JP4118063B2 - Surface-modified titanium oxide and selective photolysis catalyst with selective photolysis reactivity - Google Patents

Surface-modified titanium oxide and selective photolysis catalyst with selective photolysis reactivity Download PDF

Info

Publication number
JP4118063B2
JP4118063B2 JP2002031444A JP2002031444A JP4118063B2 JP 4118063 B2 JP4118063 B2 JP 4118063B2 JP 2002031444 A JP2002031444 A JP 2002031444A JP 2002031444 A JP2002031444 A JP 2002031444A JP 4118063 B2 JP4118063 B2 JP 4118063B2
Authority
JP
Japan
Prior art keywords
titanium oxide
selective
modified titanium
modified
reactivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002031444A
Other languages
Japanese (ja)
Other versions
JP2003230834A (en
Inventor
波 李
好郎 太田
千晴 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tama Chemical Co Ltd
Original Assignee
Tama Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tama Chemical Co Ltd filed Critical Tama Chemical Co Ltd
Priority to JP2002031444A priority Critical patent/JP4118063B2/en
Publication of JP2003230834A publication Critical patent/JP2003230834A/en
Application granted granted Critical
Publication of JP4118063B2 publication Critical patent/JP4118063B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、特定の有機化合物に対して選択的な光分解反応性を示す表面修飾酸化チタン及び選択的光分解触媒にかかり、特にアルデヒド類やアルコール類等の極性有機化合物に対して優れた選択的光分解反応性を示す表面修飾酸化チタンやトルエン等の芳香族炭化水素化合物に対して優れた選択的光分解反応性を示す表面修飾酸化チタンからなる表面修飾酸化チタン及び選択的光分解触媒に関する。
【0002】
【従来の技術】
3eV以上のバンドギャップを有する二酸化チタン(TiO2;以下、単に「酸化チタン」という)等の金属酸化物は、そのバンドギャップ以上のエネルギーの光が照射されると、価電子帯の電子が伝導帯に励起されて価電子帯に正孔が、また、伝導帯に電子が生じ、正孔は酸化反応に寄与し、また、電子は還元反応に寄与することから、この金属酸化物に接触する有害な化学物質や悪臭を有する化学物質を分解する。そして、このような金属酸化物のうち、特に酸化チタンについては、人体に対して無害で化学的安定性が高いことから、多くの分野あるいは用途、例えば大気浄化、室内空気浄化、脱臭、防汚・防曇、浄水等の分野あるいは用途において、光分解反応を触媒する物質(いわゆる光分解触媒)として盛んにその研究開発が進められている。
【0003】
ところで、酸化チタンが光分解触媒としての作用を発揮するためには、通常500℃以上で焼成されて結晶化していることが必要であるとされており、また一般に、その結晶構造についてはアナターゼ型結晶の方がルチル型結晶よりも高い光触媒活性を示すと考えられており、従来においても、主としてこのような観点から酸化チタンからなる光分解触媒の開発が進められている。
【0004】
しかしながら、これまで開発された光分解触媒としての酸化チタンは、低濃度の化学物質を長期に亘って安定的に分解・除去できる可能性を有すると考えられているにもかかわらず、この酸化チタンを触媒担体に担持させるとその光触媒活性が大幅に低下し、また、化学物質との接触確率が充分でないことから、この光分解触媒の光触媒活性を充分に活用できず、必ずしも満足できる性能が得られているとはいえない。
【0005】
【発明が解決しようとする課題】
そこで、本発明者らは、より優れた光触媒活性を有する光分解触媒の開発について鋭意検討した結果、酸化チタンの表面を硫酸基や塩素化アルミナで修飾することにより、それぞれ特定の化合物に対して選択的にかつ高い光触媒活性を示すことを見出し、本発明を完成した。
【0006】
従って、本発明の目的は、特定の化合物に対して選択的にかつ高い触媒活性を示す表面修飾酸化チタンを提供することにある。また、本発明の他の目的は、このような表面修飾酸化チタンからなり、特定の化合物に対して選択的にかつ高い触媒活性を示す光分解触媒を提供することにある。
【0007】
【課題を解決するための手段】
すなわち、本発明は、酸化チタンを濃度1〜0.1Nの硫酸水溶液に浸漬し、次いで温度500〜550℃で加熱処理し、得られた硫酸基修飾酸化チタンをアルミニウムアルコキシドの有機溶媒溶液に浸漬して酸化チタンの表面に部分的にアルミナを形成させたのち、これを塩素化物中に浸漬し、次いで温度300℃以上で加熱処理して得られた塩素化アルミナ修飾酸化チタンであることを特徴とする選択的光分解反応性を有する表面修飾酸化チタンである。
【0008】
更に、本発明は、上記塩素化アルミナ修飾酸化チタンからなり、芳香族炭化水素化合物に対して選択的光分解反応性を有する選択的光分解触媒である。
【0009】
本発明において、原料として用いる酸化チタンについては、特に限定されるものではないが、好ましくは硫酸基による表面修飾をより正確に制御するために硫酸根含有量が可及的に低いものがよく、また、加熱処理されて結晶化する前のアモルファス酸化チタンであるのがよい。
【0010】
ところで、結晶化した酸化チタンを製造する方法については、主として、ルチル鉱(TiO2)を1,000℃程度の高温炉で塩素化して四塩化チタン(TiCl4)とし、次いで酸素の存在下で高温酸化する方法(塩素法)、イルメナイト鉱(FeTiO3)を熱分解してTiOSO4とし、これを加水分解してTiO(OH)2とし、次いで酸素の存在下で高温酸化する方法(硫酸法)、チタンアルコキシド{Ti(i-PrO)4}を加水分解触媒の存在下に室温で加水分解し、次いで縮重合させてアモルファス酸化チタンとし、このアモルファス酸化チタンを400℃以上で加熱処理して結晶化させる方法(ゾルゲル法)が存在するが、本発明で使用する酸化チタンとしては、特にゾルゲル法で得られたアモルファス酸化チタンを用いるのが好ましい。
【0011】
そして、本発明において、塩素化アルミナ修飾酸化チタンを調製する際に用いる硫酸水溶液の濃度については、通常5〜0.05N、好ましくは1〜0.1Nである。この際の硫酸水溶液の濃度が5Nより高いと、光触媒活性が大きく低化するという問題があり、反対に、0.05Nより低くなると、塩素化アルミナ修飾の均一制御が難しくなるという問題が生じる。
【0012】
この塩素化アルミナ修飾酸化チタンを調製する際においては、硫酸水溶液に浸漬した後、必要により常圧又は減圧下で常温又は加温下に乾燥してから、上記の硫酸基修飾酸化チタンを調製する場合と同様に加熱処理し、次いで得られた硫酸基修飾酸化チタンをアルミニウムアルコキシドの有機溶媒溶液に浸漬して酸化チタンの表面に部分的にアルミナを形成せしめる。
【0013】
ここで用いるアルミニウムアルコキシドとしては、アルミニウムのトリアルコキシドであれば特に制限はないが、好ましくはアルミニウムトリメトキシド、アルミニウムトリエトキシド、アルミニウムトリイソプロポキシド、アルミニウムトリイソプロポキシド等を挙げることができ、より好ましくはアルミニウムトリイソプロポキシド等である。
【0014】
また、このアルミニウムアルコキシドの有機溶媒溶液を調製する際に用いる有機溶媒についても、炭素、水素、酸素原子から構成される有機溶媒であれば特に制限はないが、好ましくはアルコール類、ケトン類、炭化水素等を挙げることができ、より好ましくはメタノール、エタノール、イソプロパノール、シクロヘキサン等である。
【0015】
更に、アルミニウムアルコキシドの有機溶媒溶液におけるアルミニウムアルコキシドの濃度については、アルミニウムアルコキシドと有機溶媒とのモル比(アルミニウムアルコキシド/有機溶媒)が通常1/10〜1/1000、好ましくは1/50〜1/500であるのがよい。このモル比(アルミニウムアルコキシド:有機溶媒)が1/1000より小さいと、酸化チタン表面に担持されるアルミナの量が少なすぎるという問題があり、反対に、1/10より大きいと、酸化チタン表面に担持されるアルミナの量が多すぎて全面が被覆されてしまうという問題が生じる。
