JP5308117B2 - Method for producing transparent conductive substrate - Google Patents

Method for producing transparent conductive substrate Download PDF

Info

Publication number
JP5308117B2
JP5308117B2 JP2008278723A JP2008278723A JP5308117B2 JP 5308117 B2 JP5308117 B2 JP 5308117B2 JP 2008278723 A JP2008278723 A JP 2008278723A JP 2008278723 A JP2008278723 A JP 2008278723A JP 5308117 B2 JP5308117 B2 JP 5308117B2
Authority
JP
Japan
Prior art keywords
transparent conductive
niobium
titanium
conductive substrate
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008278723A
Other languages
Japanese (ja)
Other versions
JP2009135096A (en
Inventor
邦彦 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2008278723A priority Critical patent/JP5308117B2/en
Publication of JP2009135096A publication Critical patent/JP2009135096A/en
Application granted granted Critical
Publication of JP5308117B2 publication Critical patent/JP5308117B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a transparent electroconductive substrate capable of developing excellent electroconductive properties by a simple coating method. <P>SOLUTION: The manufacturing method includes coating a precursor liquid containing a reaction product (A) between a titanium compound and hydrogen peroxide and a reaction product (B) between a niobium compound or a tantalum compound and hydrogen peroxide onto a transparent base material; firing the coating, heating the fired coating under a reducing atmosphere to perform annealing to form a transparent electroconductive film of niobium- or tantalum-doped titanium oxide having a specific resistance of &le;9&times;10<SP>-3</SP>&Omega; cm on the transparent base material. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明は、良好な導電性を有する透明導電性基板および該透明導電性基板を簡便な塗布法にて製造する方法に関する。   The present invention relates to a transparent conductive substrate having good conductivity and a method for producing the transparent conductive substrate by a simple coating method.

従来から、太陽電池や液晶表示装置等に用いられる透明導電性基板としては、例えば酸化インジウム錫(ITO)膜やAlをドープした酸化亜鉛(ZnO)膜などの導電性膜を設けたものが汎用されている。しかし、ITO膜は希少金属であるIn(インジウム)を必須とするので、他の金属への代替が要望されているという実情があり、また、AlをドープしたZnO膜は両性元素を含むので吸湿しやすく用途が制限されることがあるという欠点があった。そこで、近年、酸化チタンを用いた透明導電性基板の開発が進められている(特許文献1、2参照)。   Conventionally, as a transparent conductive substrate used for a solar cell, a liquid crystal display device or the like, a substrate provided with a conductive film such as an indium tin oxide (ITO) film or a zinc oxide (ZnO) film doped with Al is widely used. Has been. However, ITO film requires In (indium), which is a rare metal, so there is a demand for an alternative to other metals, and Al-doped ZnO film contains amphoteric elements, so it absorbs moisture. However, there is a drawback in that the application may be limited. Therefore, in recent years, development of transparent conductive substrates using titanium oxide has been promoted (see Patent Documents 1 and 2).

ところで、一般に、金属酸化物の薄膜を形成する方法には、大別して、スパッタ法やPLD(パルスレーザーデポジション)法のように真空系で成膜する方法と、金属酸化物粒子を含むスラリーあるいは溶液を基材に塗布した後に加熱する方法とがある。前者は、大掛かりな装置が必要で設備的なコストが嵩み、ひいては製品コストが高騰するという問題があるのに対し、後者の塗布法は、既存の設備を用いて簡便な操作で安価に実施することができる方法であり、工業的な大量生産に適している。しかしながら、これまで、透明導電性膜などの用途においては、通常、前者の真空系を利用した成膜方法が採用されていた。これは、前者の真空系での成膜方法であれば、後者の塗布法よりも高い導電性を有する膜を形成することができるからである。つまり、塗布法により形成された膜は、クラックが発生しやすく均一な膜を作製するのが困難であり、真空で形成された膜に比べて、膜の緻密性に劣る傾向があり、結晶粒同士のネッキングが弱くなるため、導電性が低下しやすかったのである。また、塗布法は、真空系にて成膜する方法に比べて、系外から不純物が混入する可能性が高いが、形成された膜に不純物が混入することも膜の緻密性を損なう原因となり、導電性の低下に繋がる。   By the way, generally, a method of forming a metal oxide thin film is roughly divided into a method of forming a film in a vacuum system, such as a sputtering method or a PLD (pulse laser deposition) method, and a slurry containing metal oxide particles or There is a method of heating after applying the solution to the substrate. The former has the problem that a large-scale device is required and the cost of equipment increases, and as a result, the cost of the product rises. On the other hand, the latter coating method is carried out inexpensively with a simple operation using existing equipment. This method is suitable for industrial mass production. However, until now, the former film forming method using a vacuum system has been generally employed for applications such as a transparent conductive film. This is because a film having higher conductivity than the latter coating method can be formed by the former vacuum film forming method. In other words, the film formed by the coating method is prone to cracking and it is difficult to produce a uniform film, and there is a tendency that the film is inferior in density compared to a film formed in a vacuum. Since necking between each other became weak, the conductivity was likely to decrease. In addition, the coating method is more likely to introduce impurities from outside the system than the vacuum film formation method, but the contamination of the formed film also impairs the denseness of the film. , Leading to a decrease in conductivity.

特開平10−226598号公報Japanese Patent Laid-Open No. 10-226598 特開2005−11737号公報JP 2005-11737 A

そこで、本発明の課題は、良好な導電性を発現しうる透明導電性基板を簡便な塗布法にて製造する、透明導電性基板の製造方法を提供することにある。   Then, the subject of this invention is providing the manufacturing method of a transparent conductive substrate which manufactures the transparent conductive substrate which can express favorable electroconductivity with a simple coating method.

本発明者は、前記課題を解決するべく鋭意検討を行った。その結果、(A)チタン化合物に過酸化水素を反応させてペルオキシ化した反応生成物と(B)ニオブ化合物またはタンタル化合物に過酸化水素を反応させてペルオキシ化した反応生成物とを含む混合物(前駆体液)を得、金属酸化物の前駆体である当該前駆体液を透明基材上に塗布し、焼成した後、還元雰囲気下にてアニール処理を施すと、ニオブまたはタンタルがドープされた酸化チタンからなる導電性に優れた膜を形成できることを見出し、本発明を完成した。   The present inventor has intensively studied to solve the above problems. As a result, (A) a mixture containing a reaction product peroxylated by reacting hydrogen peroxide with a titanium compound and (B) a reaction product peroxylated by reacting hydrogen peroxide with a niobium compound or a tantalum compound ( After the precursor liquid, which is a precursor of a metal oxide, is applied on a transparent substrate and baked, and then annealed in a reducing atmosphere, titanium oxide doped with niobium or tantalum is obtained. The present invention has been completed by finding that a film having excellent conductivity can be formed.

すなわち、本発明は、以下の構成からなる。
(1)(A)チタン化合物に過酸化水素を反応させた反応生成物と(B)ニオブ化合物またはタンタル化合物に過酸化水素を反応させた反応生成物とを含む前駆体液を、透明基材上に塗布し、焼成した後、還元雰囲気下にて加熱によるアニール処理を施して、ニオブまたはタンタルがドープされた酸化チタンからなる透明導電性膜を透明基材上に形成する、ことを特徴とする比抵抗が9×10-3Ω・cm以下の透明導電性基板の製造方法。
(2)還元雰囲気下におけるアニール処理の加熱温度が450〜550℃である、前記(1)記載の透明導電性基板の製造方法。
(3)前記(A)チタン化合物および前記(B)ニオブ化合物またはタンタル化合物として水酸化物を用いる、前記(1)または(2)記載の透明導電性基板の製造方法。
(4)アナターゼ型結晶相を有する透明導電性膜を形成する、前記(1)〜(3)のいずれかに記載の透明導電性基板の製造方法。
(5)前記(1)〜(4)のいずれかに記載の方法によって得られた透明導電性基板。
That is, this invention consists of the following structures.
(1) A precursor liquid containing (A) a reaction product obtained by reacting a titanium compound with hydrogen peroxide and (B) a reaction product obtained by reacting a niobium compound or a tantalum compound with hydrogen peroxide on a transparent substrate. After being applied to the substrate and baked, it is subjected to annealing treatment by heating in a reducing atmosphere to form a transparent conductive film made of niobium or tantalum-doped titanium oxide on a transparent substrate. A method for producing a transparent conductive substrate having a specific resistance of 9 × 10 −3 Ω · cm or less.
(2) The method for producing a transparent conductive substrate according to (1), wherein the heating temperature of the annealing treatment in a reducing atmosphere is 450 to 550 ° C.
(3) The method for producing a transparent conductive substrate according to (1) or (2), wherein a hydroxide is used as the (A) titanium compound and the (B) niobium compound or tantalum compound.
(4) The manufacturing method of the transparent conductive substrate in any one of said (1)-(3) which forms the transparent conductive film which has an anatase type crystal phase.
(5) The transparent conductive substrate obtained by the method in any one of said (1)-(4).

本発明によれば、良好な導電性を発現しうる透明導電性基板を簡便な塗布法にて製造することができる、という効果がある。つまり、本発明によれば、真空設備を要することなく簡便な操作で安価に透明導電性基板を提供することが可能になる。さらに、本発明によれば、加熱処理時の温度を比較的低温に設定できるので、透明基材の選択における制約が低減され、例えば可撓性を有する耐熱温度が低い樹脂フィルムを透明基材として用いることで、いわゆるロールtoロール法での透明導電性基板の製造も可能となる。   According to the present invention, there is an effect that a transparent conductive substrate capable of expressing good conductivity can be manufactured by a simple coating method. That is, according to the present invention, it is possible to provide a transparent conductive substrate at low cost by a simple operation without requiring vacuum equipment. Furthermore, according to the present invention, since the temperature during the heat treatment can be set to a relatively low temperature, restrictions on the selection of the transparent substrate are reduced. For example, a flexible resin film having a low heat-resistant temperature is used as the transparent substrate. By using it, it becomes possible to produce a transparent conductive substrate by a so-called roll-to-roll method.

