 1 except that 0.36 ml was dropped onto a glass substrate (area: 26 mm × 19 mm). A glass substrate coated with the fine particle dispersion (L1) was obtained. After fixing the glass substrate coated with the copper fine particle dispersion solution in a glass tubular container in the same manner as described in Example 1, nitrogen gas was circulated in the glass tube to make the inside of the glass tube a nitrogen gas atmosphere. After inserting into an electric tubular furnace at room temperature, the ethylene glycol solvent used was evaporated and removed by a drying operation in which the temperature was raised to 170 ° C. over 45 minutes and maintained at that temperature for 1 hour. Then, it heated up to 250 degreeC over 45 minutes, and hold | maintained at the temperature for 1 hour, and sintered copper fine particle. Next, the glass tubular container was pulled out from the electric tubular furnace to obtain a glass substrate (sample D) having a porous copper sintered film formed on the surface.
(3) Evaluation of porous copper sintered film About the obtained sample D, evaluation similar to the method described in Example 1 was performed. The results are summarized in Table 1. Moreover, the electron microscope (SEM) photograph of the porous copper sintered film obtained in Comparative Example 1 is shown in FIG. 2 as a perspective view.

表1から、比較例1のように、基材上に塗布された金属微粒子の分散溶液を先ず乾燥工程において加熱下に溶媒を除去し、その後、焼結工程において高温下に金属微粒子を焼結した場合には、シート抵抗値が良好であり導電性に優れているが、空隙率は低く、光の透過性がほとんどないことが判る。一方、実施例1〜3のように、乾燥工程を設けずに、加熱された炉内に基材上に塗布された銅微粒子分散溶液を挿入することにより、導電性を保ちつつ、空隙率が40%以上であり、光の透過性を有することが判る。
また、実施例3のように、焼結温度を高くすることにより、空隙率を高くすることができ、より透過性に優れた多孔質銅焼結膜を形成することができる。
From Table 1, as in Comparative Example 1, the dispersion of the metal fine particles applied on the substrate is first heated in the drying step to remove the solvent, and then the metal fine particles are sintered at a high temperature in the sintering step. In this case, the sheet resistance value is good and the conductivity is excellent, but it is understood that the porosity is low and there is almost no light transmittance. On the other hand, as in Examples 1 to 3, without providing a drying step, by inserting the copper fine particle dispersion applied on the substrate into a heated furnace, the porosity is maintained while maintaining conductivity. It is 40% or more, and it can be seen that it has light transmittance.
Further, as in Example 3, by increasing the sintering temperature, the porosity can be increased, and a porous copper sintered film having more excellent permeability can be formed.

[実施例4、5]
(1)銅粒子分散溶液の調製
再分散溶媒としてエチレングリコール溶液の代わりに、エチレングリコール30体積%とN−メチルホルムアミド70体積%からなる混合溶媒を使用した以外は実施例1に記載した方法と同様の方法で銅微粒子がエチレングリコール−N−メチルホルムアミド混合溶媒に3質量%の濃度で分散している銅粒子分散溶液(L2)を得た。
(2)多孔質銅焼結膜の作製
実施例4において、銅微粒子分散溶液(L2)0.004mlをガラス基材(面積:26mm×19mm)に滴下して、スピンコートし、実施例5において、銅微粒子分散溶液(L2)0.03mlをガラス基材(面積:26mm×19mm)に滴下して、スピンコートし、銅微粒子分散溶液(L2)が塗布されたガラス基材を得た。各々の銅微粒子分散溶液が塗布されたガラス基材を、実施例1で使用した方法と同様のガラス製管状容器内に固定後、ガラス管内に窒素ガスを流通させてガラス管内を窒素ガス雰囲気にした。次に窒素ガスを流通させながら該ガラス製管状容器を280℃に加熱された電気管状炉に挿入して15分間保持し、ガラス基材上の銅微粒子を焼結した。ガラス製管状容器を電気管状炉から取り出し、室温まで冷却後、ガラス製管状容器内への窒素ガスの流通を止め、ガラス製管状容器内から、表面に多孔質銅焼結膜が形成されたガラス基材(サンプルE)、(サンプルF)を引き抜いた。
(3)多孔質銅焼結膜の評価
得られたサンプルE、Fについて、膜厚、空隙率、波長460nmの光の厚さ方向への光透過率、及びシート抵抗についての評価を行った。結果をまとめて表2に示す。
[Examples 4 and 5]
(1) Preparation of copper particle dispersion solution The method described in Example 1 except that a mixed solvent consisting of 30% by volume of ethylene glycol and 70% by volume of N-methylformamide was used instead of the ethylene glycol solution as the redispersion solvent. In the same manner, a copper particle dispersion solution (L2) was obtained in which copper fine particles were dispersed in an ethylene glycol-N-methylformamide mixed solvent at a concentration of 3% by mass.
(2) Production of porous copper sintered film In Example 4, 0.004 ml of the copper fine particle dispersion (L2) was dropped onto a glass substrate (area: 26 mm × 19 mm) and spin-coated. 0.03 ml of the copper fine particle dispersion (L2) was dropped onto a glass substrate (area: 26 mm × 19 mm) and spin-coated to obtain a glass substrate coated with the copper fine particle dispersion (L2). After fixing the glass substrate coated with each copper fine particle dispersion solution in a glass tubular container similar to the method used in Example 1, nitrogen gas was circulated in the glass tube to bring the glass tube into a nitrogen gas atmosphere. did. Next, the glass tubular container was inserted into an electric tubular furnace heated to 280 ° C. while nitrogen gas was circulated, and held for 15 minutes to sinter the copper fine particles on the glass substrate. After the glass tubular container is removed from the electric tubular furnace and cooled to room temperature, the flow of nitrogen gas into the glass tubular container is stopped, and a glass substrate having a porous copper sintered film formed on the surface is formed from the glass tubular container. The material (sample E) and (sample F) were extracted.
(3) Evaluation of porous copper sintered film The obtained samples E and F were evaluated for film thickness, porosity, light transmittance in the thickness direction of light having a wavelength of 460 nm, and sheet resistance. The results are summarized in Table 2.