【0016】
また、表面に部分的にアルミナが形成された酸化チタンについては、次に塩素化物中に浸漬される。この目的で使用される塩素化物としては、酸化チタンの表面に部分的に形成されたアルミナを塩素化できるものであればよく、例えば、モノクロロメタン、ジクロロメタン、クロロホルム、四塩化炭素等の塩素化炭化水素類や、濃度1〜0.001Nの塩酸水溶液、塩化アンモニウム等の塩化物類等を例示することができ、加熱時に発生するガスの毒性等の観点から、好ましくは、濃度1〜0.001Nの塩酸水溶液、塩化アンモニウム等の塩化物類等である。この塩素化物への浸漬は、通常1〜2時間の範囲で行われる。
【0017】
上記塩素化物への浸漬後に行う加熱処理は、通常300℃以上、好ましくは300〜500℃で1〜2時間の条件で行われ、目的の塩素化アルミナ修飾酸化チタンが得られる。この加熱処理の際の温度が300℃より低いと、塩素化アルミナが形成されないという問題が生じる。
【0018】
本発明の塩素化アルミナ修飾酸化チタン、そのままか、あるいは、ポリ四フッ化エチレン等のフッ素樹脂・シリカゾル等のバインダーと合わせて、適当な触媒担持体に担持されて、特定の化合物、例えばトルエン、ベンゼン、キシレン等の芳香族炭化水素化合物に対して選択的な光分解反応性を有し、このような芳香族炭化水素化合物をターゲットとする光分解触媒として好適に用いられる。
【0019】
【発明の実施の形態】
以下、実施例及び比較例並びに試験例に基いて、本発明の好適な実施の形態を具体的に説明する。
【0020】
〔アモルファス酸化チタンの調製〕
反応容器内にイソプロパノール(IPA)5100gとチタンテトライソプロポキシド(TTIP)400gとを仕込み、良く攪拌した後、水250gとIPA3400gとを予め混合して得られた混合溶液を滴下し、滴下終了後室温下に1時間反応させ、次いで生成したチタン水和物をろ過等により分離し、更に200℃で1時間加熱乾燥し、その後に粉砕して原料のアモルファス酸化チタン約150gを得た。
【0021】
実施例1:塩素化アルミナ修飾酸化チタンの調製
このようにして得られたアモルファス酸化チタン約150gを1N硫酸水溶液中に、室温下に攪拌しながら1時間浸漬し、次いでろ過して得られた浸漬処理後のアモルファス酸化チタンを525℃、1時間の条件で加熱処理し、硫酸基修飾酸化チタン約100gを得た。
【0022】
次いで、得られた硫酸基修飾酸化チタン約100gを、アルミニウムトリイソプロポキシド(ATIP)のシクロヘキサン(CyH)溶液{ATIPとCyHとのモル比(ATIP:CyH)1:100}500ml中に浸漬し、室温で1時間攪拌しながら酸化チタンの表面に部分的にアルミナ水和物を生成させ、次いでろ過して固液分離した後、得られた固体物を200℃、1時間の条件で加熱乾燥し、更に細かく粉砕した後、500℃、1時間の条件で加熱処理し、アルミナにより表面が部分的にコートされたアルミナ部分コート酸化チタン約100gを得た。
【0023】
更に、このようにして得られたアルミナ部分コート酸化チタン約100gを1N塩酸水溶液500ml中に浸漬し、室温で1時間攪拌して反応させた後、ろ過して得られた固体物を300℃、1時間の条件で加熱処理し、その後粉砕して実施例2の塩素化アルミナ修飾酸化チタン約100gを得た。この実施例2の塩素化アルミナ修飾酸化チタンにおける硫酸基及びアルミナの存在は硫黄2p電子とアルミ2p電子のXPS(X ray photoelectoron spectroscopy)スペクトルで確認し、また、塩素の存在は蛍光X線分析装置で確認した。
【0024】
比較例1
比較例1の未修飾酸化チタンとして、現在市販の光分解触媒として最も光触媒活性に優れているものの1つとされている酸化チタン(石原産業(株)製 商品名:ST-01)を用いた。
【0025】
比較例2:未修飾酸化チタンの調製
上記と同様にして得られたアモルファス酸化チタンを525℃、1時間の条件で加熱処理し、アナターゼ型に結晶化した比較例2の未修飾酸化チタンとした。
【0026】
試験例1:アセトアルデヒド及びトルエンの経時的分解率の測定
光分解触媒の光触媒活性を測定するための測定装置としては、図1に示すように、試料ホルダー、紫外線光源、及び図示外の攪拌ファンをセットしたSUS304製の光触媒反応容器と、光路長10mのガスセルとをSUS316製フレキシブルチューブで繋いでガス流路を形成し、このガス流路にガス循環ポンプを介在させてガスを循環させるように構成し、測定機器として日本電子(株)製のフーリエ変換赤外吸収分光分析装置(FTIR)を使用した。
【0027】
また、実施例1の塩素化アルミナ修飾酸化チタン、比較例1の未修飾酸化チタン又は比較例2の未修飾酸化チタンからなる試料粉末を一旦エタノール中に分散させた後、67mm×100mmの大きさのステンレス鋼繊維不織布上に超音波を印加して約0.2〜0.3gの範囲で担持させ、次いで300℃、30分の条件で乾燥させ、上記測定装置の試料ホルダーにセットした。
【0028】
測定条件は、ガス循環量2.6×10-4m3/sec、測定時の圧力は大気圧で、測定時の温度は24±1℃、湿度が40±1%、FTIRの測定条件は、分解能0.5cm-1、積分回数50回、測定波数域700〜4000cm-1で、紫外線光源(ブラックライト)の中心波長が365nm、紫外線光源の中心付近での強度が1.5mW/cm2、紫外線光源の試料端部での強度が1.0mW/cm2とした。測定初期の吸着平衡に達するまでの待機時間は1時間とし、紫外線を照射しながら経時的に赤外吸収スペクトルを測定した。
【0029】
また、測定に際しては、アルデヒドの場合は、初期濃度を150ppmとし、吸光度2600〜2900cm-1のアセトアルデヒド(CH3CHO)のC−H伸縮に帰属する赤外吸収スペクトルに着目し、また、トルエンの場合は、初期濃度を150ppmとし、吸光度3041cm-1のC−H伸縮に帰属する赤外吸収スペクトルに着目して定量した。
【0030】
実施例1の塩素化アルミナ修飾酸化チタン(表面修飾B)を試料粉末とした場合の結果を図2に、また、比較例1の未修飾酸化チタン(ST-01)を試料粉末とした場合の結果を図2中に、更に、比較例2の未修飾酸化チタンを試料粉末とした場合の結果を図3にそれぞれ示す。
【0031】
上記図2〜図3に示す結果から明らかなように、実施例1の塩素化アルミナ修飾酸化チタンの場合には、トルエンに対して極めて優れた光触媒活性を示しているのに対し、アセトアルデヒドに対しては比較例1や比較例2の未修飾酸化チタンと比較してむしろ低下している。このことから、実施例1の表面修飾酸化チタンは、特定の化合物に対して選択的に高い光触媒活性を示すことが判明した。
【0032】
【発明の効果】
本発明の表面修飾酸化チタンは、特定の化合物に対して選択的にかつ高い光触媒活性を示し、特定の化合物をターゲットとして選択的にかつ効率良く分解・除去することができ、光分解触媒として極めて有用である。
【図面の簡単な説明】
【図1】 図1は、光分解触媒の光触媒活性を測定するための測定装置を示す説明図である。
【図2】 図2は、実施例1の塩素化アルミナ修飾酸化チタン及び比較例1の未修飾酸化チタンを試料粉末とした場合の結果を示すグラフ図である。
【図3】 図3は、比較例2の未修飾酸化チタンを試料粉末とした場合の結果を示すグラフ図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a surface-modified titanium oxide and a selective photodegradation catalyst that exhibit selective photodegradation reactivity with respect to a specific organic compound, and particularly excellent selection for polar organic compounds such as aldehydes and alcohols. Modified surface-modified titanium oxide and selective photolysis catalyst comprising surface-modified titanium oxide exhibiting excellent selective photodegradation reactivity with respect to aromatic hydrocarbon compounds such as surface-modified titanium oxide and toluene exhibiting selective photodegradation reactivity .
[0002]
[Prior art]