本発明の透明導電性基板の製造方法においては、まず、膜形成材料として、(A)チタン化合物に過酸化水素を反応させた反応生成物と(B)ニオブ化合物またはタンタル化合物(以下、「ニオブ化合物またはタンタル化合物」を纏めて「ドーパント化合物」と称し、「ニオブまたはタンタル」を纏めて「ドーパント」と称することもある)に過酸化水素を反応させた反応生成物とを含む前駆体液を得る。この前駆体液は、(A)チタン化合物および(B)ニオブ化合物またはタンタル化合物がペルオキシ化されてなる錯体(ペルオキシ錯体)を含むものであり、該ペルオキシ錯体は、加熱によりニオブまたはタンタルがドープされた酸化チタンとなる金属酸化物前駆体である。本発明においては、膜形成を、周期律表のVA族に属する5価のニオブまたはタンタルが酸化チタンにドープされた金属酸化物で行うことによって、良好な導電性を発現させる。   In the method for producing a transparent conductive substrate of the present invention, first, as a film forming material, (A) a reaction product obtained by reacting hydrogen peroxide with a titanium compound and (B) a niobium compound or a tantalum compound (hereinafter referred to as “niobium”). Compound or tantalum compound "is collectively referred to as" dopant compound ", and" niobium or tantalum "is sometimes collectively referred to as" dopant ") to obtain a precursor liquid containing a reaction product obtained by reacting hydrogen peroxide with . This precursor liquid contains a complex (peroxy complex) in which (A) a titanium compound and (B) a niobium compound or a tantalum compound are peroxylated, and the peroxy complex is doped with niobium or tantalum by heating. It is a metal oxide precursor that becomes titanium oxide. In the present invention, film formation is performed with a metal oxide in which titanium oxide is doped with pentavalent niobium or tantalum belonging to group VA of the periodic table, thereby exhibiting good conductivity.

前記前駆体液は、i)(A)チタン化合物に過酸化水素を反応させることにより得られた反応生成物であるチタンのペルオキシ錯体と、(B)ドーパント化合物に過酸化水素を反応させることにより得られた反応生成物であるドーパントのペルオキシ錯体とを所望の割合で混合して得られたものであってもよいし、ii)(A)チタン化合物と(B)ドーパント化合物とを予め所望の割合で混合した混合物に対して過酸化水素を反応させることにより得られたものであってもよい。   The precursor liquid is obtained by reacting hydrogen peroxide with i) (B) dopant compound, and (B) a peroxy complex of titanium which is a reaction product obtained by reacting hydrogen peroxide with (A) titanium compound. The reaction product obtained may be obtained by mixing a peroxy complex of a dopant in a desired ratio, or ii) (A) a titanium compound and (B) a dopant compound in a desired ratio in advance. It may be obtained by reacting hydrogen peroxide with the mixture mixed in (1).

前記前駆体液を得るに際し、(A)チタン化合物もしくは該チタン化合物由来のペルオキシ錯体と、(B)ドーパント化合物もしくは該ドーパント化合物由来のペルオキシ錯体との混合割合は、特に制限されないが、最終的に形成された酸化チタン膜におけるドーパント(ニオブまたはタンタル)の含有比率が0.1〜40モル%、好ましくは5〜30モル%となるようにすればよい。前記(B)(ドーパント化合物もしくは該ドーパント化合物由来のペルオキシ錯体)が前記範囲よりも少ないと、ドープ効果が不充分となり、導電性が低下するおそれがあり、一方、前記(B)が前記範囲よりも多くても、導電性が低下したり、膜の透明性が低下するおそれがある。   In obtaining the precursor liquid, the mixing ratio of (A) the titanium compound or the peroxy complex derived from the titanium compound and (B) the dopant compound or the peroxy complex derived from the dopant compound is not particularly limited. The content ratio of the dopant (niobium or tantalum) in the formed titanium oxide film may be 0.1 to 40 mol%, preferably 5 to 30 mol%. When the amount of (B) (dopant compound or peroxy complex derived from the dopant compound) is less than the above range, the doping effect may be insufficient and the conductivity may be lowered. On the other hand, the above (B) may be less than the above range. At most, the conductivity may be lowered, or the transparency of the film may be lowered.

前記前駆体液を得るに際し、過酸化水素による反応(すなわち、ペルオキシ化反応)は、例えば、チタン化合物、ドーパント化合物またはこれらの混合物を適当な溶媒により溶解させ、必要に応じて攪拌しつつ、濃度1〜60重量%程度の過酸化水素水を添加することにより行うことができる。チタン化合物またはドーパント化合物に反応させる過酸化水素の量については、特に制限はないが、通常、チタン化合物に対しては、1モルのチタン化合物につき0.8〜20モルの過酸化水素を、ドーパント化合物に対しても、1モルのドーパント化合物につき0.8〜20モルの過酸化水素を反応させればよい。ペルオキシ化反応の反応時間は、通常1秒〜60分、好ましくは5分〜20分程度である。なお、過酸化水素によるペルオキシ化反応は、通常、激しい発熱を伴うので、反応は冷却しながら(具体的には、内温を−10℃以下に保つようにして)行うことが望ましい。反応後、さらに、−10℃以下に冷却しつつ熟成保持してもよい。
前記過酸化水素によるペルオキシ化反応に用いることのできる溶媒としては、特に制限はないが、水系やアルコール系等の水溶性溶剤が好ましく用いられる。具体的には、例えば、水、メタノール、エタノール、プロパノール、ブタノール、ジアセトンアルコール、エチレングリコール等が挙げられる。
In obtaining the precursor liquid, the reaction with hydrogen peroxide (that is, the peroxylation reaction) is carried out by dissolving, for example, a titanium compound, a dopant compound or a mixture thereof with an appropriate solvent, and stirring the mixture as necessary. It can be carried out by adding about 60% by weight of hydrogen peroxide water. The amount of hydrogen peroxide to be reacted with the titanium compound or the dopant compound is not particularly limited, but usually 0.8 to 20 mol of hydrogen peroxide per 1 mol of titanium compound is added to the dopant for the titanium compound. What is necessary is just to make 0.8-20 mol hydrogen peroxide react with respect to a compound with respect to 1 mol dopant compound. The reaction time of the peroxylation reaction is usually about 1 second to 60 minutes, preferably about 5 minutes to 20 minutes. Since the peroxylation reaction with hydrogen peroxide usually involves intense heat generation, it is desirable to carry out the reaction while cooling (specifically, keeping the internal temperature at −10 ° C. or lower). After the reaction, the mixture may be further aged while being cooled to -10 ° C or lower.
The solvent that can be used in the peroxylation reaction with hydrogen peroxide is not particularly limited, but a water-based or alcohol-based water-soluble solvent is preferably used. Specific examples include water, methanol, ethanol, propanol, butanol, diacetone alcohol, and ethylene glycol.

前記(A)チタン化合物は、チタン源としてTi原子を含むものであれば特に制限はなく、例えば、塩化チタン(二塩化チタン、三塩化チタン、四塩化チタン等)、チタンアルコキシド(メトキシド、エトキシド、イソプロポキシド等)、硫酸チタニル、金属チタン、水酸化チタン(オルトチタン酸)、オキシ硫酸チタン等を用いることができる。
前記(B)ドーパント化合物のうちニオブ化合物は、ニオブ源としてNb原子を含むものであれば特に制限はなく、例えば、塩化ニオブ、ニオブアルコキシド(メトキシド、エトキシド等)、金属ニオブ、水酸化ニオブ等を用いることができる。他方、前記(B)ドーパント化合物のうちタンタル化合物は、タンタル源としてTa原子を含むものであれば特に制限はなく、例えば、塩化タンタル、タンタルアルコキシド(メトキシド、エトキシド等)、金属タンタル、水酸化タンタル等を用いることができる。
なお、上記のうち、チタンアルコキシド、ニオブアルコキシド、タンタルアルコキシドは、水分と接触すると直ちに反応する不安定な物質なので、乾燥(低湿度)雰囲気で扱うことが好ましい。
The (A) titanium compound is not particularly limited as long as it contains Ti atoms as a titanium source. For example, titanium chloride (titanium dichloride, titanium trichloride, titanium tetrachloride, etc.), titanium alkoxide (methoxide, ethoxide, Isopropoxide, etc.), titanyl sulfate, metallic titanium, titanium hydroxide (orthotitanic acid), titanium oxysulfate, and the like can be used.
Of the dopant compounds (B), the niobium compound is not particularly limited as long as it contains Nb atoms as a niobium source. For example, niobium chloride, niobium alkoxide (methoxide, ethoxide, etc.), metal niobium, niobium hydroxide, etc. Can be used. On the other hand, the tantalum compound in the dopant compound (B) is not particularly limited as long as it contains Ta atoms as a tantalum source. Etc. can be used.
Of the above, titanium alkoxide, niobium alkoxide, and tantalum alkoxide are unstable substances that react immediately upon contact with moisture, and thus are preferably handled in a dry (low humidity) atmosphere.

