JP2006182791A - Coating material for forming photocatalyst film - Google Patents

Coating material for forming photocatalyst film Download PDF

Info

Publication number
JP2006182791A
JP2006182791A JP2003032895A JP2003032895A JP2006182791A JP 2006182791 A JP2006182791 A JP 2006182791A JP 2003032895 A JP2003032895 A JP 2003032895A JP 2003032895 A JP2003032895 A JP 2003032895A JP 2006182791 A JP2006182791 A JP 2006182791A
Authority
JP
Japan
Prior art keywords
photocatalyst
acid
film
forming
peroxotitanic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003032895A
Other languages
Japanese (ja)
Inventor
Hideo Kogure
英雄 木暮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Paint Co Ltd
Original Assignee
Kansai Paint Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Paint Co Ltd filed Critical Kansai Paint Co Ltd
Priority to JP2003032895A priority Critical patent/JP2006182791A/en
Priority to PCT/JP2004/001366 priority patent/WO2004069946A1/en
Publication of JP2006182791A publication Critical patent/JP2006182791A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G79/00Macromolecular compounds obtained by reactions forming a linkage containing atoms other than silicon, sulfur, nitrogen, oxygen, and carbon with or without the latter elements in the main chain of the macromolecule
    • B01J35/39
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L85/00Compositions of macromolecular compounds obtained by reactions forming a linkage in the main chain of the macromolecule containing atoms other than silicon, sulfur, nitrogen, oxygen and carbon; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D185/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing atoms other than silicon, sulfur, nitrogen, oxygen, and carbon; Coating compositions based on derivatives of such polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
    • C01P2004/86Thin layer coatings, i.e. the coating thickness being less than 0.1 time the particle radius