When a metal oxide such as titanium dioxide (TiO 2 ; hereinafter simply referred to as “titanium oxide”) having a band gap of 3 eV or more is irradiated with light having energy higher than the band gap, electrons in the valence band are conducted. Excited by the band, holes are generated in the valence band, and electrons are generated in the conduction band. The holes contribute to the oxidation reaction, and the electrons contribute to the reduction reaction. Decomposes harmful chemicals and odorous chemicals. Among such metal oxides, particularly titanium oxide is harmless to the human body and has high chemical stability, so it can be used in many fields or applications such as air purification, indoor air purification, deodorization, and antifouling.・ In fields such as anti-fogging, water purification, etc., research and development are actively promoted as substances that catalyze photodecomposition reactions (so-called photodecomposition catalysts).
[0003]
By the way, in order for titanium oxide to exhibit an action as a photodegradation catalyst, it is usually necessary to be baked and crystallized at 500 ° C. or more, and generally its crystal structure is anatase type. The crystal is considered to exhibit higher photocatalytic activity than the rutile crystal, and the development of a photodecomposition catalyst mainly composed of titanium oxide has been promoted mainly from such a viewpoint.
[0004]
However, although titanium oxide as a photodecomposition catalyst developed so far is considered to have the possibility of being able to stably decompose and remove low-concentration chemical substances over a long period of time, this titanium oxide When the catalyst is supported on the catalyst carrier, its photocatalytic activity is greatly reduced, and the probability of contact with chemical substances is not sufficient, so that the photocatalytic activity of this photodegradation catalyst cannot be fully utilized, and satisfactory performance is not always obtained. It cannot be said that it is done.
[0005]
[Problems to be solved by the invention]
Therefore, as a result of intensive investigations on the development of a photodegradation catalyst having superior photocatalytic activity, the present inventors have modified the surface of titanium oxide with a sulfate group or chlorinated alumina to give specific compounds. The inventors have found that the photocatalytic activity is high selectively and completed the present invention.
[0006]
Accordingly, an object of the present invention is to provide a surface-modified titanium oxide that selectively shows high catalytic activity for a specific compound. Another object of the present invention is to provide a photodegradation catalyst comprising such surface-modified titanium oxide and selectively exhibiting high catalytic activity for a specific compound.
[0007]
[Means for Solving the Problems]
That is, in the present invention, titanium oxide is immersed in an aqueous sulfuric acid solution having a concentration of 1 to 0.1 N, then heat-treated at a temperature of 500 to 550 ° C., and the resulting sulfate group-modified titanium oxide is immersed in an organic solvent solution of aluminum alkoxide. It is characterized by being a chlorinated alumina modified titanium oxide obtained by partially forming alumina on the surface of titanium oxide and then immersing it in a chlorinated product and then heat-treating at a temperature of 300 ° C. or higher. Is a surface-modified titanium oxide having selective photolytic reactivity.
[0008]
Furthermore, the present invention is a selective photolysis catalyst comprising the above chlorinated alumina-modified titanium oxide and having selective photolysis reactivity with respect to an aromatic hydrocarbon compound.
[0009]
In the present invention, titanium oxide used as a raw material is not particularly limited, but preferably has a sulfate group content as low as possible in order to more accurately control the surface modification with sulfate groups, Moreover, it is good that it is an amorphous titanium oxide before heat-processing and crystallizing.