本発明においては、前記(A)チタン化合物および前記(B)ニオブ化合物またはタンタル化合物として水酸化物を用いることが好ましい。すなわち、前記(A)として水酸化チタンを用い、前記(B)として水酸化ニオブまたは水酸化タンタルを用いるか、もしくは、これら水酸化物以外のチタン化合物およびドーパント化合物を用い、過酸化水素と反応させる前に予めアルカリあるいは水を加えるなどして水酸化し、生じた水酸化物の沈殿を分取、洗浄すればよい。このように、水酸化物を過酸化水素と反応させて得られたペルオキシ錯体であれば、炭素原子を含む有機部位が全く存在しないことになり、高温に加熱して有機部位を分解・揮散させる必要がないため、酸化物に変換する際の加熱温度を比較的低温に設定することができるので好ましい。例えば、水酸化物以外のチタン化合物およびドーパント化合物をそのまま用いて過酸化水素と反応させた場合には、得られたペルオキシ錯体の一部に有機部位が存在することになり、この有機部位を分解・揮散させるためには、少なくとも400℃以上、好ましくは500〜600℃程度の温度に加熱することが必要になる。   In the present invention, it is preferable to use a hydroxide as the (A) titanium compound and the (B) niobium compound or tantalum compound. That is, titanium hydroxide is used as (A) and niobium hydroxide or tantalum hydroxide is used as (B), or a titanium compound and a dopant compound other than these hydroxides are used to react with hydrogen peroxide. Prior to the formation, hydroxylation may be performed by adding alkali or water in advance, and the resulting hydroxide precipitate may be collected and washed. Thus, if it is a peroxy complex obtained by reacting a hydroxide with hydrogen peroxide, there will be no organic site containing carbon atoms, and it will be decomposed and volatilized by heating to a high temperature. Since it is not necessary, the heating temperature at the time of conversion into an oxide can be set at a relatively low temperature, which is preferable. For example, when a titanium compound other than hydroxide and a dopant compound are used as they are and reacted with hydrogen peroxide, an organic moiety exists in a part of the obtained peroxy complex, and this organic moiety is decomposed. In order to volatilize, it is necessary to heat to a temperature of at least 400 ° C. or more, preferably about 500 to 600 ° C.

前記前駆体液の固形分濃度は、通常、10重量%以下とするのが好ましく、特に、前駆体液の保存安定性(ポットライフ)の観点からは、2重量%以下であるのがより好ましい。固形分濃度が10重量%を超えると、前駆体液の保存安定性が大幅に低下し、塗布時に粘度が上昇するので、透明基材上に均一に塗布することが困難になるおそれがある。
なお、ここでいう固形分濃度は、前駆体液を得る際に用いたチタン化合物およびドーパント化合物の合計重量が、前駆体液の全重量中に占める割合(重量%)を意味するものである。
The solid content concentration of the precursor liquid is usually preferably 10% by weight or less, and more preferably 2% by weight or less from the viewpoint of storage stability (pot life) of the precursor liquid. When the solid content concentration exceeds 10% by weight, the storage stability of the precursor liquid is significantly lowered, and the viscosity is increased at the time of coating, so that it may be difficult to uniformly coat on the transparent substrate.
In addition, solid content concentration here means the ratio (weight%) which the total weight of the titanium compound and dopant compound used when obtaining a precursor liquid accounts to the total weight of a precursor liquid.

本発明の透明導電性基板の製造方法においては、次に、前記前駆体液を透明基材上に塗布し、焼成した後、特定条件下でアニール処理を施す。
前記透明基材としては、熱が付加される各工程(例えば、焼成やアニール処理など)における加熱温度において形状を維持しうるものであり、かつ透明性を有するものであれば、特に制限はない。例えば、各種ガラス等の無機材料、熱可塑性樹脂や熱硬化性樹脂(例えば、エポキシ樹脂、ポリメチルメタクリレート、ポリカーボネート、ポリスチレン、ポリエチレンサルファイド、ポリエーテルスルホン、ポリオレフィン、ポリエチレンテレフタレート、ポリエチレンナフタレート、トリアセチルセルロース、ポリイミドなどのプラスチック類)等の高分子材料などで形成された板状物、シート状物、フィルム状物等を用いることができる。透明基材の可視光透過率は、通常、90%以上、好ましくは95%以上であるのがよい。
In the method for producing a transparent conductive substrate of the present invention, next, the precursor liquid is applied on a transparent base material, baked, and then annealed under specific conditions.
The transparent substrate is not particularly limited as long as it can maintain its shape at the heating temperature in each step (for example, firing or annealing) where heat is applied and has transparency. . For example, inorganic materials such as various glass, thermoplastic resins and thermosetting resins (for example, epoxy resin, polymethyl methacrylate, polycarbonate, polystyrene, polyethylene sulfide, polyethersulfone, polyolefin, polyethylene terephthalate, polyethylene naphthalate, triacetyl cellulose) Further, a plate-like material, a sheet-like material, a film-like material or the like formed of a polymer material such as plastics such as polyimide) can be used. The visible light transmittance of the transparent substrate is usually 90% or more, preferably 95% or more.

前記前駆体液を透明基材上に塗布する際の塗布方法は、均一にウェットコーティングできる方法であれば特に制限はなく、従来公知の方法を採用することができる。例えば、キャピラリコート法、スピンコート法、スリットダイコート法、スプレーコート法、ディップコート法、ロールコート法、スクリーン印刷法、フレキソ印刷法、バーコーター法等を採用することができる。   The method for applying the precursor liquid on the transparent substrate is not particularly limited as long as it is a method capable of uniformly performing wet coating, and a conventionally known method can be employed. For example, a capillary coating method, a spin coating method, a slit die coating method, a spray coating method, a dip coating method, a roll coating method, a screen printing method, a flexographic printing method, a bar coater method, and the like can be employed.

前記前駆体液を塗布するに際し、塗布量は特に制限されるものではなく、例えば、最終的に形成される膜の厚み(ドライ膜厚)が10nm〜300nmとなるようにすればよい。最終的に形成されたドライ膜厚が前記範囲よりも小さいと、基材に凹凸が存在する場合などに部分的に塗布されにくい箇所や実際に塗布されていない箇所が生じるおそれがあり、一方、前記範囲よりも大きいと、透明性が低下するおそれがある。なお、このような厚みに前駆体液を塗布する際には、1回の塗布作業で行ってもよいし、複数回の塗布作業を重ねて行うようにしてもよい。   When the precursor liquid is applied, the amount of application is not particularly limited, and for example, the thickness of the finally formed film (dry film thickness) may be 10 nm to 300 nm. If the dry film thickness that is finally formed is smaller than the above range, there may be a place that is difficult to apply partially or a place that is not actually applied, such as when there is unevenness on the substrate, If it is larger than the above range, the transparency may be lowered. In addition, when apply | coating a precursor liquid in such thickness, you may carry out by one application | coating operation | work and may be made to carry out in multiple times.

前記前駆体液を塗布した後の基板は、続いて焼成に付する。これにより、基材上のペルオキシ錯体(前駆体液)はNbまたはTaドープ酸化チタンに変化する。このときの結晶状態は、通常、アモルファス相からなる。
焼成の際の加熱温度は、例えば、500℃以下、好ましくは50〜400℃とするのがよい。焼成時の加熱温度が高すぎると、安定した結晶相が析出し、アニール処理効果の発現が見られなくなるおそれがある。また、焼成時間は、加熱温度等に応じて適宜設定すればよいのであるが、通常、1分〜1時間程度、好ましくは3分〜30分間程度である。なお、焼成は、どのような雰囲気下で行ってもよく、特に制限はされない。例えば、塗布した前駆体液の固形分濃度が低い場合には、焼成に先立ち、真空乾燥や減圧乾燥等の手段によって溶媒を均一に揮散させてもよく、これにより、均一な膜を形成しやすくなる。
The substrate after applying the precursor liquid is subsequently subjected to baking. Thereby, the peroxy complex (precursor liquid) on the base material changes to Nb or Ta-doped titanium oxide. The crystal state at this time usually consists of an amorphous phase.
The heating temperature at the time of firing is, for example, 500 ° C. or less, preferably 50 to 400 ° C. If the heating temperature at the time of firing is too high, a stable crystal phase may be deposited, and the effect of annealing treatment may not be observed. Moreover, what is necessary is just to set baking time suitably according to heating temperature etc., Usually, about 1 minute-1 hour, Preferably it is about 3 minutes-30 minutes. The firing may be performed in any atmosphere and is not particularly limited. For example, when the solid content concentration of the applied precursor liquid is low, the solvent may be uniformly volatilized by means such as vacuum drying or reduced pressure drying before firing, which facilitates the formation of a uniform film. .

本発明においては、焼成した後の基板に対し、還元雰囲気下にて加熱によるアニール処理を施す。これにより、膜を形成するNbまたはTaドープ酸化チタンはアモルファス相からアナターゼ相に結晶転移するとともに、結晶相中に酸素欠損を生じ、導電性を向上させることができる。しかも、通常、酸素欠損を導入すると抵抗の高いルチル結晶相に変化しやすい傾向となるが、本発明においては、酸化チタンにドープしたニオブまたはタンタルが、酸素欠損を導入してもアナターゼ結晶相を安定化させる作用をなすため、高い導電性を発現しうる結晶状態を維持させることができる。   In the present invention, the fired substrate is annealed by heating in a reducing atmosphere. Thereby, the Nb or Ta doped titanium oxide forming the film undergoes a crystal transition from the amorphous phase to the anatase phase, and oxygen deficiency is generated in the crystal phase, thereby improving the conductivity. Moreover, usually, when oxygen deficiency is introduced, it tends to change to a highly resistant rutile crystal phase. However, in the present invention, niobium or tantalum doped in titanium oxide converts the anatase crystal phase even if oxygen deficiency is introduced. Since it acts to stabilize, it is possible to maintain a crystalline state capable of expressing high conductivity.

前記アニール処理の際の還元雰囲気には、特に制限はなく、例えば、窒素、一酸化炭素、アルゴンプラズマ、水素プラズマ、水素、真空、アンモニア、不活性ガス(アルゴン等)、あるいはこれらの混合ガスの雰囲気など、一般的な還元雰囲気であればよい。好ましくは、強還元雰囲気である水素雰囲気(水素ガス100%雰囲気)を採用するのがよい。   There is no particular limitation on the reducing atmosphere in the annealing treatment, and for example, nitrogen, carbon monoxide, argon plasma, hydrogen plasma, hydrogen, vacuum, ammonia, inert gas (such as argon), or a mixed gas thereof. A general reducing atmosphere such as an atmosphere may be used. Preferably, a hydrogen atmosphere (100% hydrogen gas atmosphere) that is a strong reducing atmosphere is employed.