[実施例6、7]
(1)銅粒子分散溶液の調製
実施例6、7において、実施例4に記載した方法と同様の方法で銅微粒子がエチレングリコール−N−メチルホルムアミド混合溶媒に3質量%の濃度で分散している銅粒子分散溶液(L2)をそれぞれ用いた。
(2)多孔質銅焼結膜の作製
実施例6において、銅微粒子分散溶液(L2)0.26mlをガラス基材(塗布面積:26mm×19mm)に滴下して、実施例7において、銅微粒子分散溶液(L2)0.39mlをガラス基材(塗布面積:26mm×19mm)に滴下した以外は実施例1に記載した方法と同様の方法で、銅微粒子分散溶液(L2)が塗布されたガラス基材をそれぞれ得た。各々の銅微粒子分散溶液が塗布されたガラス基材を、実施例1に記載した方法と同様にガラス製管状容器内に固定後、ガラス管内に窒素ガスを流通させてガラス管内を窒素ガス雰囲気にした。次に実施例6、7において、窒素ガスを流通させながら該ガラス製管状容器を300℃、350℃にそれぞれ加熱された電気管状炉に挿入して15分間保持し、ガラス基材上の銅微粒子を焼結した。ガラス製管状容器を電気管状炉から取り出し、室温まで冷却後、ガラス製管状容器内への窒素ガスの流通を止め、ガラス製管状容器内から、表面に多孔質銅焼結膜が形成されたガラス基材(サンプルG)、(サンプルH)を引き抜いた。
(3)多孔質銅焼結膜の評価
得られたサンプルG、Hについて、実施例1に記載した方法と同様の評価を行った。結果をまとめて表2に示す。また、実施例6で得られた多孔質銅焼結膜の電子顕微鏡(SEM)写真を斜視図として図3に示す。
[Examples 6 and 7]
(1) Preparation of copper particle dispersion solution In Examples 6 and 7, copper fine particles were dispersed in an ethylene glycol-N-methylformamide mixed solvent at a concentration of 3% by mass in the same manner as described in Example 4. Each copper particle dispersion solution (L2) was used.
(2) Production of porous copper sintered film In Example 6, 0.26 ml of the copper fine particle dispersion (L2) was dropped onto a glass substrate (application area: 26 mm × 19 mm). A glass substrate coated with the copper fine particle dispersion (L2) in the same manner as described in Example 1 except that 0.39 ml of the solution (L2) was dropped onto a glass substrate (application area: 26 mm × 19 mm). Each material was obtained. After fixing the glass substrate coated with each copper fine particle dispersion solution in a glass tubular container in the same manner as described in Example 1, nitrogen gas was circulated in the glass tube to bring the inside of the glass tube into a nitrogen gas atmosphere. did. Next, in Examples 6 and 7, the glass tubular container was inserted into an electric tubular furnace heated to 300 ° C. and 350 ° C. while nitrogen gas was circulated, and held for 15 minutes. Was sintered. After the glass tubular container is removed from the electric tubular furnace and cooled to room temperature, the flow of nitrogen gas into the glass tubular container is stopped, and a glass substrate having a porous copper sintered film formed on the surface is formed from the glass tubular container. The material (sample G) and (sample H) were extracted.
(3) Evaluation of porous copper sintered film About the obtained samples G and H, the same evaluation as the method described in Example 1 was performed. The results are summarized in Table 2. Moreover, the electron microscope (SEM) photograph of the porous copper sintered film obtained in Example 6 is shown in FIG. 3 as a perspective view.