[0010]
By the way, as for the method of producing crystallized titanium oxide, mainly rutile ore (TiO 2 ) is chlorinated in a high temperature furnace of about 1,000 ° C. to titanium tetrachloride (TiCl 4 ), and then in the presence of oxygen. High temperature oxidation method (chlorine method), ilmenite ore (FeTiO 3 ) thermally decomposed to TiOSO 4 , hydrolyzed to TiO (OH) 2 , then high temperature oxidation in the presence of oxygen (sulfuric acid method) ), The titanium alkoxide {Ti (i-PrO) 4 } is hydrolyzed at room temperature in the presence of a hydrolysis catalyst, then subjected to condensation polymerization to form amorphous titanium oxide, and the amorphous titanium oxide is heated at 400 ° C. or higher. There is a method of crystallization (sol-gel method), but as the titanium oxide used in the present invention, it is particularly preferable to use amorphous titanium oxide obtained by the sol-gel method.
[0011]
And in this invention, about the density | concentration of the sulfuric acid aqueous solution used when preparing a chlorinated alumina modification titanium oxide, it is 5-0.05N normally, Preferably it is 1-0.1N. If the concentration of the sulfuric acid aqueous solution at this time is higher than 5N, there is a problem that the photocatalytic activity is greatly reduced. On the other hand, if the concentration is lower than 0.05N, it is difficult to uniformly control the chlorinated alumina modification.
[0012]
When preparing this chlorinated alumina-modified titanium oxide, after immersing it in a sulfuric acid aqueous solution, if necessary, drying at normal pressure or reduced pressure at room temperature or under heating, and then preparing the above sulfate group-modified titanium oxide Heat treatment is performed as in the case, and the obtained sulfate group-modified titanium oxide is then immersed in an organic solvent solution of aluminum alkoxide to partially form alumina on the surface of the titanium oxide.
[0013]
The aluminum alkoxide used herein is not particularly limited as long as it is an aluminum trialkoxide, but preferably aluminum trimethoxide, aluminum triethoxide, aluminum triisopropoxide, aluminum triisopropoxide, and the like can be mentioned. More preferred is aluminum triisopropoxide.
[0014]
The organic solvent used in preparing the organic solvent solution of aluminum alkoxide is not particularly limited as long as it is an organic solvent composed of carbon, hydrogen, and oxygen atoms, but is preferably alcohols, ketones, carbonized. Hydrogen etc. can be mentioned, More preferably, they are methanol, ethanol, isopropanol, cyclohexane, etc.
[0015]
Furthermore, regarding the concentration of aluminum alkoxide in the organic solvent solution of aluminum alkoxide, the molar ratio of aluminum alkoxide to organic solvent (aluminum alkoxide / organic solvent) is usually 1/10 to 1/1000, preferably 1/50 to 1 /. It should be 500. If this molar ratio (aluminum alkoxide: organic solvent) is smaller than 1/1000, there is a problem that the amount of alumina supported on the titanium oxide surface is too small. There is a problem that the amount of alumina supported is too large and the entire surface is covered.
[0016]
Moreover, about the titanium oxide in which the alumina was partially formed in the surface, it is immersed in a chlorination thing next. The chlorinated material used for this purpose may be any material that can chlorinate alumina partially formed on the surface of titanium oxide. For example, chlorinated carbonization such as monochloromethane, dichloromethane, chloroform, carbon tetrachloride, etc. Examples thereof include hydrogens, hydrochloric acid aqueous solutions having a concentration of 1 to 0.001 N, chlorides such as ammonium chloride, and the like, preferably from a concentration of 1 to 0.001 N from the viewpoint of toxicity of gas generated during heating. Hydrochloric acid aqueous solution, chlorides such as ammonium chloride, and the like. The immersion in the chlorinated product is usually performed in a range of 1 to 2 hours.