前記アニール処理における加熱温度は、基板上に塗布し焼成されたニオブまたはタンタルをドープした酸化チタンの結晶相が高い導電性を発現するアナターゼ型に変化しうる温度であればよく、ドーパントの含有比率などに応じて適宜設定すればよい。アナターゼ結晶相に変化させるために必要な温度は、酸化チタンへのニオブまたはタンタルのドープ量が多いほど高くなるのであり、アニール処理の加熱温度の下限は、通常450℃以上、好ましくは500℃以上である。他方、加熱温度があまりに高いと、アナターゼ結晶相が抵抗の高いルチル結晶相に変化し始めて導電性が低下するとともに、膜の透明性も低下する傾向があるので、アニール処理の加熱温度の上限は、通常700℃以下、好ましくは600℃以下、より好ましくは550℃以下の範囲で設定することが望ましい。ただし、ルチル結晶相に変化し始めるときの温度は、ドーパントの含有比率によって異なるのであり、ドーパントの含有比率が比較的高い場合には、アニール処理の際の加熱温度がある程度高くても、結晶相が変化して導電性が低下することはない。具体的には、ドーパントの含有比率(形成される透明導電性膜におけるニオブまたはタンタルの含有比率)が10モル%超である場合には、前記アニール処理の加熱温度が550℃超であっても、結晶相がルチル型に変化することはなく、良好な導電性が得られる。また、アニール処理の加熱温度の設定には、上記に加えて、使用する透明基材の耐熱温度も考慮される。例えば、無アルカリガラスを透明基材として用いる場合には、通常700℃以下、好ましくは600℃以下、より好ましくは550℃以下である。アニール処理時間(加熱時間)は、加熱温度等に応じて適宜設定すればよいのであるが、通常、1分〜1時間程度、好ましくは3分〜30分間程度である。   The heating temperature in the annealing treatment may be any temperature at which the crystalline phase of niobium or tantalum-doped titanium oxide coated on the substrate and baked can be changed to an anatase type exhibiting high conductivity, and the content ratio of the dopant What is necessary is just to set suitably according to etc. The temperature necessary for changing to the anatase crystal phase increases as the amount of niobium or tantalum doped into titanium oxide increases, and the lower limit of the heating temperature for annealing is usually 450 ° C. or higher, preferably 500 ° C. or higher. It is. On the other hand, if the heating temperature is too high, the anatase crystal phase starts to change to a highly resistant rutile crystal phase, and the conductivity tends to decrease and the transparency of the film also tends to decrease. Usually, it is desirable to set the temperature within a range of 700 ° C. or lower, preferably 600 ° C. or lower, more preferably 550 ° C. or lower. However, the temperature when starting to change to the rutile crystal phase varies depending on the content ratio of the dopant, and when the content ratio of the dopant is relatively high, the crystal phase Does not change and the conductivity is not lowered. Specifically, when the content ratio of the dopant (the content ratio of niobium or tantalum in the formed transparent conductive film) is more than 10 mol%, even if the heating temperature of the annealing treatment is more than 550 ° C. The crystal phase does not change to the rutile type, and good conductivity is obtained. In addition to the above, the heat resistance temperature of the transparent substrate to be used is also taken into consideration when setting the heating temperature for the annealing treatment. For example, when alkali-free glass is used as the transparent substrate, it is usually 700 ° C. or lower, preferably 600 ° C. or lower, more preferably 550 ° C. or lower. The annealing time (heating time) may be appropriately set according to the heating temperature or the like, but is usually about 1 minute to 1 hour, preferably about 3 minutes to 30 minutes.

以上のような方法によって、ニオブまたはタンタルがドープされた酸化チタンからなる透明導電性膜が透明基材上に形成される。この透明導電性膜は、アナターゼ型結晶相を有し、NbまたはTaドープ酸化チタンの多結晶体からなる薄膜であり、良好な透明性を備えると同時に、高い導電性を発現するものである。具体的には、本発明の製造方法により得られた透明導電性基板の比抵抗は、通常9×10-3Ω・cm以下、好ましくは8×10-3Ω・cm以下である。また、本発明の製造方法により得られた透明導電性基板の透過率は、可視光領域で、通常70%以上、好ましくは75%以上、より好ましくは80%以上であり、赤外領域で、通常70%以上、好ましくは75%以上、より好ましくは80%以上である。なお、これらの透過率および比抵抗は、例えば実施例で後述する方法によって測定することができる。 By the above method, a transparent conductive film made of titanium oxide doped with niobium or tantalum is formed on a transparent substrate. This transparent conductive film is a thin film made of a polycrystal of Nb or Ta-doped titanium oxide having an anatase type crystal phase, and exhibits high conductivity while exhibiting good transparency. Specifically, the specific resistance of the transparent conductive substrate obtained by the production method of the present invention is usually 9 × 10 −3 Ω · cm or less, preferably 8 × 10 −3 Ω · cm or less. The transmittance of the transparent conductive substrate obtained by the production method of the present invention is usually 70% or more in the visible light region, preferably 75% or more, more preferably 80% or more, and in the infrared region. Usually, it is 70% or more, preferably 75% or more, more preferably 80% or more. In addition, these transmittance | permeability and specific resistance can be measured by the method mentioned later in an Example, for example.

本発明の製造方法により得られた透明導電性基板は、例えば、タッチパネル、液晶ディスプレイ、LED(発光素子)、有機ELディスプレイ、フレキシブルディスプレイ、プラズマディスプレイ等のディスプレイ電極、太陽電池の電極、窓ガラスの熱線反射膜、帯電防止膜等の用途に好適に用いられる。さらに、本発明の製造方法により得られた透明導電性基板は、屈折率が高いという特長を活かして、反射防止機能を有した帯電防止膜としても有効である。
なお、上述した本発明の製造方法では、前駆体液は透明基材上に直接塗布しているが、例えば液晶ディスプレイのようなデバイス等の透明電極用途においては、透明基材の上に着色膜(カラーフィルター)等の中間膜を介在させ、それらの上に直接前駆体液を塗布するようにしてもよく、このように透明基材と透明導電性膜との間に中間膜を介在させた態様も本発明の範囲に包含される。
The transparent conductive substrate obtained by the production method of the present invention is, for example, a touch panel, a liquid crystal display, an LED (light emitting element), an organic EL display, a flexible display, a display electrode such as a plasma display, a solar cell electrode, or a window glass. It is suitably used for applications such as heat ray reflective films and antistatic films. Furthermore, the transparent conductive substrate obtained by the production method of the present invention is effective as an antistatic film having an antireflection function, taking advantage of its high refractive index.
In the production method of the present invention described above, the precursor liquid is applied directly on the transparent substrate. However, in the use of a transparent electrode such as a device such as a liquid crystal display, a colored film ( An intermediate film such as a color filter) may be interposed, and the precursor liquid may be applied directly on the intermediate film. In this manner, an intermediate film is interposed between the transparent substrate and the transparent conductive film. It is included in the scope of the present invention.

以下、実施例により本発明をより詳細に説明するが、本発明は、かかる実施例により限定されるものではない。
なお、透明導電性基板の物性は以下の方法で測定した。
<比抵抗> 比抵抗は、抵抗率計(三菱化学(株)製「LORESTA−GP,MCP−T610」)を用いて、四端子四探針法により測定した。詳しくは、サンプルに4本の針状の電極を直線上に置き、外側の二探針間に一定の電流を流し、内側の二探針間に一定電流を流し、内側の二探針間に生じる電位差を測定し、抵抗を求めた。
<透過率> 透過率は、紫外可視近赤外分光光度計(日本分光(株)製「V−670」)を用いて、190nm〜2700nmの範囲で測定した。
<結晶性> X線回折装置(理学電機(株)製「RINT2000」)を用いて、薄膜測定用のアタッチメントを使用して結晶性を評価した。
<結晶構造> エネルギー分散型X線マイクロアナライザー(TEM−EDX)を用いてチタンへのニオブまたはタンタルのドープ状態を調べるとともに、電界放射型電子顕微鏡(FE−SEM)を用いて結晶構造を調べた。
なお、以下の実施例および比較例において、チタンペルオキシ錯体とニオブペルオキシ錯体とを混合して前駆体液を得るに際しては、特に断りのない限り脱水エタノールを用いて、所望の固形分濃度となるように調整した。
EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited by this Example.
The physical properties of the transparent conductive substrate were measured by the following method.
<Specific Resistance> The specific resistance was measured by a four-terminal four-probe method using a resistivity meter (“LORESTA-GP, MCP-T610” manufactured by Mitsubishi Chemical Corporation). Specifically, four needle-shaped electrodes are placed on a straight line on the sample, a constant current is passed between the outer two probes, a constant current is passed between the inner two probes, and the inner two probes are The resulting potential difference was measured to determine the resistance.
<Transmissivity> The transmittance was measured in the range of 190 nm to 2700 nm using an ultraviolet-visible near-infrared spectrophotometer (“V-670” manufactured by JASCO Corporation).
<Crystallinity> Crystallinity was evaluated using an attachment for thin film measurement using an X-ray diffractometer (“RINT2000” manufactured by Rigaku Corporation).
<Crystal structure> While examining the doped state of niobium or tantalum to titanium using an energy dispersive X-ray microanalyzer (TEM-EDX), the crystal structure was examined using a field emission electron microscope (FE-SEM). .
In the following Examples and Comparative Examples, when a precursor liquid is obtained by mixing a titanium peroxy complex and a niobium peroxy complex, dehydrated ethanol is used to obtain a desired solid content concentration unless otherwise specified. It was adjusted.