[実施例8]
(1)銅粒子分散溶液の調製
実施例8において、実施例4に記載した方法と同様の方法で銅微粒子がエチレングリコール−N−メチルホルムアミド混合溶媒に3質量%の濃度で分散している銅粒子分散溶液(L2)に透明性粒子として平均粒子径が3μmの透明性シリカ粒子を銅微粒子重量の5分の1相当を混入し超音波洗浄機で30分間撹拌したものを用いた。
(2)多孔質銅焼結膜の作製
実施例8おいて、銅微粒子分散溶液(L2)0.3mlをガラス基材(塗布面積:26mm×19mm)に滴下した以外は実施例1に記載した方法と同様の方法で、銅微粒子分散溶液(L2)が塗布されたガラス基材をそれぞれ得た。各々の銅微粒子分散溶液が塗布されたガラス基材を、実施例1に記載した方法と同様にガラス製管状容器内に固定後、ガラス管内に窒素ガスを流通させてガラス管内を窒素ガス雰囲気にした。次に実施例8において、窒素ガスを流通させながら該ガラス製管状容器を300℃にそれぞれ加熱された電気管状炉に挿入して15分間保持し、ガラス基材上の銅微粒子を焼結した。ガラス製管状容器を電気管状炉から取り出し、室温まで冷却後、ガラス製管状容器内への窒素ガスの流通を止め、ガラス製管状容器内から、表面に多孔質銅焼結膜が形成されたガラス基材(サンプルI)を引き抜いた。
(3)多孔質銅焼結膜の評価
得られたサンプルIについて、実施例1に記載した方法と同様の評価を行った。結果をまとめて表2に示す。また、実施例8で得られた多孔質銅焼結膜のイメージ図として図4に示す。
[Example 8]
(1) Preparation of Copper Particle Dispersion Solution In Example 8, copper in which copper fine particles are dispersed in an ethylene glycol-N-methylformamide mixed solvent at a concentration of 3% by mass in the same manner as described in Example 4 In the particle dispersion solution (L2), transparent silica particles having an average particle diameter of 3 μm as transparent particles mixed with one-fifth of the copper fine particle weight and stirred for 30 minutes with an ultrasonic cleaner were used.
(2) Production of porous copper sintered film In Example 8, the method described in Example 1 except that 0.3 ml of the copper fine particle dispersion (L2) was dropped onto a glass substrate (application area: 26 mm × 19 mm). In the same manner as above, glass substrates coated with the copper fine particle dispersion (L2) were obtained. After fixing the glass substrate coated with each copper fine particle dispersion solution in a glass tubular container in the same manner as described in Example 1, nitrogen gas was circulated in the glass tube to bring the inside of the glass tube into a nitrogen gas atmosphere. did. Next, in Example 8, the glass tubular container was inserted into an electric tubular furnace heated to 300 ° C. while flowing nitrogen gas, and held for 15 minutes to sinter the copper fine particles on the glass substrate. After the glass tubular container is removed from the electric tubular furnace and cooled to room temperature, the flow of nitrogen gas into the glass tubular container is stopped, and a glass substrate having a porous copper sintered film formed on the surface is formed from the glass tubular container. The material (Sample I) was pulled out.
(3) Evaluation of porous copper sintered film About the obtained sample I, the same evaluation as the method described in Example 1 was performed. The results are summarized in Table 2. Moreover, it shows in FIG. 4 as an image figure of the porous copper sintered film obtained in Example 8. FIG.