[0017]
The heat treatment performed after immersion in the chlorinated product is usually performed at 300 ° C. or higher, preferably at 300 to 500 ° C. for 1 to 2 hours to obtain the target chlorinated alumina modified titanium oxide. When the temperature during the heat treatment is lower than 300 ° C., there arises a problem that chlorinated alumina is not formed.
[0018]
Chlorinated alumina modified titanium oxide of the present invention, or directly or, in conjunction with a binder such as a fluorine resin, silica sol, such as polytetrafluoroethylene, is supported on a suitable catalyst support, the specific compound, such as toluene It has selective photodecomposition reactivity with respect to aromatic hydrocarbon compounds such as benzene and xylene, and is suitably used as a photodecomposition catalyst targeting such aromatic hydrocarbon compounds.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described in detail based on examples, comparative examples, and test examples.
[0020]
[Preparation of amorphous titanium oxide]
After charging 5100 g of isopropanol (IPA) and 400 g of titanium tetraisopropoxide (TTIP) into the reaction vessel and stirring well, a mixed solution obtained by previously mixing 250 g of water and 3400 g of IPA was added dropwise, and after completion of the addition The reaction was carried out at room temperature for 1 hour, and then the produced titanium hydrate was separated by filtration or the like, further dried by heating at 200 ° C. for 1 hour, and then pulverized to obtain about 150 g of raw material amorphous titanium oxide.
[0021]
Example 1: Preparation of chlorinated alumina modified titanium oxide
The thus amorphous titanium oxide about 150g obtained in 1N sulfuric acid aqueous solution, and immersed for 1 hour with stirring at room temperature, then 525 ° C. The amorphous titanium oxide after the immersion treatment obtained by filtration, 1 About 100 g of sulfate group-modified titanium oxide was obtained by heat treatment under time conditions.
[0022]
Next, about 100 g of the resulting sulfate group-modified titanium oxide was immersed in 500 ml of a solution of aluminum triisopropoxide (ATIP) in cyclohexane (CyH) {molar ratio of ATIP to CyH (ATIP: CyH) 1: 100}. Then, alumina hydrate is partially formed on the surface of titanium oxide while stirring at room temperature for 1 hour, and then filtered and solid-liquid separated, and then the obtained solid is heated and dried at 200 ° C. for 1 hour. After further finely pulverizing, heat treatment was performed at 500 ° C. for 1 hour to obtain about 100 g of alumina partially coated titanium oxide whose surface was partially coated with alumina.
[0023]
Further, about 100 g of the alumina partially coated titanium oxide thus obtained was immersed in 500 ml of 1N hydrochloric acid aqueous solution, stirred and reacted at room temperature for 1 hour, and then filtered to obtain a solid material obtained at 300 ° C. Heat treatment was performed for 1 hour, and then pulverized to obtain about 100 g of chlorinated alumina modified titanium oxide of Example 2. The presence of sulfate groups and alumina in the chlorinated alumina modified titanium oxide of Example 2 was confirmed by XPS (X ray photoelectoron spectroscopy) spectra of sulfur 2p electrons and aluminum 2p electrons, and the presence of chlorine was measured by a fluorescent X-ray analyzer. Confirmed with.
[0024]
Comparative Example 1
As the unmodified titanium oxide of Comparative Example 1, titanium oxide (trade name: ST-01, manufactured by Ishihara Sangyo Co., Ltd.), which is one of the most commercially available photodecomposition catalysts with the most excellent photocatalytic activity, was used.
[0025]
Comparative Example 2 Preparation of Unmodified Titanium Oxide Amorphous titanium oxide obtained in the same manner as above was heat-treated at 525 ° C. for 1 hour to give an unmodified titanium oxide of Comparative Example 2 crystallized into anatase type. .
[0026]