(実施例1)
まず、アルゴンガス雰囲気中でチタンテトライソプロポキシド4.0gを脱水エタノール28.5g中に溶解させ、得られた溶液に濃度30重量%の過酸化水素水8.0gを攪拌下で徐々に添加し、添加終了後、5分間攪拌して、ペルオキシ化反応させた。なお、反応は、溶液を入れたフラスコの周囲をドライアイスで冷却しながら行い、過酸化水素水の添加によって発熱した際に溶液の内温が−10℃を超えないように制御した。このようにして得られた反応生成物をチタンペルオキシ錯体(a1)とした。
Example 1
First, 4.0 g of titanium tetraisopropoxide was dissolved in 28.5 g of dehydrated ethanol in an argon gas atmosphere, and 8.0 g of hydrogen peroxide solution having a concentration of 30% by weight was gradually added to the resulting solution with stirring. Then, after completion of the addition, the mixture was stirred for 5 minutes to allow peroxylation reaction. The reaction was conducted while cooling the periphery of the flask containing the solution with dry ice, and the internal temperature of the solution was controlled so as not to exceed −10 ° C. when heat was generated by the addition of hydrogen peroxide. The reaction product thus obtained was designated as titanium peroxy complex (a1).

他方、アルゴンガス雰囲気中でニオブペンタエトキシド1.5gを脱水エタノール19.2g中に溶解させ、得られた溶液に濃度30重量%の過酸化水素水1.6gを攪拌下で徐々に添加し、添加終了後、5分間攪拌して、ペルオキシ化反応させた。なお、反応は、上記と同様に、溶液を入れたフラスコの周囲をドライアイスで冷却しながら行い、過酸化水素水の添加によって発熱した際に溶液の内温が−10℃を超えないように制御した。このようにして得られた反応生成物をニオブペルオキシ錯体(b1)とした。   On the other hand, 1.5 g of niobium pentaethoxide was dissolved in 19.2 g of dehydrated ethanol in an argon gas atmosphere, and 1.6 g of hydrogen peroxide solution having a concentration of 30% by weight was gradually added to the resulting solution with stirring. After completion of the addition, the mixture was stirred for 5 minutes to cause a peroxylation reaction. As in the above, the reaction is performed while cooling the periphery of the flask containing the solution with dry ice so that the internal temperature of the solution does not exceed −10 ° C. when heat is generated by the addition of hydrogen peroxide. Controlled. The reaction product thus obtained was designated as niobium peroxy complex (b1).

次に、上記チタンペルオキシ錯体(a1)と、上記ニオブペルオキシ錯体(b1)とを、チタン:ニオブ=93:7(モル比)となるような割合で混合し、固形分濃度7重量%の前駆体液とした。この前駆体液を、透明基材(無アルカリガラス「コーニング社製1737」、厚さ0.7mm)上にドライ膜厚35.7nmとなるように、キャピラリコーターで1回塗布し、400℃で10分間焼成(プリベーク)し、その後、水素100%の還元雰囲気下にて500℃で60分間アニール処理を施して、透明導電性基板を得た。
得られた透明導電性基板の比抵抗は5.2×10-3Ω・cmであり、透過率は、可視領域で約80%、赤外領域で約80%であった。
この透明導電性基板における導電性膜の結晶相をX線回折により調べたところ、アナターゼ型であった。また、その結晶構造を、TEM−EDXおよびFE−SEMにより観察したところ、Nbがドープされた酸化チタンの多結晶体であった。
Next, the titanium peroxy complex (a1) and the niobium peroxy complex (b1) are mixed at a ratio of titanium: niobium = 93: 7 (molar ratio), and a precursor having a solid content concentration of 7% by weight is mixed. Body fluid. This precursor solution was applied once on a transparent substrate (non-alkali glass “Corning Corporation 1737”, thickness 0.7 mm) by a capillary coater so as to have a dry film thickness of 35.7 nm, and 10 ° C. at 400 ° C. The substrate was baked (prebaked) for 30 minutes, and then annealed at 500 ° C. for 60 minutes in a reducing atmosphere of 100% hydrogen to obtain a transparent conductive substrate.
The specific resistance of the obtained transparent conductive substrate was 5.2 × 10 −3 Ω · cm, and the transmittance was about 80% in the visible region and about 80% in the infrared region.
When the crystal phase of the conductive film in the transparent conductive substrate was examined by X-ray diffraction, it was an anatase type. Moreover, when the crystal structure was observed by TEM-EDX and FE-SEM, it was a polycrystal of titanium oxide doped with Nb.

(実施例2)
まず、アルゴンガス雰囲気中でチタンテトライソプロポキシド3.0gに蒸留水20.0gを加えて攪拌し、生じた沈殿(水酸化チタン)を母液から分取した。この沈殿1.2gをエタノール2.0g中に溶解させ、得られた溶液に濃度30重量%の過酸化水素水17gを攪拌下で徐々に添加し、添加終了後、10分間攪拌して、ペルオキシ化反応させた。なお、反応は、溶液を入れたフラスコの周囲をドライアイスで冷却しながら行い、過酸化水素水の添加によって発熱した際に溶液の内温が−10℃を超えないように制御した。このようにして得られた反応生成物をチタンペルオキシ錯体(a2)とした。
(Example 2)
First, 20.0 g of distilled water was added to 3.0 g of titanium tetraisopropoxide in an argon gas atmosphere and stirred, and the resulting precipitate (titanium hydroxide) was collected from the mother liquor. 1.2 g of this precipitate was dissolved in 2.0 g of ethanol, and 17 g of hydrogen peroxide solution having a concentration of 30% by weight was gradually added to the resulting solution with stirring. It was made to react. The reaction was conducted while cooling the periphery of the flask containing the solution with dry ice, and the internal temperature of the solution was controlled so as not to exceed −10 ° C. when heat was generated by the addition of hydrogen peroxide. The reaction product thus obtained was designated as titanium peroxy complex (a2).

他方、アルゴンガス雰囲気中でニオブペンタエトキシド5.0gに蒸留水40.0gを加えて攪拌し、生じた沈殿(水酸化ニオブ)を母液から分取した。この沈殿2.8gをエタノール2.0g中に溶解させ、得られた溶液に濃度30重量%の過酸化水素水20gを攪拌下で徐々に添加し、添加終了後、10分間攪拌して、ペルオキシ化反応させた。なお、反応は、上記と同様に、溶液を入れたフラスコの周囲をドライアイスで冷却しながら行い、過酸化水素水の添加によって発熱した際に溶液の内温が−10℃を超えないように制御した。このようにして得られた反応生成物をニオブペルオキシ錯体(b2)とした。   On the other hand, 40.0 g of distilled water was added to 5.0 g of niobium pentaethoxide in an argon gas atmosphere and stirred, and the resulting precipitate (niobium hydroxide) was collected from the mother liquor. 2.8 g of this precipitate was dissolved in 2.0 g of ethanol, and 20 g of hydrogen peroxide solution having a concentration of 30% by weight was gradually added to the resulting solution with stirring. It was made to react. As in the above, the reaction is performed while cooling the periphery of the flask containing the solution with dry ice so that the internal temperature of the solution does not exceed −10 ° C. when heat is generated by the addition of hydrogen peroxide. Controlled. The reaction product thus obtained was designated as niobium peroxy complex (b2).

次に、上記チタンペルオキシ錯体(a2)と、上記ニオブペルオキシ錯体(b2)とを、チタン:ニオブ=94:6(モル比)となるような割合で混合し、固形分濃度6.5重量%の前駆体液とした。この前駆体液を、実施例1と同じ透明基材上にドライ膜厚26.0nmとなるように、スピンコーターで1回塗布し、80℃で10分間焼成(プリベーク)し、その後、水素100%の還元雰囲気下にて500℃で60分間アニール処理を施して、透明導電性基板を得た。
得られた透明導電性基板の比抵抗は7.3×10-3Ω・cmであり、透過率は、可視領域で約80%、赤外領域で約80%であった。
この透明導電性基板における導電性膜の結晶相をX線回折により調べたところ、アナターゼ型であった。また、その結晶構造を、TEM−EDXおよびFE−SEMにより観察したところ、Nbがドープされた酸化チタンの多結晶体であった。
Next, the titanium peroxy complex (a2) and the niobium peroxy complex (b2) are mixed at a ratio of titanium: niobium = 94: 6 (molar ratio), and the solid content concentration is 6.5% by weight. The precursor liquid was used. This precursor solution was applied once with a spin coater on the same transparent substrate as in Example 1 so as to have a dry film thickness of 26.0 nm, baked (prebaked) at 80 ° C. for 10 minutes, and then 100% hydrogen. An annealing treatment was performed at 500 ° C. for 60 minutes in a reducing atmosphere to obtain a transparent conductive substrate.
The specific resistance of the obtained transparent conductive substrate was 7.3 × 10 −3 Ω · cm, and the transmittance was about 80% in the visible region and about 80% in the infrared region.
When the crystal phase of the conductive film in the transparent conductive substrate was examined by X-ray diffraction, it was an anatase type. Moreover, when the crystal structure was observed by TEM-EDX and FE-SEM, it was a polycrystal of titanium oxide doped with Nb.