[比較例2]
(1)銅粒子分散溶液の調製
実施例4に記載した方法と同様の方法で銅微粒子がエチレングリコール−N−メチルホルムアミド混合溶媒に3質量%の濃度で分散している銅粒子分散溶液(L2)を得た。
(2)多孔質銅焼結膜の作製
銅微粒子分散溶液(L2)2.0mlをガラス基材に塗布面積が26mm×19mmとなるように塗布した以外は実施例1に記載した方法と同様の方法で、銅微粒子分散溶液(L2)が塗布されたガラス基材を得た。銅微粒子分散溶液が塗布されたガラス基材を、実施例1で使用した方法と同様のガラス製管状容器内に固定後、ガラス管内に窒素ガスを流通させてガラス管内を窒素ガス雰囲気にした。次に窒素ガスを流通させながら該ガラス製管状容器を350℃に加熱された電気管状炉に挿入して15分間保持し、ガラス基材上の銅微粒子を焼結した。ガラス製管状容器を電気管状炉から取り出し、室温まで冷却後、ガラス製管状容器内への窒素ガスの流通を止め、ガラス製管状容器内から、表面に多孔質銅焼結膜が形成されたガラス基材(サンプルJ)を引き抜いた。
(3)多孔質銅焼結膜の評価
得られたサンプルJについて、膜厚、空隙率、波長460nmの光の厚さ方向への光透過率、及びシート抵抗についての評価を行った。結果をまとめて表2に示す。
[Comparative Example 2]
(1) Preparation of Copper Particle Dispersion Solution Copper particle dispersion solution (L2) in which copper fine particles are dispersed in an ethylene glycol-N-methylformamide mixed solvent at a concentration of 3% by mass in the same manner as described in Example 4. )
(2) Production of porous copper sintered film The same method as described in Example 1 except that 2.0 ml of the copper fine particle dispersion (L2) was applied to a glass substrate so that the application area was 26 mm × 19 mm. Thus, a glass substrate coated with the copper fine particle dispersion (L2) was obtained. After fixing the glass substrate coated with the copper fine particle dispersion solution in a glass tubular container similar to the method used in Example 1, nitrogen gas was circulated in the glass tube to make the inside of the glass tube a nitrogen gas atmosphere. Next, the glass tubular container was inserted into an electric tubular furnace heated to 350 ° C. while nitrogen gas was circulated, and held for 15 minutes to sinter the copper fine particles on the glass substrate. After the glass tubular container is removed from the electric tubular furnace and cooled to room temperature, the flow of nitrogen gas into the glass tubular container is stopped, and a glass substrate having a porous copper sintered film formed on the surface is formed from the glass tubular container. The material (sample J) was pulled out.
(3) Evaluation of porous copper sintered film About the obtained sample J, evaluation about the film thickness, the porosity, the light transmittance to the thickness direction of the light of wavelength 460nm, and sheet resistance was performed. The results are summarized in Table 2.

表2から、比較例2では、塗布膜の厚みが3mmよりも厚い場合には、焼結温度を450℃と高くしても、空隙率が40%未満となり、光透過性を確保することができなかった。また、実施例7のように、塗布膜の厚みを厚くした場合には、焼結温度を高くしていくことで空隙率は高くすることができるが、光の透過性の更なる向上には繋がらなかった。一方、実施例4、5のように、塗布膜の厚みを薄くして焼結膜の厚みを薄くすることで、空隙率が50%程度であっても光透過性が良好であることが判明した。また、実施例8において、透明性微粒子との混合焼結により、表面抵抗が低く光の透過性が良い膜が作製できることが確認された。   From Table 2, in Comparative Example 2, when the thickness of the coating film is thicker than 3 mm, even if the sintering temperature is increased to 450 ° C., the porosity is less than 40%, and light transmittance can be secured. could not. In addition, when the thickness of the coating film is increased as in Example 7, the porosity can be increased by increasing the sintering temperature, but for further improvement of light transmission. I was not connected. On the other hand, as in Examples 4 and 5, by reducing the thickness of the coating film and reducing the thickness of the sintered film, it was found that the light transmittance was good even when the porosity was about 50%. . Further, in Example 8, it was confirmed that a film having low surface resistance and good light transmittance could be produced by mixed sintering with transparent fine particles.