Abstract

<P>PROBLEM TO BE SOLVED: To provide a coating material for forming a photocatalyst film, which is capable of forming the photocatalyst film showing an excellent photocatalytic activity under light irradiation, wherein the film is not brittle even though it contains a photocatalyst at a high concentration. <P>SOLUTION: The coating material contains (A) an aqueous peroxotitanic acid solution obtained by mixing a hydrogen peroxide solution with a titanium hydroxide compound, a hydrolyzable titanium compound and/or a low condensate thereof and (B) a photocatalyst powder, wherein a portion of (A) the aqueous peroxotitanic acid solution is previously mixed with (B) the photocatalytic powder in a weight ratio of from 1/200 to 10/100 on a solid basis and heated to form reactive hydroxytitanium groups on the surface of the photocatalyst powder. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、高濃度の光触媒体を含んでいても膜が脆くなることなく、光照射したときに優れた光触媒作用を示す光触媒膜を形成できる光触媒膜形成用塗布剤に関する。
【0002】
【従来の技術】
半導体に紫外線を照射すると強い還元作用を持つ電子と強い酸化作用を持つ正孔が生成し、半導体に接触した分子種を酸化還元作用により分解する。このような作用を光触媒作用と呼び、近年、この光触媒作用を利用する方策が種々提案されている。具体的には、大気中のNOxの分解、汚れ防止、居住空間や作業空間での悪臭物質やカビ等の分解除去、あるいは水中の有機溶剤や農薬、界面活性剤等の環境汚染物質の分解除去などへの応用である。このような光触媒作用を有する物質として酸化チタンが注目され、酸化チタンからなる光触媒体が市販されている。また近年、紫外線領域を利用する光触媒体だけでなく、可視光線を照射することにより高い光触媒作用を示す光触媒体についても種々検討がなされている。
【0003】
このような光触媒作用は、光触媒体との接触表面で得られるものなので、基材面に光触媒膜を形成する場合には、その機能を最大限に発揮させるために、バインダー成分中に非常に高濃度で光触媒体を含有させる必要があるが、通常の有機のバインダー成分では膜が脆くなるなど皮膜物性が不十分となり、長期の耐久性が得られなかった。そこで本出願人は、耐光性を有するペルオキソチタン酸などをバインダー成分とすることを提案している(例えば、特許文献1等参照)。
【0004】
【特許文献1】
特開2002−144543号公報
【0005】
【発明が解決しようとする課題】
上記ペルオキソチタン酸などをバインダー成分とする場合には、長期の耐光性には優れるが、皮膜物性や塗布液の貯蔵安定性が十分とはいえなかった。
【0006】
本発明の目的は、上記問題が解消され、高濃度の光触媒体を含んでいても膜が脆くなることなく、光を照射したときに優れた光触媒作用を示す光触媒膜を形成できる光触媒膜形成用塗布剤を提供することにある。
【0007】
【課題を解決するための手段】
即ち、本発明は、
1.(A)水酸化チタン化合物もしくは加水分解性チタン化合物及び/又はそれらの低縮合物を過酸化水素水と混合して得られるペルオキソチタン酸水溶液、及び(B)光触媒粉末であって、光触媒粉末(B)が、ペルオキソチタン酸水溶液(A)の一部と光触媒粉末(B)とを固形分重量比で1/200〜10/100の割合で混合し加熱して、光触媒粉末表面に反応性ヒドロキシチタン酸基が予め形成されているものであることを特徴とする光触媒膜形成用塗布剤、
2.ペルオキソチタン酸水溶液(A)が、水酸化チタン化合物もしくは加水分解性チタン化合物及び/又はそれらの低縮合物と過酸化水素水とを、前者100重量部に対して後者が過酸化水素換算で1〜10,00重量部の割合で混合してなる請求項1記載の光触媒膜形成用塗布剤。
3.ペルオキソチタン酸水溶液(A)と光触媒粉末(B)とを、固形分重量比で100/10〜100/500の割合で含有する1項記載の光触媒膜形成用塗布剤、
4.基材面に、1ないし4のいずれか1項記載の光触媒膜形成用塗布剤を塗布、乾燥して、バインダーであるペルオキソチタン酸と光触媒粉末(B)の粒子表面の少なくとも一部を反応せしめて一体化した光触媒膜の形成方法、
5.基材面に、4項記載の光触媒膜を形成してなる物品、
に関する。
【0008】
【発明の実施の形態】
本発明においてペルオキソチタン酸水溶液(A)は、水酸化チタン化合物もしくは加水分解性チタン化合物及び/又はそれらの低縮合物を過酸化水素水と混合して得られる。
上記加水分解性チタン化合物としては、特に一般式(I)
Ti(OR) (I)
(式中、Rは同一又は異なって、炭素数1〜5のアルキル基を示す。)で表されるテトラアルコキシチタンが好ましい。また水酸化チタン化合物もしくは加水分解性チタン化合物の低縮合物としては、縮合度2〜30程度のものが好ましい。
【0009】
上記ペルオキソチタン酸水溶液(A)において、水酸化チタン化合物もしくは加水分解性チタン化合物及び/又はそれらの低縮合物と過酸化水素水とは、前者が100重量部に対して、後者が過酸化水素換算で1〜1,000重量部、好ましくは10〜200重量部の割合で混合することが好適である。後者が過酸化水素換算で1重量部未満になると安定で均一な水溶液が得られず、また長期貯蔵が困難となり、一方1,000重量部を越えると酸素分圧が高くなり、発泡性が強くなって貯蔵不安定になるなので好ましくない。
【0010】
過酸化水素水の過酸化水素濃度は、特に限定されないが、3〜30重量%の範囲内であることが取り扱い易さの点から好ましい。
【0011】
上記水酸化チタン化合物もしくは加水分解性チタン化合物及び/又はそれらの低縮合物と過酸化水素水との混合は、通常、1〜70℃程度で10分〜20時間程度攪拌下に行なうことが望ましく、混合の際には必要に応じて、例えば、メタノール、エタノール、n−プロパノール、iso−イソプロパノールなどのアルコール系;エチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテルなどのアルコールエーテル系等の水可溶性有機溶剤を使用することもできる。
【0012】
上記ペルオキソチタン酸水溶液(A)は、水酸化チタン化合物もしくは加水分解性チタン化合物及び/又はそれらの低縮合物を過酸化水素水と混合させることにより、前者が水で加水分解されて水酸基含有チタン化合物を生成し、次いでこの水酸基含有チタン化合物に過酸化水素が直ちに配位してペルオキソチタン酸を形成することにより得られるものと推察される。このペルオキソチタン酸水溶液(A)は、室温域で安定性が高く長期の保存に耐える。
【0013】
上記ペルオキソチタン酸水溶液(A)には、必要に応じてアセトアニリド、フェナセチン及びオキシキノリンから選ばれる少なくとも1種の化合物を貯蔵安定性向上のために添加しても良い。該化合物の添加量は、(A)の固形分100重量部に対して、0.01〜20重量部、特に0.2〜2.0重量部の範囲内であるのが好ましい。
【0014】
本発明において光触媒粉末(B)としては、紫外光及び/又は可視光を吸収して光触媒作用を発現し得るものであれば特に制限なく従来公知の光触媒粉末が使用可能であり、例えば酸化チタン、酸化タングステン、酸化亜鉛、酸化ハフニウム、酸化ジルコニウム、チタン酸ストロンチウム、酸化チタン−酸化ジルコニウム複合酸化物及び酸化珪素−酸化チタン複合酸化物等の酸化物半導体等が挙げられ、これら酸化物半導体の表面にバナジウム(V)、クロム(Cr)、マンガン(Mn)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、銅(Cu)、亜鉛(Zn)、ルテニウム(Ru)、ロジウム(Rh)、レニウム(Re)、オスミウム(Os)、パラジウム(Pd)、白金(Pt)、イリジウム(Ir)、ニオブ(Nb)、モリブデン(Mo)のうちの少なくとも1種の金属化合物が担持されたものも挙げられ、これらは単独で又は2種以上混合して使用でき、特に酸化チタンを主成分とする粉末が好適である。
【0015】
酸化チタンを主成分とする粉末としては、アナタ−ゼ型、ルチル型、ブルッカイト型のいずれかであり、必要に応じて表面にCr、Ru、V、Nb、Fe、Ni、Cu、 Mg、Ag、Mn、Pd、Ptの群から選ばれる少なくとも1種以上の金属微粒子を担持あるいは含有させた酸化チタン;表面に塩化白金化合物などのハロゲン化白金化合物を担持あるいは含有させた酸化チタン;或いは安定酸素欠陥を有する酸化チタンで、電子スピン共鳴スペクトルによる計測(420nm以上の波長域の光照射下で測定した場合)においてg値が2.004〜2.007である主シグナルと、gが1.985〜1.986、及びg値が2.024である2つの副シグナルが観測される酸化チタンなどが挙げられる。
【0016】
本発明において上記光触媒粉末(B)は、前述のペルオキソチタン酸水溶液(A)の一部と該光触媒粉末(B)とを固形分重量比で1/200〜10/100、好ましくは1/100〜5/100の割合で混合し加熱して、光触媒粉末表面に反応性ヒドロキシチタン基を予め形成させておくことが必須である。加熱条件としては、40〜250℃で24〜1時間程度行なうことが望ましい。これによって皮膜形成後、乾燥によって光触媒粉末表面の反応性ヒドロキシチタン基とバインダ−のペルオキソチタン酸の縮合反応が進行し、強固な一体化した皮膜を形成できるという効果を奏するものである。さらに光触媒粉末表面はペルオキソ基という親水性で立体障害性の官能基を有するので、反応性ヒドロキシチタン基を保護し、塗液においては貯蔵安定性を飛躍的に向上させることができる。
【0017】
本発明では、ペルオキソチタン酸水溶液(A)と上記の通り処理された光触媒粉末(B)とを、固形分重量比で100/10〜100/500、好ましくは100/50〜100/300の割合で含有することが好適である。この範囲を外れて(A)成分が少ない((B)成分が多い)と得られる被膜が脆く、光触媒粉末(B)が逸脱しやすくなり、結局は長期光触媒性能が維持できなくなり、一方(A)成分が多い((B)成分が少ない)と粉末表面で起きる光触媒反応を阻害してしまうので好ましくない。
【0018】
上記ペルオキソチタン酸水溶液(A)と光触媒粉末(B)との混合は、該(B)成分の分散粒径が10nm〜10μm、好ましくは10nm〜1μm程度となるように分散処理を行なうことが表面積確保の点から望ましい。
【0019】
本発明の光触媒膜形成用塗布剤は、上記(A)及び(B)成分を含有するものであり、さらに必要に応じて各種添加物を含有することができ、例えば有機酸及び/又はその塩を貯蔵安定性の点から添加しても良い。有機酸としては、例えば、酢酸、シュウ酸、グリコール酸、乳酸、リンゴ酸、クエン酸、酒石酸、グルコン酸等の有機カルボン酸;メタンスルフォン酸、エタンスルフォン酸、p−ベンゼンスルフォン酸等の有機スルフォン酸;2−アミノ−エタンスルフィン酸、p−トルエンスルフィン酸等の有機スルフィン酸;ニトロメタン、ニトロエタン、ニトロプロピオン酸、ニトロカテコール、2−ニトロレソルシノール、ニトロ安息香酸等の有機ニトロ化合物;フェノール、カテコール、レソルシノール、ヒドロキノン、ピロガロール、サリチル酸、没食子酸、安息香酸、チオフェノール、2−アミノチオフェノール、4−エチルチオフェノール等のフェノール類;1−ヒドロキシメタン−1、1−ジホスホン酸、1−ヒドロキシエタン−1、1−ジホスホン酸、1−ヒドロキシプロパン−1、1−ジホスホン酸、ニトリロ(アミノ)トリメチレンホスホン酸、ニトリロ(アミノ)トリエチレンホスホン酸、ニトリロ(アミノ)トリプロピレンホスホン酸、エチレンジアミンテトラメチレンホスホン酸、エチレンジアミンテトラエチレンホスホン酸、エチレンジアミンテトラプロピレンホスホン酸、N,N−ビス(2−ホスホエチル)ヒドロキシアミン、N,N−ビス(2−ホスホメチル)ヒドロキシアミン、2−ヒドロキシエチルホスホン酸ジメチルエーテルの加水分解物、2−ヒドロキシホスホノ酢酸、2−ホスホノブタン−1,2,4−トリカルボン酸等の有機リン酸化合物が挙げられる。
【0020】
また、有機酸の塩としては、上記有機酸にアルカリ化合物を加えることにより形成される有機酸の塩を使用することができる。該アルカリ化合物としては、例えば、リチウム、ナトリウム、カリウム、アンモニウム等を含有する有機又は無機アルカリ化合物が挙げられる。
【0021】
有機酸又は有機酸塩としては、水に溶解性のあるものを使用することが好ましく、特に、グリコール酸、乳酸、リンゴ酸、クエン酸、酒石酸、グルコン酸等のヒドロキシカルボン酸;1−ヒドロキシメタン−1、1−ジホスホン酸、1−ヒドロキシエタン−1、1−ジホスホン酸、1−ヒドロキシプロパン−1、1−ジホスホン酸等のヒドロキシル基含有有機亜リン酸;2−ヒドロキシホスホノ酢酸、2−ホスホノブタン−1,2,4−トリカルボン酸等のカルボキシル基含有有機亜リン酸及びこれらの塩よりなる群から選ばれる少なくとも一種の化合物を使用することが、塗布剤の貯蔵安定性等に優れた効果を発揮することから、好ましい。
【0022】
本発明塗布剤に、上記有機酸及び/又は有機酸塩を含有させる場合の添加量は、通常、(A)の固形分100重量部に対して、1〜400重量部程度の範囲、特に10〜200重量部程度の範囲であるのが好ましい。
【0023】
本発明塗布剤には、さらに必要に応じて、アンモニア、有機塩基性化合物、アルカリ金属水酸化物、アルカリ土類金属水酸化物等の塩基性中和剤を含有することができる。有機塩基性化合物としては、例えば、ジメチルエタノールアミン、2−アミノ−2−メチル−1−プロパノ−ル、トリエチルアミン、モルホリンが、又アルカリ金属水酸化物としては、例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウム等が挙げられる。
【0024】
本発明塗布剤には、さらに必要に応じて、例えば、増粘剤、有機溶剤、界面活性剤、防菌剤、防錆剤、潤滑剤、消泡剤、レベリング剤、着色顔料、体質顔料、防錆顔料等を挙げることができる。着色顔料としては、例えばベンガラや着色ガラスフリット粉末等、体質顔料としては、例えばマイカ、タルク、シリカ、微粉シリカ、バリタ、クレー等を挙げることができる。
【0025】
本発明の光触媒膜形成用塗布剤は、基材面に塗布、乾燥することで、バインダーであるペルオキソチタン酸と光触媒粉末(B)の粒子表面の少なくとも一部が反応して一体化した光触媒膜を形成することができる。特に両成分の一体化のためには、加熱することが望ましく、例えば40℃〜250℃好ましくは80〜200℃の加熱乾燥、マイクロ波加熱、マイクロ波誘導加熱等が望ましい。
【0026】
形成される光触媒膜の膜厚は、特に限定されるものではないが、通常、0.001〜20μm程度であるのが好ましく、0.1〜15μmの範囲であるのがより好ましい。また、通常、1回の塗布で、剥離し難い付着性に優れた厚さ1μm以上という厚膜の均一で緻密な酸化チタン多孔質膜を形成できる。勿論、必要に応じて、複数回塗布しても良い。
【0027】
基材面への塗布は、特に限定されず、公知の塗装方法によれば良い。塗装方法としては、例えば、印刷塗装、ナイフコーター塗装、ドクターブレード塗装、浸漬塗装、シャワー塗装、スプレー塗装、ロール塗装、電着塗装等の各種塗装方法を採用することができる。また基材面への含浸としてもよい。
【0028】
上記基材としては、例えば、金属、陶磁器、プラスチックス、繊維、ガラス、コンクリート等のあらゆる素材のものを使用できる。光触媒作用により分解性のプラスチックス、繊維等の素材に対しては、光触媒作用からの絶縁性の処理皮膜、例えばシリケ−ト等の珪酸塩やペルオキソチタン酸等を用いて素材面に予め塗布ないし含浸処理を施してこれらの皮膜を形成しておくことができる。また、基材の形状としても、板状、球状、直方体状、円筒形状等のいずれの形状でも良い。更に、基材として、多孔体、粉体等を用いて、多孔体の内部処理や表面処理、粉体の表面処理を行なうことも可能である。多孔体としては、例えば、発泡体、ハニカム構造体、コルゲート構造体等を挙げることができる。また、粉体としては、例えば、マイカ、タルク、シリカ、硫酸バリウム、クレー等の体質顔料、着色を意図した、弁柄、コバルトブル−、着色ガラスフリット顔料等の着色顔料を挙げることができる。
具体的な基材面としては、建築建造物の内外面、窓ガラス面、カーテン、道路の防護壁やトンネルの内壁、車両の内装面や窓ガラス、ミラー面などが挙げられる。
【0029】
【実施例】
以下、実施例及び比較例を挙げて、本発明をより具体的に説明する。尚、「部」及び「%」はいずれも重量基準である。
【0030】
ペルオキソチタン酸水溶液(A)の作成
作成例1
テトラiso−プロポキシチタン10部とiso−プロパノール10部の混合物を、30%過酸化水素水10部と脱イオン水100部の混合物中に20℃で1時間かけて超音波撹拌しながら滴下した。その後25℃で2時間熟成し黄色透明の少し粘性のあるペルオキソチタン酸水溶液を得た。これを水で希釈して固形分濃度3%のペルオキソチタン酸水溶液▲1▼とした。
【0031】
作成例2
テトラ−n−ブトキシチタン10部とiso−プロパノール10部の混合物を、30%過酸化水素水20部と脱イオン水100部の混合物中に20℃で1時間かけて超音波撹拌しながら滴下した。その後25℃で2時間熟成し黄色透明の少し粘性のあるペルオキソチタン酸水溶液を得た。これを水で希釈して固形分濃度1%のペルオキソチタン酸水溶液▲2▼とした。
【0032】
作成例3
テトラエトキシチタン10部とメトキシエタノール15部の混合物を、30%過酸化水素水20部と脱イオン水100部の混合物中に20℃で1時間かけて超音波撹拌しながら滴下した。その後25℃で2時間熟成し黄色透明の少し粘性のあるペルオキソチタン酸水溶液を得た。これを水で希釈して固形分濃度2%のペルオキソチタン酸水溶液▲3▼とした。
【0033】
光触媒膜形成用塗布剤の作成及び評価
実施例1
上記作成例1で得た固形分濃度3%のペルオキソチタン酸水溶液▲1▼20部に、「MPT−621」(石原産業社製、可視光応答型光触媒酸化チタン)7部およびアルミナビ−ズを加え、2時間振とう分散した後、150℃・30分の条件で加熱処理した。