(実施例3)
実施例2で得られたチタンペルオキシ錯体(a2)と、ニオブペルオキシ錯体(b2)とを、チタン:ニオブ=92:8(モル比)となるような割合で混合し、固形分濃度6.5重量%の前駆体液とした。この前駆体液を、実施例1と同じ透明基材上にドライ膜厚55.0nmとなるように、スピンコーターで1回塗布し、80℃で10分間焼成(プリベーク)し、その後、水素100%の還元雰囲気下にて500℃で60分間アニール処理を施して、透明導電性基板を得た。
得られた透明導電性基板の比抵抗は6.5×10-3Ω・cmであり、透過率は、可視領域で約80%、赤外領域で約80%であった。
この透明導電性基板における導電性膜の結晶相をX線回折により調べたところ、アナターゼ型であった。また、その結晶構造を、TEM−EDXおよびFE−SEMにより観察したところ、Nbがドープされた酸化チタンの多結晶体であった。
(Example 3)
The titanium peroxy complex (a2) obtained in Example 2 and the niobium peroxy complex (b2) were mixed at a ratio such that titanium: niobium = 92: 8 (molar ratio), and the solid content concentration was 6.5. A weight percent precursor solution was obtained. This precursor solution was applied once with a spin coater on the same transparent substrate as in Example 1 so as to have a dry film thickness of 55.0 nm, baked (prebaked) at 80 ° C. for 10 minutes, and then 100% hydrogen. An annealing treatment was performed at 500 ° C. for 60 minutes in a reducing atmosphere to obtain a transparent conductive substrate.
The specific resistance of the obtained transparent conductive substrate was 6.5 × 10 −3 Ω · cm, and the transmittance was about 80% in the visible region and about 80% in the infrared region.
When the crystal phase of the conductive film in the transparent conductive substrate was examined by X-ray diffraction, it was an anatase type. Moreover, when the crystal structure was observed by TEM-EDX and FE-SEM, it was a polycrystal of titanium oxide doped with Nb.

(実施例4)
実施例1で得られたチタンペルオキシ錯体(a1)と、ニオブペルオキシ錯体(b1)とを、チタン:ニオブ=92:8(モル比)となるような割合で混合し、固形分濃度9.16重量%の前駆体液とした。この前駆体液を、実施例1と同じ透明基材上にドライ膜厚71.0nmとなるように、スピンコーターで1回塗布し、80℃で10分間焼成(プリベーク)し、その後、水素100%の還元雰囲気下にて500℃で60分間アニール処理を施して、透明導電性基板を得た。
得られた透明導電性基板の比抵抗は5.6×10-3Ω・cmであり、透過率は、可視領域で約80%、赤外領域で約80%であった。
この透明導電性基板における導電性膜の結晶相をX線回折により調べたところ、アナターゼ型であった。また、その結晶構造を、TEM−EDXおよびFE−SEMにより観察したところ、Nbがドープされた酸化チタンの多結晶体であった。
Example 4
The titanium peroxy complex (a1) obtained in Example 1 and the niobium peroxy complex (b1) were mixed at a ratio of titanium: niobium = 92: 8 (molar ratio), and the solid content concentration was 9.16. A weight percent precursor solution was obtained. This precursor solution was applied once with a spin coater on the same transparent substrate as in Example 1 so as to have a dry film thickness of 71.0 nm, baked (prebaked) at 80 ° C. for 10 minutes, and then 100% hydrogen. An annealing treatment was performed at 500 ° C. for 60 minutes in a reducing atmosphere to obtain a transparent conductive substrate.
The specific resistance of the obtained transparent conductive substrate was 5.6 × 10 −3 Ω · cm, and the transmittance was about 80% in the visible region and about 80% in the infrared region.
When the crystal phase of the conductive film in the transparent conductive substrate was examined by X-ray diffraction, it was an anatase type. Moreover, when the crystal structure was observed by TEM-EDX and FE-SEM, it was a polycrystal of titanium oxide doped with Nb.

(実施例5)
実施例1で得られたチタンペルオキシ錯体(a1)と、ニオブペルオキシ錯体(b1)とを、チタン:ニオブ=80:20(モル比)となるような割合で混合し、固形分濃度7重量%の前駆体液とした。この前駆体液を、実施例1と同じ透明基材上にドライ膜厚100nmとなるように、スピンコーターにて1回塗布し、300℃で10分間焼成(プリベーク)し、その後、水素100%の還元雰囲気下にて500℃で60分間アニール処理を施して、透明導電性基板を得た。
得られた透明導電性基板の比抵抗は5.0×10-3Ω・cmであり、透過率は、可視領域で約80%、赤外領域で約80%であった。
この透明導電性基板における導電性膜の結晶相をX線回折により調べたところ、図1に示すように、結晶性の高いアナターゼ型であった。また、その結晶構造を、TEM−EDXおよびFE−SEMにより観察したところ、Nbがドープされた酸化チタンの多結晶体であった。
(Example 5)
The titanium peroxy complex (a1) obtained in Example 1 and the niobium peroxy complex (b1) were mixed at a ratio such that titanium: niobium = 80: 20 (molar ratio), and the solid content concentration was 7% by weight. The precursor liquid was used. This precursor solution was applied once by a spin coater on the same transparent substrate as in Example 1 so as to have a dry film thickness of 100 nm, baked (prebaked) at 300 ° C. for 10 minutes, and then 100% hydrogen. Annealing treatment was performed at 500 ° C. for 60 minutes in a reducing atmosphere to obtain a transparent conductive substrate.
The specific resistance of the obtained transparent conductive substrate was 5.0 × 10 −3 Ω · cm, and the transmittance was about 80% in the visible region and about 80% in the infrared region.
When the crystal phase of the conductive film in this transparent conductive substrate was examined by X-ray diffraction, it was an anatase type with high crystallinity as shown in FIG. Moreover, when the crystal structure was observed by TEM-EDX and FE-SEM, it was a polycrystal of titanium oxide doped with Nb.

(実施例6)
実施例1で得られたチタンペルオキシ錯体(a1)と、ニオブペルオキシ錯体(b1)とを、チタン:ニオブ=70:30(モル比)となるような割合で混合し、固形分濃度7重量%の前駆体液とした。この前駆体液を、実施例1と同じ透明基材上にドライ膜厚65nmとなるように、スピンコーターにて1回塗布し、300℃で10分間焼成(プリベーク)し、その後、水素100%の還元雰囲気下にて500℃で60分間アニール処理を施して、透明導電性基板を得た。
得られた透明導電性基板の比抵抗は4.0×10-3Ω・cmであり、透過率は、可視領域で約80%、赤外領域で約80%であった。
この透明導電性基板における導電性膜の結晶相をX線回折により調べたところ、アナターゼ型であった。また、その結晶構造を、TEM−EDXおよびFE−SEMにより観察したところ、Nbがドープされた酸化チタンの多結晶体であった。
(Example 6)
The titanium peroxy complex (a1) obtained in Example 1 and the niobium peroxy complex (b1) were mixed at a ratio such that titanium: niobium = 70: 30 (molar ratio), and the solid content concentration was 7% by weight. The precursor liquid was used. This precursor solution was applied once with a spin coater on the same transparent substrate as in Example 1 so as to have a dry film thickness of 65 nm, baked (prebaked) at 300 ° C. for 10 minutes, and then 100% hydrogen. Annealing treatment was performed at 500 ° C. for 60 minutes in a reducing atmosphere to obtain a transparent conductive substrate.
The specific resistance of the obtained transparent conductive substrate was 4.0 × 10 −3 Ω · cm, and the transmittance was about 80% in the visible region and about 80% in the infrared region.
When the crystal phase of the conductive film in the transparent conductive substrate was examined by X-ray diffraction, it was an anatase type. Moreover, when the crystal structure was observed by TEM-EDX and FE-SEM, it was a polycrystal of titanium oxide doped with Nb.

(実施例7)
実施例1で得られたチタンペルオキシ錯体(a1)と、ニオブペルオキシ錯体(b1)とを、チタン:ニオブ=80:20(モル比)となるような割合で混合し、固形分濃度7重量%の前駆体液とした。この前駆体液を、実施例1と同じ透明基材上にドライ膜厚50nmとなるように、スピンコーターにて1回塗布し、300℃で10分間焼成(プリベーク)し、その後、水素100%の還元雰囲気下にて550℃で60分間アニール処理を施して、透明導電性基板を得た。
得られた透明導電性基板の比抵抗は3.7×10-3Ω・cmであり、透過率は、可視領域で約80%、赤外領域で約80%であった。
この透明導電性基板における導電性膜の結晶相をX線回折により調べたところ、アナターゼ型であった。また、その結晶構造を、TEM−EDXおよびFE−SEMにより観察したところ、Nbがドープされた酸化チタンの多結晶体であった。
(Example 7)
The titanium peroxy complex (a1) obtained in Example 1 and the niobium peroxy complex (b1) were mixed at a ratio such that titanium: niobium = 80: 20 (molar ratio), and the solid content concentration was 7% by weight. The precursor liquid was used. This precursor solution was applied once with a spin coater on the same transparent substrate as in Example 1 so as to have a dry film thickness of 50 nm, baked (prebaked) at 300 ° C. for 10 minutes, and then 100% hydrogen. Annealing treatment was performed at 550 ° C. for 60 minutes in a reducing atmosphere to obtain a transparent conductive substrate.
The specific resistance of the obtained transparent conductive substrate was 3.7 × 10 −3 Ω · cm, and the transmittance was about 80% in the visible region and about 80% in the infrared region.
When the crystal phase of the conductive film in the transparent conductive substrate was examined by X-ray diffraction, it was an anatase type. Moreover, when the crystal structure was observed by TEM-EDX and FE-SEM, it was a polycrystal of titanium oxide doped with Nb.

(実施例8)
実施例1で得られたチタンペルオキシ錯体(a1)と、ニオブペルオキシ錯体(b1)とを、チタン:ニオブ=80:20(モル比)となるような割合で混合し、固形分濃度7重量%の前駆体液とした。この前駆体液を、実施例1と同じ透明基材上にドライ膜厚60nmとなるように、スピンコーターにて1回塗布し、300℃で10分間焼成(プリベーク)し、その後、水素100%の還元雰囲気下にて600℃で60分間アニール処理を施して、透明導電性基板を得た。
得られた透明導電性基板の比抵抗は1.8×10-3Ω・cmであり、透過率は、可視領域で約70%、赤外領域で約70%であった。
この透明導電性基板における導電性膜の結晶相をX線回折により調べたところ、アナターゼ型であった。また、その結晶構造を、TEM−EDXおよびFE−SEMにより観察したところ、Nbがドープされた酸化チタンの多結晶体であった。
(Example 8)
The titanium peroxy complex (a1) obtained in Example 1 and the niobium peroxy complex (b1) were mixed at a ratio such that titanium: niobium = 80: 20 (molar ratio), and the solid content concentration was 7% by weight. The precursor liquid was used. This precursor solution was applied once with a spin coater on the same transparent substrate as in Example 1 so as to have a dry film thickness of 60 nm, baked (prebaked) at 300 ° C. for 10 minutes, and then 100% hydrogen. Annealing treatment was performed at 600 ° C. for 60 minutes in a reducing atmosphere to obtain a transparent conductive substrate.
The specific resistance of the obtained transparent conductive substrate was 1.8 × 10 −3 Ω · cm, and the transmittance was about 70% in the visible region and about 70% in the infrared region.
When the crystal phase of the conductive film in the transparent conductive substrate was examined by X-ray diffraction, it was an anatase type. Moreover, when the crystal structure was observed by TEM-EDX and FE-SEM, it was a polycrystal of titanium oxide doped with Nb.