Test Example 1: Measurement of degradation rate of acetaldehyde and toluene over time As a measuring device for measuring the photocatalytic activity of a photolysis catalyst, as shown in FIG. 1, a sample holder, an ultraviolet light source, and a stirring fan (not shown) are used. A gas flow path is formed by connecting a set SUS304 photocatalyst reaction vessel and a gas cell having an optical path length of 10 m with a SUS316 flexible tube, and a gas circulation pump is interposed in the gas flow path to circulate the gas. As a measuring instrument, a Fourier transform infrared absorption spectrometer (FTIR) manufactured by JEOL Ltd. was used.
[0027]
Further, after a sample powder made of chlorinated alumina modified titanium oxide of Example 1, unmodified titanium oxide of Comparative Example 1 or unmodified titanium oxide of Comparative Example 2 was once dispersed in ethanol, the size of 67 mm × 100 mm was obtained. On the stainless steel fiber nonwoven fabric, ultrasonic waves were applied and supported in the range of about 0.2 to 0.3 g, then dried at 300 ° C. for 30 minutes, and set in the sample holder of the measuring apparatus.
[0028]
Measurement conditions are gas circulation rate 2.6 × 10 -4 m 3 / sec, measurement pressure is atmospheric pressure, measurement temperature is 24 ± 1 ° C, humidity is 40 ± 1%, FTIR measurement condition is , resolution 0.5 cm -1, the integral number of 50 times, measured in wavenumbers 700~4000Cm -1, the ultraviolet light source (black light) the central wavelength of 365 nm, intensity 1.5 mW / cm 2 in the vicinity of the center of the ultraviolet light source The intensity at the sample end of the ultraviolet light source was 1.0 mW / cm 2 . The waiting time until reaching the initial adsorption equilibrium was 1 hour, and the infrared absorption spectrum was measured over time while irradiating with ultraviolet rays.
[0029]
At the time of measurement, in the case of aldehyde, the initial concentration is 150 ppm, and attention is paid to the infrared absorption spectrum attributed to C—H stretching of acetaldehyde (CH 3 CHO) having an absorbance of 2600-2900 cm −1 . In this case, the initial concentration was set to 150 ppm, and quantification was performed by paying attention to an infrared absorption spectrum belonging to C—H stretching having an absorbance of 3041 cm −1 .
[0030]
The result when the chlorinated alumina modified titanium oxide (surface modification B) of Example 1 is used as the sample powder is shown in FIG. 2 , and the case where the unmodified titanium oxide (ST-01) of Comparative Example 1 is used as the sample powder. The results are shown in FIG. 2, and the results when the unmodified titanium oxide of Comparative Example 2 is used as the sample powder are shown in FIG .
[0031]
As is clear from the results shown in FIGS . 2 to 3 above, the chlorinated alumina-modified titanium oxide of Example 1 showed extremely excellent photocatalytic activity against toluene, whereas As compared with the unmodified titanium oxides of Comparative Example 1 and Comparative Example 2, they are rather lowered. From this, it was found that the surface-modified titanium oxide of Example 1 showed high photocatalytic activity selectively with respect to a specific compound.
[0032]
【The invention's effect】
The surface-modified titanium oxide of the present invention exhibits selective and high photocatalytic activity for a specific compound, can be decomposed and removed selectively and efficiently using a specific compound as a target, and is extremely useful as a photodecomposition catalyst. Useful.
[Brief description of the drawings]
FIG. 1 is an explanatory view showing a measuring apparatus for measuring the photocatalytic activity of a photolysis catalyst.
FIG. 2 is a graph showing the results when chlorinated alumina modified titanium oxide of Example 1 and unmodified titanium oxide of Comparative Example 1 were used as sample powders.
FIG . 3 is a graph showing the results when unmodified titanium oxide of Comparative Example 2 was used as a sample powder.

Claims (4)

酸化チタンを濃度5〜0.05Nの硫酸水溶液に浸漬し、次いで温度400〜600℃で加熱処理し、得られた硫酸基修飾酸化チタンをアルミニウムアルコキシドの有機溶媒溶液に浸漬して酸化チタンの表面に部分的にアルミナを形成させたのち、これを塩素化物中に浸漬し、次いで温度300℃以上で加熱処理して得られた塩素化アルミナ修飾酸化チタンであることを特徴とする選択的光分解反応性を有する表面修飾酸化チタン。  Titanium oxide is immersed in a sulfuric acid aqueous solution having a concentration of 5 to 0.05 N, then heat-treated at a temperature of 400 to 600 ° C., and the resulting sulfate group-modified titanium oxide is immersed in an organic solvent solution of aluminum alkoxide to obtain a surface of titanium oxide. A selective photodecomposition characterized in that it is a chlorinated alumina modified titanium oxide obtained by partially forming alumina in a chlorinated material and then heat-treating it at a temperature of 300 ° C. or higher. Reactive surface-modified titanium oxide. 酸化チタンがアモルファス酸化チタンである請求項1に記載の選択的光分解反応性を有する表面修飾酸化チタン。2. The surface-modified titanium oxide having selective photolytic reactivity according to claim 1, wherein the titanium oxide is amorphous titanium oxide. 酸化チタンがチタンアルコキシドを加水分解して得られたアモルファス酸化チタンである請求項2に記載の選択的光分解反応性を有する表面修飾酸化チタン。The surface-modified titanium oxide having selective photolytic reactivity according to claim 2, wherein the titanium oxide is amorphous titanium oxide obtained by hydrolyzing titanium alkoxide. 請求項1〜3のいずれかに記載の塩素化アルミナ修飾酸化チタンからなり、芳香族炭化水素化合物に対して選択的光分解反応性を有することを特徴とする選択的光分解触媒。A selective photolysis catalyst comprising the chlorinated alumina-modified titanium oxide according to any one of claims 1 to 3, and having selective photolysis reactivity with an aromatic hydrocarbon compound.
JP2002031444A 2002-02-07 2002-02-07 Surface-modified titanium oxide and selective photolysis catalyst with selective photolysis reactivity Expired - Lifetime JP4118063B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002031444A JP4118063B2 (en) 2002-02-07 2002-02-07 Surface-modified titanium oxide and selective photolysis catalyst with selective photolysis reactivity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002031444A JP4118063B2 (en) 2002-02-07 2002-02-07 Surface-modified titanium oxide and selective photolysis catalyst with selective photolysis reactivity