Claims (17)

一次粒子の平均粒径が1〜500nmである銅微粒子が2〜70質量%の濃度となるように溶媒(S)に分散させた銅微粒子分散溶液(L)を基材に塗布し、次に該銅微粒子分散溶液(L)が塗布された基材を160〜500℃に加熱された不活性ガス雰囲気中の炉内に挿入して急速加熱することにより銅微粒子を焼結して、空隙率が40〜70%である焼結膜を基材上に形成することを特徴とする、多孔質銅焼結膜の製造方法。   A copper fine particle dispersion solution (L) dispersed in a solvent (S) so that copper fine particles having an average primary particle diameter of 1 to 500 nm are in a concentration of 2 to 70% by mass is applied to a substrate, and then The base material coated with the copper fine particle dispersion solution (L) is inserted into a furnace in an inert gas atmosphere heated to 160 to 500 ° C. and rapidly heated to sinter the copper fine particles to obtain a porosity. A method for producing a porous sintered copper film, comprising forming a sintered film of 40 to 70% on a substrate. 前記銅微粒子分散溶液(L)が塗布された基材を不活性ガス雰囲気下にある容器内に収納して、前記加熱された炉内に挿入することを特徴とする、請求項1に記載の多孔質銅焼結膜の製造方法。   The base material coated with the copper fine particle dispersion (L) is housed in a container under an inert gas atmosphere and inserted into the heated furnace. A method for producing a porous sintered copper film. 前記不活性ガスが窒素ガス又はアルゴンガスであり、前記容器がガラス製容器であることを特徴とする、請求項2に記載の多孔質銅焼結膜の製造方法。   The method for producing a porous copper sintered film according to claim 2, wherein the inert gas is nitrogen gas or argon gas, and the container is a glass container. 基材上の塗布液の厚みが、1μm〜3mmの範囲であることを特徴とする請求項1ないし3のいずれか1項に記載の多孔質銅焼結膜の製造方法。   The method for producing a porous copper sintered film according to any one of claims 1 to 3, wherein the thickness of the coating solution on the substrate is in the range of 1 µm to 3 mm. 多孔質銅焼結膜の波長460nmの光の膜厚方向への光透過率が30%以上であることを特徴とする請求項1ないし4のいずれか1項に記載の多孔質銅焼結膜の製造方法。   The porous copper sintered film according to any one of claims 1 to 4, wherein the porous copper sintered film has a light transmittance of 30% or more in the film thickness direction of light having a wavelength of 460 nm. Method. 多孔質銅焼結膜のシート抵抗値が0.01〜5Ω/□であることを特徴とする請求項1ないし5のいずれか1項に記載の多孔質銅焼結膜の製造方法。   The sheet resistance value of a porous copper sintered film is 0.01-5 ohm / square, The manufacturing method of the porous copper sintered film of any one of Claim 1 thru | or 5 characterized by the above-mentioned. 前記銅微粒子分散溶液(L)が銅微粒子の表面の少なくとも一部が炭素原子、水素原子、酸素原子、及び窒素原子からなる化合物から選択された分散剤(高分子化合物を含む)で覆われて、沸点が60℃以上400℃以下の分散溶媒(混合溶媒を含む)(S)に分散されていることを特徴とする、請求項1ないし5のいずれか1項に記載の多孔質銅焼結膜の製造方法。   In the copper fine particle dispersion (L), at least a part of the surface of the copper fine particle is covered with a dispersant (including a polymer compound) selected from a compound consisting of a carbon atom, a hydrogen atom, an oxygen atom, and a nitrogen atom. The porous copper sintered film according to any one of claims 1 to 5, which is dispersed in a dispersion solvent (including a mixed solvent) (S) having a boiling point of 60 ° C or higher and 400 ° C or lower. Manufacturing method. 前記分散溶媒(S)が、分子中に1及び/もしくは2以上の水酸基を有するアルコール(A)からなる有機溶媒(S1)、又は分子中に1及び/もしくは2以上の水酸基を有するアルコール(A)20〜40体積%、並びにアミド基を有する有機溶媒(B)60〜80体積%を含む混合溶媒(S2)である、請求項1ないし7のいずれか1項に記載の多孔質銅焼結膜の製造方法。   The dispersion solvent (S) is an organic solvent (S1) comprising an alcohol (A) having 1 and / or 2 or more hydroxyl groups in the molecule, or an alcohol (A) having 1 and / or 2 or more hydroxyl groups in the molecule (A The porous copper sintered film according to any one of claims 1 to 7, which is a mixed solvent (S2) containing 20 to 40% by volume and an organic solvent having an amide group (B) of 60 to 80% by volume. Manufacturing method. 