【0034】
次いでこの中に、固形分濃度3%のペルオキソチタン酸水溶液▲1▼80部を加え、15分振とうした後に溶液とビ−ズを分離排出し、光触媒膜形成用塗布剤(I)を得た。
【0035】
上記塗液(I)を、アルミニウム基材(49.5mm*100mm*3.0mm)に乾燥膜厚が2μmになるようにエアスプレ−法にて塗布し、170℃×30分加熱乾燥させて成膜した。この被膜の鉛筆硬度は5Hであった。
【0036】
また成膜後、NOx分解率を測定した。NOx分解率の評価には、島津製作所(株)製環境試験機「環境大気測定用窒素酸化物計CLAD-1000」を用いて、NO濃度2ppmの標準ガスで校正したNOxガス(NOガス濃度1ppm)を2L/min流し、AM1.5のハロゲン100W人口太陽灯を照射しながらNOxガスの分解率を評価した。その結果、NOx分解率81%を得た。
同様に、発泡アルミニウムを基材に用いて上記塗液(I)を成膜し、NOxガスの分解率を評価したところ、見かけの表面積が増大する効果により、NOx分解率98%以上を達成できた。
実施例2
作成例2で得た固形分濃度1%のペルオキソチタン酸水溶液▲2▼25部に、「NTB−200」(昭和電工社製、ブルッカイト型光触媒酸化チタン、2.5%水分散ゾル)100部を加え、振とうした後、80℃・4時間の条件で加熱処理した。次いでこの中に、固形分濃度1%のペルオキソチタン酸水溶液▲2▼75部、アセトアニリド0.001部を加えて30分間振とうした後、光触媒膜形成用塗布剤(II)を得た。
【0037】
この塗液(II)を、ITO透明導電ガラス基材(50*100mm*2mm)に乾燥膜厚が0.1μmになるようにエアスプレ−法にて塗布し、150℃×30分加熱乾燥させて成膜後、1%メチレンブル−水溶液に10分間含浸させて、メチレンブル−を吸着させた。残余色素をろ紙に吸い取らせて除去し、青色に汚染させた評価基板を得た。27W蛍光灯スタンド(距離30cm)を照射しながらメチレンブル−の光分解性を評価した。その結果、30時間でメチレンブル−が分解した。
この光触媒塗膜は光線透過率が95%で透明性があり、ITO導電膜の電磁波反射により、32デシベルのシ−ルド特性が得られた。これにより携帯電話の受発信制御が可能である。
【0038】
同様に、両面ITOスパッタ導電ガラスを基材に用いて上記塗液(II)を塗布し成膜したところ、45デシベルのシールド特性が得られた。これにより無線LANの情報漏洩を防止可能である。
実施例3
上記作成例3で得た固形分濃度2%のペルオキソチタン酸水溶液▲3▼20部に、「ナノピュアDR35PT30」(大研化学工業社製、ナノ粒子白金担持ルチル型酸化チタン光触媒)3部、タルク0.5部、赤弁柄0.1部、およびアルミナビ−ズを加え、2時間振とう分散した後、90℃・6時間の条件で加熱処理した。
【0039】
次いでこの中に、上記固形分濃度1%のペルオキソチタン酸水溶液▲3▼80部および10%過酸化水素水10部、ブチルセロソルブ0.2部を加え、15分振とうした後に溶液とビ−ズを分離排出し、光触媒膜形成用塗布剤(III)を得た。
【0040】
予めプラズマ処理により表面親水化処理を施したPETフィルム(50mm*50mm*0.1mm)表面に、上記固形分濃度1%のペルオキソチタン酸水溶液▲2▼を乾燥膜厚が0.2μmになるように塗布し、120℃×10分間加熱乾燥させた後、その上に上記で得た塗液(III)を乾燥膜厚が1μmになるようにロ−ルコ−タ−法にて塗布し、180℃×1分加熱乾燥させて、多孔質可視光光触媒フィルムを得た。このフィルムを500mlのガラス容器に入れ、27W蛍光灯スタンド(距離30cm)で照射しながら、アセトアルデヒド300ppmを含むエア−を循環させながら、10分おきにガスを抜き取り、ガスクロマトグラフィ−によりアルデヒド濃度を測定した。その結果、12時間でアセトアルデヒド濃度が1ppm以下になり、アルデヒドの光分解能を確認することが出来た。
実施例4
作成例1で得た固形分濃度3%のペルオキソチタン酸水溶液▲1▼20部に、「AMT−600」(テイカ社製、アナターゼ型酸化チタン)7部およびアルミナビ−ズを加え、2時間振とう分散した後、150℃・30分間の条件で加熱処理した。
【0041】
次いでこの中に、上記固形分濃度3%のペルオキソチタン酸水溶液80部を加え、15分振とうした後に溶液とビ−ズを分離排出し、光触媒膜形成用塗液(IV)を得た。
【0042】
この塗液(VI)を、アルミ基材(49.5mm*100mm*3.0mm)に乾燥膜厚が2μmになるようにエアスプレ−法にて塗布し、170℃×30分加熱乾燥させて成膜した。この皮膜は、鉛筆高度が5Hであった。また、がくしん式磨耗試験機にて荷重200gで繰り返し20回磨耗試験を行い、異常がないことを確認した。
また成膜後、NOx分解能を測定した。NOx分解率の評価には島津製作所(株)製環境試験機を用い、NO濃度2ppmの標準ガスで校正したNOxガス(NOガス濃度1ppm)を2L/min流し、紫外線強度:0.8mW/cmのブラックライトで紫外線を照射しながらNOxガスの分解率を評価した。その結果、NOx分解率87%であった。
【0043】
比較例1
固形分濃度3%のアナタ−ゼ型酸化チタンゾル水溶液20部に、「MPT−621」(石原産業社製、可視光応答型光触媒酸化チタン)7部およびアルミナビ−ズを加え、2時間振とう分散し、さらに固形分濃度3%のアナタ−ゼ型酸化チタンゾル水溶液80部を加え、15分振とうした後に溶液とビ−ズを分離排出し、光触媒膜形成用塗液(V)を得た。
【0044】
この塗液(V)を、アルミ基材(49.5mm*100mm*3.0mm)に乾燥膜厚が2μmになるようにエアスプレ−法にて塗布し、170℃×30分加熱乾燥させたが、膜が脆く、振動や基材を傾けると皮膜が剥がれ落ち、評価に供し得なかった。
比較例2
作成例1で得た固形分濃度3%のペルオキソチタン酸水溶液▲1▼100部に、「AMT−600」(テイカ社製、アナターゼ型酸化チタン)7部およびアルミナビ−ズを加え、2時間振とう分散した後に溶液とビ−ズを分離排出し、光触媒膜形成用塗液(VI)を得た。
【0045】
この塗液(VI)を、アルミ基材(49.5mm*100mm*3.0mm)に乾燥膜厚が2μmになるようにエアスプレ−法にて塗布し、170℃×30分加熱乾燥させて成膜した。この皮膜は、鉛筆高度が2Bであった。また、がくしん式磨耗試験機にて荷重200gで繰り返し20回磨耗試験を行なったところ、アルミ面が露出した。また成膜後、NOx分解能を測定した。NOx分解率の評価には島津製作所(株)製環境試験機を用い、NO濃度2ppmの標準ガスで校正したNOxガス(NOガス濃度1ppm)を2L/min流し、紫外線強度:0.8mW/cmのブラックライトで紫外線を照射したところ、NOx分解率87%であった。
【0046】
【発明の効果】
本発明では、バインダ−であるペルオキソチタン酸水溶液がチタンと酸素が主成分であるため、特に加熱等により皮膜化した場合、その純度が高く、堅ろうな無機皮膜を形成し得る。また、この皮膜は光触媒反応により生成するラジカルにより光分解等の悪影響を受けない利点がある。さらに、光触媒粉末に対し予めバインダ−であるペルオキソチタン酸水溶液によるヒドロキシチタン酸層を形成しておくため、塗布後の加熱乾燥時にバインダ−であるペルオキソチタン酸に光触媒粉末の表面とが反応し、一体化した強固な無機コンポジット皮膜となると推測される。
【0047】
特に本発明においては、光触媒酸化チタン粉末の含有量が臨界濃度CPVC(Critical Pigment Volume Concentration)を超えても、上記バインダ−と粉末の一体化によって堅ろうな皮膜となり得る。得られる皮膜は、チタンと酸素の結合エネルギーが光触媒の反応エネルギーよりも大きく、光触媒作用によって劣化を受けない耐光性に優れた膜となる。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a coating agent for forming a photocatalyst film that can form a photocatalyst film exhibiting an excellent photocatalytic action when irradiated with light, even if it contains a high concentration photocatalyst, and the film does not become brittle.
[0002]
[Prior art]
When a semiconductor is irradiated with ultraviolet rays, electrons having a strong reducing action and holes having a strong oxidizing action are generated, and molecular species in contact with the semiconductor are decomposed by the redox action. Such an action is called a photocatalytic action, and various measures for utilizing this photocatalytic action have been proposed in recent years. Specifically, decomposition of NOx in the atmosphere, prevention of contamination, decomposition and removal of malodorous substances and molds in living spaces and work spaces, or decomposition and removal of environmental pollutants such as organic solvents, pesticides and surfactants in water It is an application to. Titanium oxide attracts attention as a substance having such a photocatalytic action, and a photocatalyst made of titanium oxide is commercially available. In recent years, various studies have been made on not only a photocatalyst utilizing an ultraviolet region but also a photocatalyst exhibiting a high photocatalytic action when irradiated with visible light.
[0003]
Since such a photocatalytic action is obtained on the contact surface with the photocatalyst body, when the photocatalytic film is formed on the substrate surface, it is very high in the binder component in order to maximize its function. Although it is necessary to contain the photocatalyst at a concentration, the physical properties of the film become insufficient, such as the film becoming brittle with a normal organic binder component, and long-term durability could not be obtained. Therefore, the present applicant has proposed to use peroxotitanic acid having light resistance as a binder component (see, for example, Patent Document 1).
[0004]
[Patent Document 1]
Japanese Patent Laid-Open No. 2002-144543
[Problems to be solved by the invention]
When peroxotitanic acid or the like is used as a binder component, it is excellent in long-term light resistance, but it cannot be said that the film properties and the storage stability of the coating solution are sufficient.
[0006]
The object of the present invention is to form a photocatalyst film that solves the above-mentioned problems and can form a photocatalyst film exhibiting an excellent photocatalytic action when irradiated with light without the film becoming brittle even if a high concentration photocatalyst is included. It is to provide a coating agent.
[0007]
[Means for Solving the Problems]
That is, the present invention
1. (A) A peroxotitanic acid aqueous solution obtained by mixing a titanium hydroxide compound or a hydrolyzable titanium compound and / or a low condensate thereof with hydrogen peroxide, and (B) a photocatalyst powder, B) mixes a part of the peroxotitanic acid aqueous solution (A) with the photocatalyst powder (B) at a solid content weight ratio of 1/200 to 10/100, and heats to react reactive hydroxy on the surface of the photocatalyst powder. A coating agent for forming a photocatalyst film, wherein a titanic acid group is previously formed;
2. The peroxotitanic acid aqueous solution (A) contains a titanium hydroxide compound or a hydrolyzable titanium compound and / or a low condensate thereof and a hydrogen peroxide solution, and the latter is 1 in terms of hydrogen peroxide with respect to 100 parts by weight of the former. The coating agent for forming a photocatalyst film according to claim 1, wherein the coating agent is mixed at a ratio of 1 to 10,000 parts by weight.
3. 2. The coating agent for forming a photocatalyst film according to 1, which contains the aqueous peroxotitanic acid solution (A) and the photocatalyst powder (B) at a solid content weight ratio of 100/10 to 100/500,
4). 5. The photocatalyst film-forming coating agent according to any one of 1 to 4 is applied to the substrate surface and dried to react at least part of the particle surface of the peroxotitanic acid as a binder and the photocatalyst powder (B). A method for forming an integrated photocatalytic film,
5. Articles formed by forming the photocatalyst film according to item 4 on the substrate surface,
About.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, the peroxotitanic acid aqueous solution (A) is obtained by mixing a titanium hydroxide compound or a hydrolyzable titanium compound and / or a low condensate thereof with a hydrogen peroxide solution.
As the hydrolyzable titanium compound, in particular, the general formula (I)
Ti (OR) 4 (I)
(Wherein, R is the same or different and represents an alkyl group having 1 to 5 carbon atoms). Moreover, as a low-condensate of a titanium hydroxide compound or a hydrolyzable titanium compound, a thing with a condensation degree of about 2-30 is preferable.