Publications (2)

Publication Number Publication Date
JP2003230834A JP2003230834A (en) 2003-08-19
JP4118063B2 true JP4118063B2 (en) 2008-07-16

Family

ID=27774851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002031444A Expired - Lifetime JP4118063B2 (en) 2002-02-07 2002-02-07 Surface-modified titanium oxide and selective photolysis catalyst with selective photolysis reactivity

Country Status (1)

Country Link
JP (1) JP4118063B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006182791A (en) * 2003-02-10 2006-07-13 Kansai Paint Co Ltd Coating material for forming photocatalyst film
WO2008041383A1 (en) * 2006-09-29 2008-04-10 Nippon Tungsten Co., Ltd. Substrate material for magnetic head and method for manufacturing the same
WO2009091367A1 (en) * 2008-01-17 2009-07-23 Carrier Corporation Filters for removal of volatile siloxanes and lifetime extension of photcatalytic devices
KR101993236B1 (en) * 2017-06-29 2019-06-26 허경삼 Method for manufacturing visible-light active titanium dioxide photocatalyst by using chemicasurface modification

Also Published As

Publication number Publication date
JP2003230834A (en) 2003-08-19

Similar Documents

Publication Publication Date Title
Hung et al. Study on photocatalytic degradation of gaseous dichloromethane using pure and iron ion-doped TiO2 prepared by the sol–gel method
Cheng et al. Photocatalytic degradation of 4-chlorophenol with combustion synthesized TiO2 under visible light irradiation
Li et al. Low-temperature preparation and characterization of nanocrystalline anatase TiO2
JPH07819A (en) Titanium oxide for catalyst and removal of harmful substance using same
KR20010107542A (en) Titanium hydroxide, photocatalyst produced from the same and photocatalytic coating agent
JP7305996B2 (en) Water Purification Particles, Hydroponic Cultivation Device, and Water Purification Device
CN113908875B (en) Preparation method of visible light catalytic material and method for degrading air pollutants
US8357348B2 (en) Method for preparing uniform anatase-type titanium dioxide nanoparticles
Tryba et al. Photocatalytic decomposition of acetaldehyde on different TiO2-based materials: A review
Craciun et al. Fe3+-doped TiO2 nanopowders for photocatalytic mineralization of oxalic acid under solar light irradiation
EP2000208A9 (en) Visible light response-type titanium oxide photocatalyst, method for manufacturing the visible light response-type titanium oxide photocatalyst, and use of the visible light response-type titanium oxide photocatalyst
JP4118063B2 (en) Surface-modified titanium oxide and selective photolysis catalyst with selective photolysis reactivity
JP2009166022A (en) Photocatalytic agent having titanium oxide-iron titanate joint structure, and its producing method
KR100578044B1 (en) A method for fabrication of the visible-range photocatalyst with junction of titanium dioxide and tungsten oxide
JP3055684B1 (en) Method for producing anatase-type titanium oxide
WO2011043496A2 (en) Copper ion-modified titanium oxide and process for producing the same, and photocatalyst
Abramović et al. Nitrogen-doped TiO2 suspensions in photocatalytic degradation of mecoprop and (4-chloro-2-methylphenoxy) acetic acid herbicides using various light sources
JPH11335121A (en) Production of anatase titanium oxide
JP3987395B2 (en) Visible light responsive photocatalyst, method for producing the same, and photocatalyst using the same
JP5750319B2 (en) Method for producing brookite type titanium oxide
You et al. Photocatalytic oxidation of toluene over TiO 2 catalysts supported on glass fiber
JP2003190811A (en) Photocatalytic body, method for manufacturing the same, and photocatalytic body coating agent obtained by using the same
Filippo et al. Efficient, green non-aqueous microwave-assisted synthesis of anatase TiO2 and Pt loaded TiO2 nanorods with high photocatalytic performance
JP2001276615A (en) Titanium oxide powder for photocatalyst
JP2007117999A (en) Titanium oxide-based photocatalyst and its use

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080422

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4118063

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120502

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130502

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140502

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term