前記アルコール(A)がエチレングリコール、ジエチレングリコール、1,2−プロパンジオール、1,3−プロパンジオール、1,2−ブタンジオール、1,3−ブタンジオール、1,4−ブタンジオール、2−ブテン−1,4−ジオール、2,3−ブタンジオール、ペンタンジオール、ヘキサンジオール、オクタンジオール、グリセロール、1,1,1−トリスヒドロキシメチルエタン、2−エチル−2−ヒドロキシメチル−1,3−プロパンジオール、1,2,6−ヘキサントリオール、1,2,3−ヘキサントリオール、1,2,4−ブタントリオール、トレイトール、エリスリトール、ペンタエリスリトール、ペンチトール、及びヘキシトールの中から選択される1種又は2種以上である、請求項8に記載の多孔質銅焼結膜の製造方法。   The alcohol (A) is ethylene glycol, diethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 2-butene- 1,4-diol, 2,3-butanediol, pentanediol, hexanediol, octanediol, glycerol, 1,1,1-trishydroxymethylethane, 2-ethyl-2-hydroxymethyl-1,3-propanediol 1,2,6-hexanetriol, 1,2,3-hexanetriol, 1,2,4-butanetriol, threitol, erythritol, pentaerythritol, pentitol, and hexitol, or The production of a porous copper sintered film according to claim 8, wherein there are two or more kinds. Law. 前記アミド基を有する有機溶媒(B)がN−メチルアセトアミド、N−メチルホルムアミド、N−メチルプロパンアミド、ホルムアミド、N,N−ジメチルアセトアミド、1,3−ジメチル−2−イミダゾリジノン、N,N−ジメチルホルムアミド、1−メチル−2−ピロリドン、ヘキサメチルホスホリックトリアミド、2−ピロリジノン、ε−カプロラクタム、及びアセトアミドの中から選択される1種又は2種以上である、請求項8に記載の多孔質銅焼結膜の製造方法。   The organic solvent (B) having the amide group is N-methylacetamide, N-methylformamide, N-methylpropanamide, formamide, N, N-dimethylacetamide, 1,3-dimethyl-2-imidazolidinone, N, The one or more selected from N-dimethylformamide, 1-methyl-2-pyrrolidone, hexamethylphosphoric triamide, 2-pyrrolidinone, ε-caprolactam, and acetamide. Manufacturing method of porous copper sintered film. 一次粒子の平均粒径が1〜500nmである銅微粒子を焼結させて得られた、空隙率が40〜70%、波長460nmの光の膜厚方向への光透過率が30%以上、かつシート抵抗値が0.01〜5Ω/□であることを特徴とする多孔質銅焼結膜。   Obtained by sintering copper fine particles having an average primary particle diameter of 1 to 500 nm, a porosity of 40 to 70%, and a light transmittance in the film thickness direction of light having a wavelength of 460 nm of 30% or more, and A porous copper sintered film having a sheet resistance value of 0.01 to 5Ω / □. 一次粒子の平均粒径が1〜500nmである銅微粒子が分散している銅微粒子分散溶液(L)を基材上に塗布後、160〜500℃に加熱された炉内で不活性ガス雰囲気下に焼結して得られる、請求項11に記載の多孔質銅焼結膜。   After applying a copper fine particle dispersion solution (L) in which copper fine particles having an average primary particle diameter of 1 to 500 nm are dispersed on a substrate, an inert gas atmosphere in a furnace heated to 160 to 500 ° C. The porous copper sintered film according to claim 11, which is obtained by sintering. 波長460nmの光の膜厚方向への透過率が50%以上で、かつシート抵抗値が0.01〜5Ω/□である請求項11又は12に記載の多孔質銅焼結膜。   The porous copper sintered film according to claim 11 or 12, wherein the transmittance in the film thickness direction of light having a wavelength of 460 nm is 50% or more and the sheet resistance value is 0.01 to 5Ω / □. 焼結膜の密度が、1.5〜5.5g/cmである請求項11ないし13のいずれか1項に記載の多孔質銅焼結膜。 The porous copper sintered film according to any one of claims 11 to 13, wherein the density of the sintered film is 1.5 to 5.5 g / cm 3 . 焼結膜の厚みが、50nm〜10μmである請求項11ないし14のいずれか1項に記載の多孔質銅焼結膜。   The porous copper sintered film according to claim 11, wherein the sintered film has a thickness of 50 nm to 10 μm. フラットパネルディスプレイ(FPD)用透明導電膜に用いられる請求項11ないし15のいずれか1項に記載の多孔質銅焼結膜。   The porous copper sintered film according to any one of claims 11 to 15, which is used for a transparent conductive film for a flat panel display (FPD). 前記焼結膜は、銅微粒子と透明性粒子との混合物により形成されていることを特徴とする請求項11ないし〜16のいずれか1項に記載の多孔質銅焼結膜。   The porous sintered copper film according to any one of claims 11 to 16, wherein the sintered film is formed of a mixture of copper fine particles and transparent particles.
JP2009073892A 2008-03-28 2009-03-25 Method for producing porous copper sintered film, and porous copper sintered film Active JP5290826B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009073892A JP5290826B2 (en) 2008-03-28 2009-03-25 Method for producing porous copper sintered film, and porous copper sintered film