[0009]
In the peroxotitanic acid aqueous solution (A), the titanium hydroxide compound or the hydrolyzable titanium compound and / or the low condensate thereof and the hydrogen peroxide solution consist of 100 parts by weight of the former and hydrogen peroxide of the latter. It is suitable to mix in the ratio of 1 to 1,000 parts by weight, preferably 10 to 200 parts by weight. If the latter is less than 1 part by weight in terms of hydrogen peroxide, a stable and uniform aqueous solution cannot be obtained, and long-term storage becomes difficult. On the other hand, if it exceeds 1,000 parts by weight, the oxygen partial pressure becomes high and the foamability is strong. Since it becomes unstable storage, it is not preferable.
[0010]
The hydrogen peroxide concentration of the hydrogen peroxide solution is not particularly limited, but is preferably in the range of 3 to 30% by weight from the viewpoint of ease of handling.
[0011]
The mixing of the titanium hydroxide compound or hydrolyzable titanium compound and / or the low condensate thereof with hydrogen peroxide is usually preferably performed at about 1 to 70 ° C. with stirring for about 10 minutes to 20 hours. When mixing, a water-soluble organic solvent such as, for example, alcohols such as methanol, ethanol, n-propanol, iso-isopropanol; alcohol ethers such as ethylene glycol monobutyl ether and propylene glycol monomethyl ether may be used. It can also be used.
[0012]
The aqueous peroxotitanic acid solution (A) is obtained by mixing a titanium hydroxide compound or a hydrolyzable titanium compound and / or a low condensate thereof with hydrogen peroxide solution, whereby the former is hydrolyzed with water and hydroxyl group-containing titanium. It is presumed that this is obtained by forming a compound and then immediately coordinating hydrogen peroxide to this hydroxyl group-containing titanium compound to form peroxotitanic acid. This aqueous solution of peroxotitanic acid (A) is highly stable at room temperature and can withstand long-term storage.
[0013]
If necessary, at least one compound selected from acetanilide, phenacetin, and oxyquinoline may be added to the aqueous peroxotitanic acid solution (A) to improve storage stability. The addition amount of the compound is preferably in the range of 0.01 to 20 parts by weight, particularly 0.2 to 2.0 parts by weight with respect to 100 parts by weight of the solid content of (A).
[0014]
As the photocatalyst powder (B) in the present invention, any conventionally known photocatalyst powder can be used without particular limitation as long as it can absorb ultraviolet light and / or visible light to express a photocatalytic action. For example, titanium oxide, Examples of the oxide semiconductor include tungsten oxide, zinc oxide, hafnium oxide, zirconium oxide, strontium titanate, titanium oxide-zirconium oxide composite oxide, and silicon oxide-titanium oxide composite oxide. Vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), ruthenium (Ru), rhodium (Rh), Rhenium (Re), osmium (Os), palladium (Pd), platinum (Pt), iridium (Ir), niobium (Nb), molybdenum At least one metal compound of the emissions (Mo) is also mentioned those carried, they can be used alone or in combination with, the powder is preferable to particularly mainly of titanium oxide.
[0015]
The powder mainly composed of titanium oxide is any one of anatase type, rutile type, brookite type, and Cr, Ru, V, Nb, Fe, Ni, Cu, Mg, Ag on the surface as required. , Titanium oxide carrying or containing at least one metal fine particle selected from the group consisting of Mn, Pd and Pt; titanium oxide carrying or containing a platinum halide compound such as a platinum chloride compound on the surface; or stable oxygen A main signal having a g value of 2.004 to 2.007 in a measurement with an electron spin resonance spectrum (measured under light irradiation in a wavelength region of 420 nm or more), and g of 1.985. ˜1.986, and titanium oxide in which two side signals having a g value of 2.024 are observed.
[0016]
In the present invention, the photocatalyst powder (B) comprises a part of the aqueous peroxotitanic acid solution (A) and the photocatalyst powder (B) in a solid content weight ratio of 1/200 to 10/100, preferably 1/100. It is essential that a reactive hydroxytitanium group is previously formed on the surface of the photocatalyst powder by mixing and heating at a ratio of ˜5 / 100. As heating conditions, it is desirable to carry out at 40 to 250 ° C. for about 24 to 1 hour. As a result, after the film is formed, the condensation reaction of the reactive hydroxytitanium group on the surface of the photocatalyst powder and the peroxotitanic acid of the binder proceeds by drying, thereby producing an effect that a strong integrated film can be formed. Further, since the surface of the photocatalyst powder has a hydrophilic and sterically hindered functional group called a peroxo group, the reactive hydroxytitanium group can be protected and the storage stability can be dramatically improved in the coating solution.
[0017]
In the present invention, the peroxotitanic acid aqueous solution (A) and the photocatalyst powder (B) treated as described above are in a ratio of 100/10 to 100/500, preferably 100/50 to 100/300 in terms of solid content by weight. It is suitable to contain. If the amount of the component (A) is small outside this range (the component (B) is large), the resulting coating is brittle, the photocatalyst powder (B) tends to deviate, and eventually the long-term photocatalytic performance cannot be maintained. ) If the component is large (the component (B) is small), the photocatalytic reaction that occurs on the powder surface is inhibited, which is not preferable.
[0018]
The mixing of the peroxotitanic acid aqueous solution (A) and the photocatalyst powder (B) may be performed by performing a dispersion treatment so that the dispersed particle diameter of the component (B) is about 10 nm to 10 μm, preferably about 10 nm to 1 μm. It is desirable from the viewpoint of securing.
[0019]
The photocatalyst film-forming coating agent of the present invention contains the above components (A) and (B), and can further contain various additives as necessary. For example, an organic acid and / or a salt thereof May be added from the viewpoint of storage stability. Examples of the organic acid include organic carboxylic acids such as acetic acid, oxalic acid, glycolic acid, lactic acid, malic acid, citric acid, tartaric acid, and gluconic acid; organic sulfonic acids such as methanesulfonic acid, ethanesulfonic acid, and p-benzenesulfonic acid. Acid; organic sulfinic acid such as 2-amino-ethanesulfinic acid and p-toluenesulfinic acid; organic nitro compounds such as nitromethane, nitroethane, nitropropionic acid, nitrocatechol, 2-nitroresorcinol, nitrobenzoic acid; phenol, catechol , Resorcinol, hydroquinone, pyrogallol, salicylic acid, gallic acid, benzoic acid, thiophenol, 2-aminothiophenol, 4-ethylthiophenol and other phenols; 1-hydroxymethane-1, 1-diphosphonic acid, 1-hydroxyethane -1, 1 Diphosphonic acid, 1-hydroxypropane-1, 1-diphosphonic acid, nitrilo (amino) trimethylenephosphonic acid, nitrilo (amino) triethylenephosphonic acid, nitrilo (amino) tripropylenephosphonic acid, ethylenediaminetetramethylenephosphonic acid, ethylenediaminetetra Hydrolyzate of ethylenephosphonic acid, ethylenediaminetetrapropylenephosphonic acid, N, N-bis (2-phosphoethyl) hydroxyamine, N, N-bis (2-phosphomethyl) hydroxyamine, 2-hydroxyethylphosphonic acid dimethyl ether, 2- And organic phosphoric acid compounds such as hydroxyphosphonoacetic acid and 2-phosphonobutane-1,2,4-tricarboxylic acid.
[0020]
Moreover, as an organic acid salt, the salt of the organic acid formed by adding an alkali compound to the said organic acid can be used. Examples of the alkali compound include organic or inorganic alkali compounds containing lithium, sodium, potassium, ammonium and the like.
[0021]