(実施例9)
アルゴンガス雰囲気中でタンタルペンタエトキシド1.6gを脱水エタノール20.4g中に溶解させ、得られた溶液に濃度30重量%の過酸化水素水1.36gを攪拌下で徐々に添加し、添加終了後、5分間攪拌して、ペルオキシ化反応させた。なお、反応は、溶液を入れたフラスコの周囲をドライアイスで冷却しながら行い、過酸化水素水の添加によって発熱した際に溶液の内温が−10℃を超えないように制御した。このようにして得られた反応生成物をタンタルペルオキシ錯体(c1)とした。
Example 9
In an argon gas atmosphere, 1.6 g of tantalum pentaethoxide is dissolved in 20.4 g of dehydrated ethanol, and 1.36 g of hydrogen peroxide solution having a concentration of 30% by weight is gradually added to the resulting solution under stirring. After completion, the mixture was stirred for 5 minutes to allow peroxylation. The reaction was conducted while cooling the periphery of the flask containing the solution with dry ice, and the internal temperature of the solution was controlled so as not to exceed −10 ° C. when heat was generated by the addition of hydrogen peroxide. The reaction product thus obtained was designated as a tantalum peroxy complex (c1).

次に、実施例1で得られたチタンペルオキシ錯体(a1)と、上記タンタルペルオキシ錯体(c1)とを、チタン:タンタル=80:20(モル比)となるような割合で混合し、固形分濃度7重量%の前駆体液とした。この前駆体液を、実施例1と同じ透明基材上に、ドライ膜厚67.3nmとなるように、キャピラリコーターにて1回塗布し、100℃で30分間焼成(プリベーク)し、その後、水素100%の還元雰囲気下にて500℃で30分間アニール処理を施して、透明導電性基板を得た。
得られた透明導電性基板の比抵抗は8.3×10-3Ω・cmであり、透過率は、可視領域で約80%、赤外領域で約80%であった。
この透明導電性基板における導電性膜の結晶相をX線回折により調べたところ、アナターゼ型であった。また、その結晶構造を、TEM−EDXおよびFE−SEMにより観察したところ、Taがドープされた酸化チタンの多結晶体であった。
Next, the titanium peroxy complex (a1) obtained in Example 1 and the tantalum peroxy complex (c1) were mixed at a ratio of titanium: tantalum = 80: 20 (molar ratio) to obtain a solid content. A precursor solution having a concentration of 7% by weight was obtained. This precursor solution was applied once on the same transparent substrate as in Example 1 with a capillary coater so as to have a dry film thickness of 67.3 nm, baked (prebaked) at 100 ° C. for 30 minutes, and then hydrogenated. Annealing treatment was performed at 500 ° C. for 30 minutes in a 100% reducing atmosphere to obtain a transparent conductive substrate.
The specific resistance of the obtained transparent conductive substrate was 8.3 × 10 −3 Ω · cm, and the transmittance was about 80% in the visible region and about 80% in the infrared region.
When the crystal phase of the conductive film in the transparent conductive substrate was examined by X-ray diffraction, it was an anatase type. Moreover, when the crystal structure was observed by TEM-EDX and FE-SEM, it was a polycrystalline body of titanium oxide doped with Ta.

(比較例1)
実施例2で得られたチタンペルオキシ錯体(a2)を単独で用いて、固形分濃度9.4重量%の前駆体液とした。この前駆体液を、実施例1と同じ透明基材上にドライ膜厚102nmとなるように、スピンコーターで1回塗布し、80℃で10分間焼成(プリベーク)し、その後、水素100%の還元雰囲気下にて500℃で60分間アニール処理を施して、透明導電性基板を得た。
得られた透明導電性基板は、酸化チタンにドーパント(ニオブまたはタンタル)をドープさせることなく得られたものであるので、その比抵抗は測定不能(測定限界;103Ω・cm以上)であり、透過率は、可視領域で約80%、赤外領域で約80%であった。
この透明導電性基板における導電性膜の結晶相をX線回折により調べたところ、アナターゼ型であった。
(Comparative Example 1)
The titanium peroxy complex (a2) obtained in Example 2 was used alone to obtain a precursor liquid having a solid content concentration of 9.4 wt%. This precursor solution was applied once with a spin coater on the same transparent substrate as in Example 1 so as to have a dry film thickness of 102 nm, baked (prebaked) at 80 ° C. for 10 minutes, and then reduced to 100% hydrogen. An annealing treatment was performed at 500 ° C. for 60 minutes in an atmosphere to obtain a transparent conductive substrate.
Since the obtained transparent conductive substrate is obtained without doping titanium oxide with a dopant (niobium or tantalum), its specific resistance is not measurable (measurement limit: 10 3 Ω · cm or more). The transmittance was about 80% in the visible region and about 80% in the infrared region.
When the crystal phase of the conductive film in the transparent conductive substrate was examined by X-ray diffraction, it was an anatase type.

(比較例2)
実施例2で得られたチタンペルオキシ錯体(a2)と、ニオブペルオキシ錯体(b2)とを、チタン:ニオブ=92:8(モル比)となるような割合で混合し、固形分濃度6.5重量%の前駆体液とした。この前駆体液を、実施例1と同じ透明基材上にドライ膜厚55.0nmとなるように、スピンコーターで1回塗布し、80℃で10分間焼成(プリベーク)し、その後、通常の大気圧雰囲気下にて500℃で60分間アニール処理を施して、透明導電性基板を得た。
得られた透明導電性基板は、アニール処理を還元雰囲気下ではなく大気圧雰囲気下で行って得られたものであるので、その比抵抗は測定不能(測定限界;103Ω・cm以上)であり、透過率は、可視領域で約80%、赤外領域で約80%であった。
この透明導電性基板における導電性膜の結晶相をX線回折により調べたところ、アナターゼ型であった。
(Comparative Example 2)
The titanium peroxy complex (a2) obtained in Example 2 and the niobium peroxy complex (b2) were mixed at a ratio such that titanium: niobium = 92: 8 (molar ratio), and the solid content concentration was 6.5. A weight percent precursor solution was obtained. This precursor solution was applied once with a spin coater on the same transparent substrate as in Example 1 so as to have a dry film thickness of 55.0 nm, baked (prebaked) at 80 ° C. for 10 minutes, and then a normal large size Annealing treatment was performed at 500 ° C. for 60 minutes under atmospheric pressure to obtain a transparent conductive substrate.
Since the obtained transparent conductive substrate was obtained by performing the annealing treatment in an atmospheric pressure atmosphere instead of a reducing atmosphere, its specific resistance was not measurable (measurement limit: 10 3 Ω · cm or more). The transmittance was about 80% in the visible region and about 80% in the infrared region.
When the crystal phase of the conductive film in the transparent conductive substrate was examined by X-ray diffraction, it was an anatase type.

(比較例3)
実施例1で得られたチタンペルオキシ錯体(a1)と、ニオブペルオキシ錯体(b1)とを、チタン:ニオブ=80:20(モル比)となるような割合で混合し、固形分濃度7重量%の前駆体液とした。この前駆体液を、実施例1と同じ透明基材上にドライ膜厚80nmとなるように、スピンコーターにて1回塗布し、風乾(室温で60分間)し、その後、水素100%の還元雰囲気下にて500℃で60分間アニール処理を施して、透明導電性基板を得た。
得られた透明導電性基板は、焼成を行うことなく得られたものであるので、その比抵抗は5.8×10-2Ω・cmであり、透過率は、可視領域で約80%、赤外領域で約80%であった。
この透明導電性基板における導電性膜の結晶相をX線回折により調べたところ、アナターゼ型であった。
(Comparative Example 3)
The titanium peroxy complex (a1) obtained in Example 1 and the niobium peroxy complex (b1) were mixed at a ratio such that titanium: niobium = 80: 20 (molar ratio), and the solid content concentration was 7% by weight. The precursor liquid was used. This precursor solution was applied once with a spin coater on the same transparent substrate as in Example 1 so as to have a dry film thickness of 80 nm, air-dried (at room temperature for 60 minutes), and then reduced to 100% hydrogen. Underneath, annealing was performed at 500 ° C. for 60 minutes to obtain a transparent conductive substrate.
Since the obtained transparent conductive substrate was obtained without firing, the specific resistance was 5.8 × 10 −2 Ω · cm, and the transmittance was about 80% in the visible region, About 80% in the infrared region.
When the crystal phase of the conductive film in the transparent conductive substrate was examined by X-ray diffraction, it was an anatase type.