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008087772 2008-03-28
JP2008087772 2008-03-28
JP2009073892A JP5290826B2 (en) 2008-03-28 2009-03-25 Method for producing porous copper sintered film, and porous copper sintered film

Publications (2)

Publication Number Publication Date
JP2009259806A true JP2009259806A (en) 2009-11-05
JP5290826B2 JP5290826B2 (en) 2013-09-18

Family

ID=41386927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009073892A Active JP5290826B2 (en) 2008-03-28 2009-03-25 Method for producing porous copper sintered film, and porous copper sintered film

Country Status (1)

Country Link
JP (1) JP5290826B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4782897B1 (en) * 2011-04-11 2011-09-28 隆彌 渡邊 Air conditioning
JP4856282B1 (en) * 2011-07-30 2012-01-18 隆彌 渡邊 Air conditioning
JP2012055868A (en) * 2010-09-13 2012-03-22 Furukawa Electric Co Ltd:The Electrode for cathode, and method of manufacturing the same
WO2012140800A1 (en) * 2011-04-11 2012-10-18 Watanabe Takaya Cooling and heating device
WO2014119000A1 (en) * 2013-02-01 2014-08-07 Dowaエレクトロニクス株式会社 Silver conductive film and method for producing same
JPWO2020110987A1 (en) * 2018-11-28 2021-09-27 京セラ株式会社 Flat coil and transformer, wireless transmitter, electromagnet equipped with it
CN115874170A (en) * 2022-12-07 2023-03-31 西南交通大学 Long-acting antibacterial titanium/titanium alloy material and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023250355A1 (en) * 2022-06-21 2023-12-28 Covalent Coating Technology, Inc. Fusion of glass/ceramic to industrial metallic substrates

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0465011A (en) * 1990-07-04 1992-03-02 Sumitomo Metal Ind Ltd Copper conductive paste
JP2001181858A (en) * 1999-12-27 2001-07-03 Matsushita Electric Ind Co Ltd Metallic foil printed wiring board
JP2002299833A (en) * 2001-03-30 2002-10-11 Harima Chem Inc Multilayered wiring board and its forming method
JP2003249126A (en) * 2002-02-26 2003-09-05 Ulvac Japan Ltd Transparent conductive film with low resistance and method of manufacturing the same
JP2004055298A (en) * 2002-07-18 2004-02-19 Catalysts & Chem Ind Co Ltd Coating solution for forming transparent conductive film and substrate with transparent conductive coat, and display device
JP2007258123A (en) * 2006-03-27 2007-10-04 Sumitomo Metal Mining Co Ltd Conductive composition and conductive film forming method
JP2008041445A (en) * 2006-08-07 2008-02-21 Asahi Glass Co Ltd Manufacturing method of transparent conductive film, and transparent conductive film
JP2008243946A (en) * 2007-03-26 2008-10-09 Dainippon Printing Co Ltd Conductive substrate and its manufacturing method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0465011A (en) * 1990-07-04 1992-03-02 Sumitomo Metal Ind Ltd Copper conductive paste
JP2001181858A (en) * 1999-12-27 2001-07-03 Matsushita Electric Ind Co Ltd Metallic foil printed wiring board
JP2002299833A (en) * 2001-03-30 2002-10-11 Harima Chem Inc Multilayered wiring board and its forming method
JP2003249126A (en) * 2002-02-26 2003-09-05 Ulvac Japan Ltd Transparent conductive film with low resistance and method of manufacturing the same
JP2004055298A (en) * 2002-07-18 2004-02-19 Catalysts & Chem Ind Co Ltd Coating solution for forming transparent conductive film and substrate with transparent conductive coat, and display device
JP2007258123A (en) * 2006-03-27 2007-10-04 Sumitomo Metal Mining Co Ltd Conductive composition and conductive film forming method
JP2008041445A (en) * 2006-08-07 2008-02-21 Asahi Glass Co Ltd Manufacturing method of transparent conductive film, and transparent conductive film
JP2008243946A (en) * 2007-03-26 2008-10-09 Dainippon Printing Co Ltd Conductive substrate and its manufacturing method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012055868A (en) * 2010-09-13 2012-03-22 Furukawa Electric Co Ltd:The Electrode for cathode, and method of manufacturing the same
JP4782897B1 (en) * 2011-04-11 2011-09-28 隆彌 渡邊 Air conditioning
WO2012140800A1 (en) * 2011-04-11 2012-10-18 Watanabe Takaya Cooling and heating device
JP4856282B1 (en) * 2011-07-30 2012-01-18 隆彌 渡邊 Air conditioning
WO2014119000A1 (en) * 2013-02-01 2014-08-07 Dowaエレクトロニクス株式会社 Silver conductive film and method for producing same
JPWO2020110987A1 (en) * 2018-11-28 2021-09-27 京セラ株式会社 Flat coil and transformer, wireless transmitter, electromagnet equipped with it
JP7210610B2 (en) 2018-11-28 2023-01-23 京セラ株式会社 Planar coils and transformers equipped with them, wireless power transmitters, electromagnets
CN115874170A (en) * 2022-12-07 2023-03-31 西南交通大学 Long-acting antibacterial titanium/titanium alloy material and preparation method thereof
CN115874170B (en) * 2022-12-07 2024-03-26 西南交通大学 Long-acting antibacterial titanium/titanium alloy material and preparation method thereof

Also Published As

Publication number Publication date
JP5290826B2 (en) 2013-09-18

Similar Documents

Publication Publication Date Title
JP5290826B2 (en) Method for producing porous copper sintered film, and porous copper sintered film
JP6657336B2 (en) Fusion metal nanostructured network and fusion solution with reducing agent
US9655252B2 (en) Low haze transparent conductive electrodes and method of making the same
CN107112302A (en) Property reinforcer for clear coat and nesa coating
JP2015530693A (en) Metal nanostructured network structure and transparent conductive material
JP6958842B2 (en) An oxidation-resistant hybrid structure containing a metal thin film layer coated on the outside of the conductive polymer structure and a method for manufacturing the same.
JP2012136725A (en) Metal particulate dispersion liquid, metal particulate, and method for producing metal particulate dispersion liquid or the like
JP5070524B2 (en) Production method of conductive film
Chen et al. Facile preparation of high conductive silver electrodes by dip-coating followed by quick sintering
JP2012067333A (en) Metal fine particle dispersion, metal fine particle, and method for producing metal fine particle dispersion or the like
KR101324028B1 (en) Multi-layered metal nanowire having improved conductivity and its preparation method
CN107025952A (en) Electric conductor, its manufacture method and the electronic device including it
US20180171161A1 (en) Conductive coating composition, conductive material, method for manufacturing conductive coating composition, and method for manufacturing conductive material
JP5184488B2 (en) Method for forming conductive circuit
JP5089557B2 (en) Method for forming electromagnetic wave shielding wiring circuit and electromagnetic wave shielding sheet
JP2008127657A (en) Coating liquid for forming nickel film, nickel film manufacturing method, and nickel film
JP5308117B2 (en) Method for producing transparent conductive substrate
JP2010146995A (en) Manufacturing method of transparent conductive sheet
Jung et al. Electrical and morphological properties of conducting layers formed from the silver–glass composite conducting powders prepared by spray pyrolysis
JP4225156B2 (en) Transparent conductive film forming coating liquid, transparent conductive film and display device
TWI241227B (en) Nickel powder coated with titanium compound and conductive paste containing the nickel powder
JP2010080316A (en) Transparent conductive substrate, and method for manufacturing the same
JP5760915B2 (en) Dispersion liquid for anode of organic electroluminescence device and method for producing anode of organic electroluminescence device
JP5991459B2 (en) Silver fine particles, production method thereof, and conductive paste, conductive film and electronic device containing the silver fine particles
TW201703901A (en) A method of treating nanoparticles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130606

R151 Written notification of patent or utility model registration

Ref document number: 5290826

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350