As the organic acid or the organic acid salt, it is preferable to use those that are soluble in water. In particular, hydroxycarboxylic acids such as glycolic acid, lactic acid, malic acid, citric acid, tartaric acid, and gluconic acid; 1-hydroxymethane -1,1-diphosphonic acid, 1-hydroxyethane-1,1-diphosphonic acid, 1-hydroxypropane-1, hydroxyphosphorus-containing organic phosphorous acid such as 1-diphosphonic acid; 2-hydroxyphosphonoacetic acid, 2- Use of at least one compound selected from the group consisting of carboxyl group-containing organic phosphorous acid such as phosphonobutane-1,2,4-tricarboxylic acid and salts thereof, and the effect excellent in storage stability of the coating agent Is preferable.
[0022]
The amount of the organic acid and / or organic acid salt added to the coating agent of the present invention is usually in the range of about 1 to 400 parts by weight, particularly 10 parts per 100 parts by weight of the solid content of (A). The range is preferably about 200 parts by weight.
[0023]
The coating agent of the present invention may further contain a basic neutralizing agent such as ammonia, an organic basic compound, an alkali metal hydroxide, or an alkaline earth metal hydroxide, if necessary. Examples of the organic basic compound include dimethylethanolamine, 2-amino-2-methyl-1-propanol, triethylamine, and morpholine. Examples of the alkali metal hydroxide include lithium hydroxide and sodium hydroxide. And potassium hydroxide.
[0024]
In the coating agent of the present invention, if necessary, for example, a thickener, an organic solvent, a surfactant, a fungicide, a rust inhibitor, a lubricant, an antifoaming agent, a leveling agent, a coloring pigment, an extender pigment, An antirust pigment etc. can be mentioned. Examples of the color pigment include Bengala and colored glass frit powder, and examples of the extender pigment include mica, talc, silica, fine silica, barita, and clay.
[0025]
The coating agent for forming a photocatalyst film of the present invention is a photocatalyst film in which peroxotitanic acid as a binder and at least part of the particle surface of the photocatalyst powder (B) react and are integrated by applying and drying on a substrate surface. Can be formed. In particular, in order to integrate both components, it is desirable to heat, for example, drying at 40 ° C. to 250 ° C., preferably 80 to 200 ° C., microwave heating, microwave induction heating and the like are desirable.
[0026]
Although the film thickness of the photocatalyst film | membrane formed is not specifically limited, Usually, it is preferable that it is about 0.001-20 micrometers, and it is more preferable that it is the range of 0.1-15 micrometers. Also, a uniform and dense titanium oxide porous film having a thickness of 1 μm or more, which is excellent in adhesion and hardly peeled off, can be formed usually by a single application. Of course, you may apply | coat several times as needed.
[0027]
Application to the substrate surface is not particularly limited, and may be a known coating method. As the coating method, for example, various coating methods such as printing coating, knife coater coating, doctor blade coating, immersion coating, shower coating, spray coating, roll coating, and electrodeposition coating can be employed. Moreover, it is good also as an impregnation to the base-material surface.
[0028]
As said base material, the thing of all materials, such as a metal, ceramics, plastics, a fiber, glass, concrete, can be used, for example. For materials such as plastics and fibers that are decomposable by photocatalysis, do not apply to the surface of the material in advance using an insulating treatment film from photocatalysis, such as silicates such as silicates or peroxotitanic acid. These films can be formed by impregnation treatment. Also, the shape of the substrate may be any shape such as a plate shape, a spherical shape, a rectangular parallelepiped shape, and a cylindrical shape. Furthermore, it is also possible to use a porous body, powder, or the like as the base material to perform internal treatment or surface treatment of the porous body, or surface treatment of the powder. Examples of the porous body include a foam, a honeycomb structure, a corrugated structure, and the like. Examples of the powder include extender pigments such as mica, talc, silica, barium sulfate, and clay, and colored pigments such as petals, cobalt blue, and colored glass frit pigments intended for coloring.
Specific examples of the substrate surface include interior and exterior surfaces of buildings, window glass surfaces, curtains, road protection walls and tunnel inner walls, vehicle interior surfaces, window glasses, and mirror surfaces.
[0029]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. “Parts” and “%” are both based on weight.
[0030]
Preparation of peroxotitanic acid aqueous solution (A) Preparation Example 1
A mixture of 10 parts of tetraiso-propoxytitanium and 10 parts of iso-propanol was dropped into a mixture of 10 parts of 30% hydrogen peroxide and 100 parts of deionized water at 20 ° C. over 1 hour with ultrasonic stirring. Thereafter, aging was carried out at 25 ° C. for 2 hours to obtain a yellow transparent slightly viscous peroxotitanic acid aqueous solution. This was diluted with water to obtain a peroxotitanic acid aqueous solution (1) having a solid concentration of 3%.
[0031]
Creation example 2
A mixture of 10 parts of tetra-n-butoxytitanium and 10 parts of iso-propanol was dropped into a mixture of 20 parts of 30% hydrogen peroxide and 100 parts of deionized water at 20 ° C. over 1 hour with ultrasonic stirring. . Thereafter, aging was carried out at 25 ° C. for 2 hours to obtain a yellow transparent slightly viscous peroxotitanic acid aqueous solution. This was diluted with water to obtain a peroxotitanic acid aqueous solution (2) having a solid concentration of 1%.
[0032]
Creation example 3
A mixture of 10 parts of tetraethoxytitanium and 15 parts of methoxyethanol was dropped into a mixture of 20 parts of 30% aqueous hydrogen peroxide and 100 parts of deionized water at 20 ° C. over 1 hour with ultrasonic stirring. Thereafter, aging was carried out at 25 ° C. for 2 hours to obtain a yellow transparent slightly viscous peroxotitanic acid aqueous solution. This was diluted with water to obtain a peroxotitanic acid aqueous solution (3) having a solid content concentration of 2%.
[0033]
Preparation and evaluation of coating agent for photocatalyst film formation Example 1
To 20 parts of the peroxotitanic acid aqueous solution (1) having a solid content concentration of 3% obtained in Preparation Example 1 above, 7 parts of “MPT-621” (manufactured by Ishihara Sangyo Co., Ltd., visible light responsive photocatalytic titanium oxide) and alumina beads The mixture was shaken and dispersed for 2 hours, and then heat-treated at 150 ° C. for 30 minutes.
[0034]
Next, 80 parts of a peroxotitanic acid aqueous solution (1) having a solid content concentration of 3% was added thereto, and after shaking for 15 minutes, the solution and beads were separated and discharged to obtain a photocatalyst film-forming coating agent (I). It was.
[0035]
The coating liquid (I) was applied to an aluminum substrate (49.5 mm * 100 mm * 3.0 mm) by an air spray method so that the dry film thickness was 2 μm, and was heated and dried at 170 ° C. for 30 minutes to form a film. . The pencil hardness of this coating was 5H.
[0036]
Further, after the film formation, the NOx decomposition rate was measured. The NOx decomposition rate was evaluated using an NOx gas (NO gas concentration of 1 ppm) calibrated with a standard gas having a NO concentration of 2 ppm using an environmental tester “nitrogen oxide meter CLAD-1000 for atmospheric measurement” manufactured by Shimadzu Corporation. ) At a flow rate of 2 L / min, and the decomposition rate of NOx gas was evaluated while irradiating an AM1.5 halogen 100 W artificial solar lamp. As a result, an NOx decomposition rate of 81% was obtained.
Similarly, when the coating liquid (I) was formed into a film using foam aluminum as a base material and the decomposition rate of NOx gas was evaluated, the NOx decomposition rate of 98% or more could be achieved due to the effect of increasing the apparent surface area. It was.
Example 2
100 parts of “NTB-200” (made by Showa Denko KK, brookite-type photocatalytic titanium oxide, 2.5% water dispersion sol) is added to 25 parts of the peroxotitanic acid aqueous solution (2) having a solid content concentration of 1% obtained in Preparation Example 2. And shaken, and then heat-treated at 80 ° C. for 4 hours. Next, 75 parts of a peroxotitanic acid aqueous solution (2) having a solid content concentration of 1% and 0.001 part of acetanilide were added and shaken for 30 minutes to obtain a coating agent (II) for forming a photocatalyst film.
[0037]
This coating solution (II) was applied to an ITO transparent conductive glass substrate (50 * 100 mm * 2 mm) by an air spray method so that the dry film thickness was 0.1 μm, and dried by heating at 150 ° C. for 30 minutes. After film formation, 1% methylene blue aqueous solution was impregnated for 10 minutes to adsorb methylene blue. The remaining dye was absorbed by filter paper and removed to obtain an evaluation substrate contaminated in blue. The photodegradability of methylene blue was evaluated while irradiating a 27 W fluorescent lamp stand (distance 30 cm). As a result, methylene blue was decomposed in 30 hours.
This photocatalyst coating film had a light transmittance of 95% and was transparent, and a 32 dB shield characteristic was obtained by electromagnetic wave reflection of the ITO conductive film. As a result, it is possible to control the transmission / reception of the mobile phone.
[0038]
Similarly, when the above coating liquid (II) was applied using a double-sided ITO sputtered conductive glass as a base material and formed into a film, a shield characteristic of 45 dB was obtained. As a result, information leakage of the wireless LAN can be prevented.
Example 3
To 20 parts of the peroxotitanic acid aqueous solution (3) having a solid content concentration of 2% obtained in Preparation Example 3 above, 3 parts of “Nanopure DR35PT30” (Daiken Chemical Co., Ltd., nanoparticle platinum-supported rutile titanium oxide photocatalyst), talc 0.5 parts, 0.1 part of red petite, and alumina beads were added and shake-dispersed for 2 hours, followed by heat treatment at 90 ° C. for 6 hours.
[0039]
Next, 80 parts of the above-mentioned aqueous solution of peroxotitanic acid (3) having a solid content concentration of 1%, 10 parts of 10% hydrogen peroxide solution and 0.2 parts of butyl cellosolve were added, and the mixture was shaken for 15 minutes. Were separated and discharged to obtain a photocatalyst film-forming coating agent (III).
[0040]
On the surface of a PET film (50 mm * 50 mm * 0.1 mm) that has been subjected to surface hydrophilization treatment by plasma treatment in advance, the above-mentioned aqueous solution of peroxotitanic acid (2) having a solid content of 1% is dried to a thickness of 0.2 μm. And then dried by heating at 120 ° C. for 10 minutes, and then the coating liquid (III) obtained above is applied thereon by a roll coater method so that the dry film thickness becomes 1 μm. The porous visible light photocatalyst film was obtained by heating and drying at 1 ° C. for 1 minute. Put this film in a 500ml glass container, irradiate it with a 27W fluorescent lamp stand (distance 30cm), circulate air containing 300ppm of acetaldehyde, extract gas every 10 minutes, and measure the aldehyde concentration by gas chromatography. did. As a result, the acetaldehyde concentration became 1 ppm or less in 12 hours, and the optical resolution of the aldehyde could be confirmed.
Example 4
7 parts of “AMT-600” (manufactured by Teika, anatase-type titanium oxide) and alumina beads were added to 20 parts of the peroxotitanic acid aqueous solution (1) having a solid content concentration of 3% obtained in Preparation Example 1 for 2 hours. After shaking and dispersing, heat treatment was performed at 150 ° C. for 30 minutes.
[0041]
Next, 80 parts of the above-mentioned peroxotitanic acid aqueous solution having a solid content concentration of 3% was added thereto, and after shaking for 15 minutes, the solution and beads were separated and discharged to obtain a coating solution (IV) for forming a photocatalyst film.
[0042]
This coating liquid (VI) was applied to an aluminum substrate (49.5 mm * 100 mm * 3.0 mm) by an air spray method so that the dry film thickness was 2 μm, and was heated and dried at 170 ° C. for 30 minutes to form a film. . This film had a pencil height of 5H. In addition, a wear test was repeatedly performed 20 times with a load of 200 g using a gag type wear tester, and it was confirmed that there was no abnormality.
Further, after the film formation, the NOx resolution was measured. For the evaluation of NOx decomposition rate, an environmental tester manufactured by Shimadzu Corporation was used, a NOx gas calibrated with a standard gas having a NO concentration of 2 ppm (NO gas concentration of 1 ppm) was flowed at 2 L / min, and an ultraviolet intensity was 0.8 mW / cm. The decomposition rate of NOx gas was evaluated while irradiating ultraviolet light with a black light of No. 2 . As a result, the NOx decomposition rate was 87%.
[0043]
Comparative Example 1
To 20 parts of an anatase-type titanium oxide sol aqueous solution having a solid content concentration of 3%, 7 parts of “MPT-621” (manufactured by Ishihara Sangyo Co., Ltd., visible light responsive photocatalytic titanium oxide) and alumina beads are added and shaken for 2 hours. Further, 80 parts of an anatase-type titanium oxide sol aqueous solution with a solid content concentration of 3% was added, and after shaking for 15 minutes, the solution and beads were separated and discharged to obtain a photocatalyst film-forming coating liquid (V). .
[0044]
This coating liquid (V) was applied to an aluminum substrate (49.5 mm * 100 mm * 3.0 mm) by an air spray method so that the dry film thickness was 2 μm, and dried by heating at 170 ° C. for 30 minutes. The film was fragile, and when the vibration or the substrate was tilted, the film peeled off and could not be evaluated.
Comparative Example 2
7 parts of “AMT-600” (manufactured by Teika Co., Ltd., anatase type titanium oxide) and alumina beads were added to 100 parts of an aqueous solution of peroxotitanic acid having a solid content concentration of 3% obtained in Preparation Example 1 for 2 hours. After shaking and dispersing, the solution and beads were separated and discharged to obtain a photocatalyst film-forming coating liquid (VI).
[0045]
This coating liquid (VI) was applied to an aluminum substrate (49.5 mm * 100 mm * 3.0 mm) by an air spray method so that the dry film thickness was 2 μm, and was heated and dried at 170 ° C. for 30 minutes to form a film. . This film had a pencil height of 2B. Moreover, when the abrasion test was repeatedly performed 20 times with a load of 200 g using a galvan type abrasion tester, the aluminum surface was exposed. Further, after the film formation, the NOx resolution was measured. For the evaluation of NOx decomposition rate, an environmental tester manufactured by Shimadzu Corporation was used, a NOx gas calibrated with a standard gas having a NO concentration of 2 ppm (NO gas concentration of 1 ppm) was flowed at 2 L / min, and an ultraviolet intensity was 0.8 mW / cm. When the ultraviolet light was irradiated with the black light of No. 2 , the NOx decomposition rate was 87%.
[0046]
【The invention's effect】
In the present invention, since the aqueous solution of peroxotitanic acid, which is a binder, contains titanium and oxygen as main components, particularly when it is formed into a film by heating or the like, it can form an inorganic film having a high purity and rigidity. Further, this film has an advantage that it is not adversely affected by photodegradation or the like by radicals generated by the photocatalytic reaction. Furthermore, in order to form a hydroxytitanic acid layer with a peroxotitanic acid aqueous solution that is a binder in advance with respect to the photocatalyst powder, the surface of the photocatalyst powder reacts with the peroxotitanic acid that is the binder during heating and drying after coating, It is presumed to be an integrated strong inorganic composite film.
[0047]
In particular, in the present invention, even if the content of the photocatalytic titanium oxide powder exceeds a critical concentration CPVC (Critical Pigment Volume Concentration), a solid film can be formed by the integration of the binder and the powder. The resulting coating has a light resistance that is higher than the photocatalytic action because the binding energy of titanium and oxygen is larger than the photocatalytic reaction energy, and has excellent light resistance.

Claims (5)

(A)水酸化チタン化合物もしくは加水分解性チタン化合物及び/又はそれらの低縮合物を過酸化水素水と混合して得られるペルオキソチタン酸水溶液、及び(B)光触媒粉末を含有する塗布剤であって、光触媒粉末(B)が、ペルオキソチタン酸水溶液(A)の一部と光触媒粉末(B)とを固形分重量比で1/200〜10/100の割合で混合し加熱して、光触媒粉末表面に反応性ヒドロキシチタン基が予め形成されているものであることを特徴とする光触媒膜形成用塗布剤。A coating agent containing (A) a peroxotitanic acid aqueous solution obtained by mixing a titanium hydroxide compound or a hydrolyzable titanium compound and / or a low condensate thereof with hydrogen peroxide, and (B) a photocatalyst powder. The photocatalyst powder (B) is prepared by mixing a part of the peroxotitanic acid aqueous solution (A) and the photocatalyst powder (B) at a solid content weight ratio of 1/200 to 10/100, and heating the mixture. A coating agent for forming a photocatalyst film, wherein a reactive hydroxytitanium group is previously formed on the surface. ペルオキソチタン酸水溶液(A)が、水酸化チタン化合物もしくは加水分解性チタン化合物及び/又はそれらの低縮合物と過酸化水素水とを、前者100重量部に対して後者が過酸化水素換算で1〜10,00重量部の割合で混合してなる請求項1記載の光触媒膜形成用塗布剤。The peroxotitanic acid aqueous solution (A) contains a titanium hydroxide compound or a hydrolyzable titanium compound and / or a low condensate thereof and a hydrogen peroxide solution, and the latter is 1 in terms of hydrogen peroxide with respect to 100 parts by weight of the former. The coating agent for forming a photocatalyst film according to claim 1, wherein the coating agent is mixed at a ratio of 1 to 10,000 parts by weight. ペルオキソチタン酸水溶液(A)と光触媒粉末(B)とを、固形分重量比で100/10〜100/500の割合で含有する請求項1記載の光触媒膜形成用塗布剤。The coating agent for photocatalyst film formation of Claim 1 which contains peroxotitanic acid aqueous solution (A) and photocatalyst powder (B) in the ratio of 100/10-100/500 by solid content weight ratio. 基材面に、請求項1ないし3のいずれか1項記載の光触媒膜形成用塗布剤を塗布、乾燥して、バインダーであるペルオキソチタン酸と光触媒粉末(B)の粒子表面の少なくとも一部を反応せしめて一体化した光触媒膜の形成方法。4. The photocatalyst film-forming coating agent according to any one of claims 1 to 3 is applied to a substrate surface and dried, so that at least a part of the particle surface of peroxotitanic acid as a binder and photocatalyst powder (B) is coated. A method of forming a photocatalyst film integrated by reaction. 基材面に、請求項4記載の光触媒膜を形成してなる物品。An article formed by forming the photocatalyst film according to claim 4 on a substrate surface.
JP2003032895A 2003-02-10 2003-02-10 Coating material for forming photocatalyst film Pending JP2006182791A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003032895A JP2006182791A (en) 2003-02-10 2003-02-10 Coating material for forming photocatalyst film
PCT/JP2004/001366 WO2004069946A1 (en) 2003-02-10 2004-02-10 Coating material for forming photocatalyst/titanium oxide composite film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003032895A JP2006182791A (en) 2003-02-10 2003-02-10 Coating material for forming photocatalyst film

Publications (1)

Publication Number Publication Date
JP2006182791A true JP2006182791A (en) 2006-07-13

Family

ID=32844354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003032895A Pending JP2006182791A (en) 2003-02-10 2003-02-10 Coating material for forming photocatalyst film

Country Status (2)

Country Link
JP (1) JP2006182791A (en)
WO (1) WO2004069946A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008231418A (en) * 2007-02-22 2008-10-02 Kansai Paint Co Ltd Coating material for forming titanium-zirconium film, method for forming titanium-zirconium film, metal substrate coated with titanium-zirconium film
JP2009135096A (en) * 2007-10-29 2009-06-18 Sumitomo Chemical Co Ltd Transparent electroconductive substrate and method of manufacturing the same
JP2010031125A (en) * 2008-07-28 2010-02-12 Sumitomo Chemical Co Ltd Precursor solution for film formation
JP2010234355A (en) * 2009-01-20 2010-10-21 Shin-Etsu Chemical Co Ltd Photocatalyst coating solution having excellent response to visible light
CN102614931A (en) * 2012-03-02 2012-08-01 湖州师范学院 Method for preparing modified nano TiO2-loaded polyhydroxybutyrate valerate (PHBV) membrane by solution pouring method
CN102974336A (en) * 2012-12-11 2013-03-20 常州大学 Method for preparing loaded photocatalyst film
JP2013209558A (en) * 2012-03-30 2013-10-10 Central Japan Railway Co Method for forming thin film
JP2015071128A (en) * 2013-10-02 2015-04-16 独立行政法人物質・材料研究機構 Production method of core-shell type photocatalyst, core-shell type photocatalyst, and water splitting method using core-shell type photocatalyst
CN104907086A (en) * 2015-05-21 2015-09-16 河南师范大学 Bionic synthesis method of flower-shaped bismuth phosphate photocatalyst with microscopic hierarchical structure

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3251167B2 (en) * 1996-02-09 2002-01-28 日本パーカライジング株式会社 Titanium oxide-based ceramic paint and method for producing the same
JP3690864B2 (en) * 1996-03-29 2005-08-31 株式会社ティオテクノ Production method of photocatalyst
JP2875993B2 (en) * 1996-05-07 1999-03-31 佐賀県 Anatase dispersion and method for producing the same
JP3791067B2 (en) * 1996-11-01 2006-06-28 旭硝子株式会社 Photocatalyst composition and glass article
JP4608042B2 (en) * 1999-09-16 2011-01-05 関西ペイント株式会社 Coating agent for forming inorganic film, method for producing the same, and method for forming the inorganic film
JP2001262005A (en) * 2000-03-16 2001-09-26 Toho Titanium Co Ltd Coating-film-forming composition, coating film, and coated article for photocatalyst
JP2002038054A (en) * 2000-05-16 2002-02-06 Kansai Paint Co Ltd Coating agent for forming titanium oxide film, method for forming titanium oxide film and photocatalyst
JP2002211927A (en) * 2001-01-12 2002-07-31 Kenichi Yamanaka Method for producing titanium dioxide dispersion
JP2002346393A (en) * 2001-05-22 2002-12-03 Kawasaki Steel Corp Photocatalyst and method for manufacturing the same
JP4139090B2 (en) * 2001-06-28 2008-08-27 触媒化成工業株式会社 Method for producing spherical particles with crystalline titanium oxide coating layer
JP2003055580A (en) * 2001-08-14 2003-02-26 Canon Ntc Inc Water-borne coating material, laminate, and method for producing the laminate
JP2003089521A (en) * 2001-09-14 2003-03-28 Kanagawa Acad Of Sci & Technol Fine oxide particle which suppresses generation of harmful substance in combustion and decomposes the substance, method for producing the fine particle, organic matter containing the fine particle, and method for disposing of organic matter using the fine particle
JP4072582B2 (en) * 2001-10-30 2008-04-09 株式会社デジック Coating agent
JP4118063B2 (en) * 2002-02-07 2008-07-16 多摩化学工業株式会社 Surface-modified titanium oxide and selective photolysis catalyst with selective photolysis reactivity
JP2003286577A (en) * 2002-03-28 2003-10-10 Hitachi Metals Ltd Method for manufacturing hydrophilic metal substrate

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008231418A (en) * 2007-02-22 2008-10-02 Kansai Paint Co Ltd Coating material for forming titanium-zirconium film, method for forming titanium-zirconium film, metal substrate coated with titanium-zirconium film
JP2009135096A (en) * 2007-10-29 2009-06-18 Sumitomo Chemical Co Ltd Transparent electroconductive substrate and method of manufacturing the same
JP2010031125A (en) * 2008-07-28 2010-02-12 Sumitomo Chemical Co Ltd Precursor solution for film formation
JP2010234355A (en) * 2009-01-20 2010-10-21 Shin-Etsu Chemical Co Ltd Photocatalyst coating solution having excellent response to visible light
JP2013150989A (en) * 2009-01-20 2013-08-08 Shin-Etsu Chemical Co Ltd Photocatalyst coating solution excellent in response to visible light
CN102614931A (en) * 2012-03-02 2012-08-01 湖州师范学院 Method for preparing modified nano TiO2-loaded polyhydroxybutyrate valerate (PHBV) membrane by solution pouring method
CN102614931B (en) * 2012-03-02 2014-05-14 湖州师范学院 Method for preparing modified nano TiO2-loaded polyhydroxybutyrate valerate (PHBV) membrane by solution pouring method
JP2013209558A (en) * 2012-03-30 2013-10-10 Central Japan Railway Co Method for forming thin film
CN102974336A (en) * 2012-12-11 2013-03-20 常州大学 Method for preparing loaded photocatalyst film
JP2015071128A (en) * 2013-10-02 2015-04-16 独立行政法人物質・材料研究機構 Production method of core-shell type photocatalyst, core-shell type photocatalyst, and water splitting method using core-shell type photocatalyst
CN104907086A (en) * 2015-05-21 2015-09-16 河南师范大学 Bionic synthesis method of flower-shaped bismuth phosphate photocatalyst with microscopic hierarchical structure

Also Published As

Publication number Publication date
WO2004069946A1 (en) 2004-08-19

Similar Documents

Publication Publication Date Title
EP1709125B1 (en) Coating composition having surface depolluting properties
AU782223B2 (en) Titanium oxide, and photocatalyst and photocatalyst coating composition using the same
US20080003367A1 (en) Composition Useful for Providing Nox Removing Coating On Material Surface
US20070248831A1 (en) Titanium Oxide Base Photocatalyst, Process for Producing the Same and Use Thereof
JP4619601B2 (en) PHOTOCATALYTIC COATING COMPOSITION AND PRODUCT HAVING PHOTOCATALYTIC THIN FILM
EP1706360B1 (en) COMPOSITION FOR USE NOx REMOVING TRANSLUCENT COATING
JP2006182791A (en) Coating material for forming photocatalyst film
JP2002038054A (en) Coating agent for forming titanium oxide film, method for forming titanium oxide film and photocatalyst
Moafi et al. Semiconductor‐assisted self‐cleaning polymeric fibers based on zinc oxide nanoparticles
US8906460B2 (en) Composition for use as NOx removing translucent coating
US20200070124A1 (en) Photocatalytic coating, process for producing photocatalytic coating, and process for producing photocatalytic body
JP3791067B2 (en) Photocatalyst composition and glass article
JP3978636B2 (en) Coating composition for photocatalyst film formation
KR101048340B1 (en) Transparent film forming composition
CN104768642A (en) Photocatalyst, and method for producing photocatalyst
JP3806998B2 (en) PHOTOCATALYST COMPOSITION, FORMING AGENT THEREOF, AND SUBSTRATE WITH PHOTOCATALYST COMPOSITION
JP3885248B2 (en) Photocatalyst composition
JP2007117999A (en) Titanium oxide-based photocatalyst and its use
JP4571793B2 (en) Aqueous photocatalyst coating solution
JP3959226B2 (en) Photocatalyst body and photocatalyst body coating agent
JPH10212120A (en) Production of titanium dioxide film and titanium dioxide dispersion liquid composition
JP3840517B2 (en) Anticorrosion structure
JP2018192466A (en) Tungsten compound of visible light-responsive photocatalyst, and coating
JP2001226633A (en) Photocatalytic hydrophilic coating agent
EP2537957A1 (en) Low-temperature method for producing transparent photocatalytically active titania layers