(比較例4)
実施例2で得られたチタンペルオキシ錯体(a2)と、ニオブペルオキシ錯体(b2)とを、チタン:ニオブ=92:8(モル比)となるような割合で混合し、固形分濃度6.5重量%の前駆体液とした。この前駆体液を、実施例1と同じ透明基材上にドライ膜厚55.0nmとなるように、スピンコーターで1回塗布し、80℃で10分間焼成(プリベーク)し、その後、水素100%の還元雰囲気下にて600℃で60分間アニール処理を施して、透明導電性基板を得た。
得られた透明導電性基板の比抵抗は5.4×10-1Ω・cmであり、透過率は、可視領域で約80%、赤外領域で約80%であった。
この透明導電性基板における導電性膜の結晶相をX線回折により調べたところ、一部にルチル型の生成が認められた。
(Comparative Example 4)
The titanium peroxy complex (a2) obtained in Example 2 and the niobium peroxy complex (b2) were mixed at a ratio such that titanium: niobium = 92: 8 (molar ratio), and the solid content concentration was 6.5. A weight percent precursor solution was obtained. This precursor solution was applied once with a spin coater on the same transparent substrate as in Example 1 so as to have a dry film thickness of 55.0 nm, baked (prebaked) at 80 ° C. for 10 minutes, and then 100% hydrogen. An annealing treatment was performed at 600 ° C. for 60 minutes in a reducing atmosphere to obtain a transparent conductive substrate.
The specific resistance of the obtained transparent conductive substrate was 5.4 × 10 −1 Ω · cm, and the transmittance was about 80% in the visible region and about 80% in the infrared region.
When the crystal phase of the conductive film in this transparent conductive substrate was examined by X-ray diffraction, it was found that a rutile type was partially formed.

(比較例5)
実施例1で得られたチタンペルオキシ錯体(a1)と、ニオブペルオキシ錯体(b1)とを、チタン:ニオブ=85:15(モル比)となるような割合で混合し、固形分濃度7重量%の前駆体液とした。この前駆体液を、実施例1と同じ透明基材上にドライ膜厚100nmとなるように、スピンコーターにて1回塗布し、
300℃で10分間焼成(プリベーク)し、その後、水素100%の還元雰囲気下にて420℃で60分間アニール処理を施して、透明導電性基板を得た。
得られた透明導電性基板の比抵抗は5.4×10-2Ω・cmであり、透過率は、可視領域で約80%、赤外領域で約80%であった。
この透明導電性基板における導電性膜の結晶相をX線回折により調べたところ、図2に示すように、アナターゼ型であったが結晶性は低かった。
(Comparative Example 5)
The titanium peroxy complex (a1) obtained in Example 1 and the niobium peroxy complex (b1) were mixed at a ratio such that titanium: niobium = 85: 15 (molar ratio), and the solid content concentration was 7% by weight. The precursor liquid was used. This precursor solution was applied once with a spin coater on the same transparent substrate as in Example 1 so that the dry film thickness was 100 nm,
After baking (pre-baking) at 300 ° C. for 10 minutes, annealing treatment was performed at 420 ° C. for 60 minutes in a reducing atmosphere of 100% hydrogen to obtain a transparent conductive substrate.
The specific resistance of the obtained transparent conductive substrate was 5.4 × 10 −2 Ω · cm, and the transmittance was about 80% in the visible region and about 80% in the infrared region.
When the crystal phase of the conductive film in this transparent conductive substrate was examined by X-ray diffraction, it was anatase type as shown in FIG. 2, but the crystallinity was low.

実施例5で得られた透明導電性基板における導電性膜のX線回折ピークを示したグラフである。6 is a graph showing an X-ray diffraction peak of a conductive film in a transparent conductive substrate obtained in Example 5. FIG. 比較例5で得られた透明導電性基板における導電性膜のX線回折ピークを示したグラフである。10 is a graph showing an X-ray diffraction peak of a conductive film in a transparent conductive substrate obtained in Comparative Example 5.

Claims (4)

(A)チタン化合物に過酸化水素を反応させた反応生成物と(B)ニオブ化合物またはタンタル化合物に過酸化水素を反応させた反応生成物とを含む前駆体液を、透明基材上に塗布し、焼成した後、還元雰囲気下にて加熱によるアニール処理を施して、ニオブまたはタンタルがドープされた酸化チタンからなる透明導電性膜を透明基材上に形成する、ことを特徴とする比抵抗が9×10-3Ω・cm以下の透明導電性基板の製造方法。 (A) A precursor liquid containing a reaction product obtained by reacting hydrogen peroxide with a titanium compound and (B) a reaction product obtained by reacting hydrogen peroxide with a niobium compound or a tantalum compound is applied onto a transparent substrate. The specific resistance is characterized in that after firing, annealing is performed by heating in a reducing atmosphere to form a transparent conductive film made of titanium oxide doped with niobium or tantalum on a transparent substrate. A method for producing a transparent conductive substrate of 9 × 10 −3 Ω · cm or less. 還元雰囲気下におけるアニール処理の加熱温度が450〜550℃である、請求項1記載の透明導電性基板の製造方法。   The manufacturing method of the transparent conductive substrate of Claim 1 whose heating temperature of the annealing process in a reducing atmosphere is 450-550 degreeC. 前記(A)チタン化合物および前記(B)ニオブ化合物またはタンタル化合物として水酸化物を用いる、請求項1または2記載の透明導電性基板の製造方法。   The manufacturing method of the transparent conductive substrate of Claim 1 or 2 using a hydroxide as said (A) titanium compound and said (B) niobium compound or a tantalum compound. アナターゼ型結晶相を有する透明導電性膜を形成する、請求項1〜3のいずれかに記載の透明導電性基板の製造方法。 The manufacturing method of the transparent conductive substrate in any one of Claims 1-3 which forms the transparent conductive film which has an anatase type crystal phase.
JP2008278723A 2007-10-29 2008-10-29 Method for producing transparent conductive substrate Expired - Fee Related JP5308117B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008278723A JP5308117B2 (en) 2007-10-29 2008-10-29 Method for producing transparent conductive substrate

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007280071 2007-10-29
JP2007280071 2007-10-29
JP2008278723A JP5308117B2 (en) 2007-10-29 2008-10-29 Method for producing transparent conductive substrate

Publications (2)

Publication Number Publication Date
JP2009135096A JP2009135096A (en) 2009-06-18
JP5308117B2 true JP5308117B2 (en) 2013-10-09

Family

ID=40866763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008278723A Expired - Fee Related JP5308117B2 (en) 2007-10-29 2008-10-29 Method for producing transparent conductive substrate

Country Status (1)

Country Link
JP (1) JP5308117B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5401142B2 (en) * 2009-03-24 2014-01-29 住友化学株式会社 Method for producing transparent conductive substrate, precursor solution used therefor, and method for handling the same
JP6436462B2 (en) * 2016-04-28 2018-12-12 サスティナブル・テクノロジー株式会社 Substrate surface protective film and method for forming substrate surface protective film

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002348540A (en) * 2001-05-28 2002-12-04 Sustainable Titania Technology Inc Film-forming aqueous solution containing electrically- conductive polymer, method for producing the film- forming aqueous solution, and structure having the formed film
JP2006182791A (en) * 2003-02-10 2006-07-13 Kansai Paint Co Ltd Coating material for forming photocatalyst film
JP2006021991A (en) * 2004-06-09 2006-01-26 Kansai Paint Co Ltd Method for producing metal doped titanium oxide particulate
JP5132151B2 (en) * 2004-08-13 2013-01-30 財団法人神奈川科学技術アカデミー Transparent conductor, transparent electrode, solar cell, light emitting device and display panel
JP4686234B2 (en) * 2005-03-31 2011-05-25 大日本印刷株式会社 Method for producing metal oxide film
JP4739120B2 (en) * 2006-06-02 2011-08-03 日揮触媒化成株式会社 Conductive titanium oxide and method for producing the same
JPWO2008047549A1 (en) * 2006-10-12 2010-02-25 コニカミノルタホールディングス株式会社 Transparent conductive film substrate and method for forming titanium oxide-based transparent conductive film used therefor

Also Published As

Publication number Publication date
JP2009135096A (en) 2009-06-18

Similar Documents

Publication Publication Date Title
TWI613683B (en) Coating composition for transparent conductive film, transparent conductive film and method for fabricating the same
Kim et al. Effects of Cu doping on nickel oxide thin film prepared by sol–gel solution process
TW201233827A (en) Transparent electroconductive film and manufacturing method therefor
JP5255039B2 (en) Indium tin oxide sputtering target and transparent conductive film produced using the same
JP6866104B2 (en) Conductors, their manufacturing methods, and devices containing them
CN104540777A (en) Core-shell nanoparticles for transparent electrically-conductive thin film formation, and production method for transparent electrically-conductive thin film using same
JP5401142B2 (en) Method for producing transparent conductive substrate, precursor solution used therefor, and method for handling the same
JP5308117B2 (en) Method for producing transparent conductive substrate
KR101066016B1 (en) Fto transparent conductive coating comprising nanorod layer
JP2010050088A (en) Transparent conductive substrate and method of manufacturing the same
JP2009040640A (en) Method for producing zinc oxide thin film
JP3834339B2 (en) Transparent conductive film and method for producing the same
KR101359913B1 (en) The manufacturing method of low-resistance, high transmittance, flexible FTO(F-doped Tin Oxide) transparent conductive film including carbon nanotubes
JP2010225469A (en) Transparent anode substrate for organic el and its manufacturing method
JP2010040517A (en) Transparent conductive substrate, and manufacturing method thereof
JP2010080316A (en) Transparent conductive substrate, and method for manufacturing the same
JP2011171082A (en) Transparent conductive substrate and method for manufacturing the same
JP2010053355A (en) Precursor liquid for forming transparent conductive film and use of the same
WO2009104695A1 (en) Method for producing transparent conductive substrate
JP2010066836A (en) Touch panel
KR101581664B1 (en) Transparent conducting films having metal nanowire coated with metal oxide and manufacturing method of the same
JP5368851B2 (en) Method for producing transparent conductive substrate
JP2010040518A (en) Transparent conductive substrate, and manufacturing method thereof
JP2010040519A (en) Transparent conductive substrate, and manufacturing method thereof
JP5082132B2 (en) Indium tin oxide precursor, indium tin oxide film thereof, and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130409

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130628

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees