WO2008146689A1 - Temperature adjusting device - Google Patents

Temperature adjusting device Download PDF

Info

Publication number
WO2008146689A1
WO2008146689A1 PCT/JP2008/059404 JP2008059404W WO2008146689A1 WO 2008146689 A1 WO2008146689 A1 WO 2008146689A1 JP 2008059404 W JP2008059404 W JP 2008059404W WO 2008146689 A1 WO2008146689 A1 WO 2008146689A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
temperature
thermoelectric element
translucent plate
control device
Prior art date
Application number
PCT/JP2008/059404
Other languages
French (fr)
Japanese (ja)
Inventor
Kenji Tsubone
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to JP2009516272A priority Critical patent/JP5212367B2/en
Publication of WO2008146689A1 publication Critical patent/WO2008146689A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00478Air-conditioning devices using the Peltier effect
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/13Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the heat-exchanging means at the junction
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B7/00Special arrangements or measures in connection with doors or windows
    • E06B7/12Measures preventing the formation of condensed water
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B9/00Screening or protective devices for wall or similar openings, with or without operating or securing mechanisms; Closures of similar construction
    • E06B9/24Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance; Slat blinds

Definitions

  • the present invention relates to an apparatus for adjusting the temperature of a light-transmitting part that partitions a predetermined space such as a window, a roof cover (top light), and a case from the outside, or the vicinity thereof.
  • a predetermined space such as a window, a roof cover (top light), and a case from the outside, or the vicinity thereof.
  • This type of translucent part is often in direct contact with the outside.
  • the temperature in the vicinity of the part is affected by the external temperature, even if it is partitioned from the outside. May not be on time.
  • the outside air temperature Even when air conditioning is performed indoors or inside a showcase, it may become hot near the window glass due to the influence of outside air temperature, or on the contrary, it may become cold due to insufficient heating.
  • frost may adhere to the outer surface of the window glass or condensation may occur on the inner surface, which may block the view.
  • the wind glass is heated as necessary.
  • a defroster in a vehicle which is configured to defrost and defrost by blowing air heated by using waste heat from the engine to the window glass to increase its temperature.
  • an electric heater has also been placed on the back of the mirror surface to prevent fogging of vehicle side mirrors and door mirrors.
  • air heated and heated is blown onto the window glass, the air also flows into the passenger compartment, which may cause discomfort to the passengers and cause noise.
  • a considerable amount of power is required to fully heat the entire required area, which may increase the battery load or cause a deterioration in fuel consumption.
  • a window glass configured to defrost and defrost by generating heat in the window glass itself instead of blowing heated air.
  • This is a configuration in which heat rays are attached to the window glass, and the window glass is heated by energizing the heat rays to generate heat.
  • the heat ray is thin but not transparent, it becomes a factor that obstructs the field of view, and there is an inconvenience that the usable place is restricted.
  • Japanese Patent Application Laid-Open No. 6-4-90 8 47 and Japanese Patent Application Laid-Open No. 2 00 4-2 2 1 2 59 disclose an apparatus intended to eliminate the disadvantages of the above-mentioned defroster.
  • the apparatus described in Japanese Patent Application Laid-Open No. Sho 6 4-9 0 8 4 7 uses an electrothermal glass in which a transparent conductive film is formed on the inner surface of the outer glass, and is heated to a certain temperature with heated air. After removing the fog, the electric glass is energized and kept warm to prevent fogging.
  • thermoelectric conversion element module in which a thermoelectric conversion element module is formed in an annular shape and sandwiched between transparent plates such as sapphire glass.
  • transparent plates such as sapphire glass.
  • the apparatus described in the above Japanese Patent Application Laid-Open No. 6-4-90 8 47 is configured to prevent fogging by energizing the electrothermal glass and increasing its temperature.
  • the function is limited to heating for defrosting or defrosting. Therefore, when the temperature near the window becomes high due to the outside air temperature or sunlight, it does not function to correct such temperature deviation.
  • the apparatus described in Japanese Patent Laid-Open No. 2 0 4-2 2 1 2 59 has a thermoelectric conversion element module, the apparatus has a cooling function, but the thermoelectric conversion element module blocks light. For this reason, in order to sufficiently cool the central part of the transparent plate or the vicinity thereof, the power consumption in the thermoelectric conversion element module may increase.
  • thermoelectric conversion element module cools as much as possible; the temperature difference becomes large and the transparent plate is distorted, or condensation occurs in the surrounding area.
  • the present invention has been made by paying attention to the above technical problem, and uniformly cools the entire light transmitting region, and heats it to adjust the temperature in the vicinity of the region to both high and low. It is an object of the present invention to provide a temperature control device that can handle the above.
  • the present invention is configured to achieve the above-described object by using a translucent thermoelectric element that has been recently developed.
  • the present invention provides a predetermined In a temperature control device that adjusts the temperature of at least one surface side of a translucent plate that divides the space, a translucent thermoelectric element that produces a Peltier effect is provided in a flexible translucent region provided in a region that transmits light.
  • An optical film is provided with a controller attached to the translucent plate and selectively heating and cooling the translucent plate by controlling energization to the thermoelectric element in response to a request signal. It is what.
  • the translucent plate is provided either on a translucent part of a vehicle window or a roof, on a mirror attached to the outside of the vehicle, or on a window of a house. It is the light transmission board which is characterized by the above-mentioned.
  • the translucent plate is a window glass or roof glass of a vehicle or a mirror attached to the outside of the vehicle, and the request signal is provided in the vehicle.
  • the temperature control device includes a signal output by the occupant detection sensor detecting the occupant.
  • the present invention is the above invention, wherein the translucent plate is a window glass or roof glass of a vehicle or a mirror attached to the outside of the vehicle, and the request signal relates to a traveling state of the vehicle.
  • the temperature control device includes a cooling request signal or a heating request signal based on information or an external environment of a place where the vehicle travels.
  • the present invention is the above invention, wherein the translucent plate is a vehicle window glass or a roof glass, or a mirror attached to the outside of the vehicle.
  • the request signal is a signal for defrosting or anti-fogging by heating the side of the translucent plate facing the interior of the passenger compartment when the external temperature of the vehicle is equal to or lower than a predetermined temperature. It is the temperature control apparatus characterized by including.
  • this invention is the above-mentioned invention, wherein the translucent plate is a window glass or a roof glass of a vehicle, and the request signal is a signal of the translucent plate when the vehicle is heating indoors.
  • a temperature control device including a signal for heating the side facing the room and cooling the side facing the room of the light transmitting plate when the vehicle is cooling the room. is there.
  • the present invention provides the temperature according to any one of the above-described aspects, wherein the controller includes means for receiving a wirelessly transmitted signal from a predetermined external terminal device and controlling energization to the thermoelectric element. It is an adjustment device.
  • the thermoelectric element that generates the Peltier effect is provided in a region that transmits light in the flexible light-transmitting film. Since the thermoelectric device is configured to transmit light such as being transparent, the light transmission performance of the translucent plate to which the film is attached is not hindered. That is, the light transmission function of the light transmitting plate is maintained. In addition, since the thermoelectric element exhibits the Peltier effect, by appropriately switching the direction in which the current flows, the temperature of one surface of the film is increased, causing a heating action, or this. On the contrary, the cooling action occurs when the temperature is lowered. Therefore, a current is passed from the controller to the thermoelectric element based on the request signal, and as a result, the translucent plate to which the film is attached is heated or cooled, so that the temperature of the translucent plate and the vicinity thereof is increased. Can be adjusted.
  • indirect air conditioning in the room can be performed.
  • indirect air conditioning it can be used as a defroster function by using it for vehicle windows and roofs.
  • the S-restraining function can also occur when used on a mirror mounted outside the vehicle. In that case, since there is no need to blow heated air, it is possible to eliminate the cause of discomfort, and heat is generated in the area where light is transmitted, so temperature spots and partial cloudiness associated therewith can be eliminated. Can be resolved.
  • the request signal is generated only when an occupant is present in the vehicle. Therefore, it is possible to prevent wasteful energization of the thermoelectric elements provided in the window glass, the roof glass, or the mirror to consume power.
  • the request based on traveling or stopping of the vehicle, information on a traveling state such as vehicle speed, shift position or presence / absence of braking, vehicle speed, or information on a traveling environment such as outside air temperature or solar radiation. Since the current to the thermoelectric element is controlled by the signal, air conditioning and anti-fogging can be performed more appropriately and efficiently.
  • the translucent plate when the temperature outside the vehicle is low, the translucent plate is heated to perform defrosting and anti-fogging, and thus automatically and appropriately defrosting or anti-fogging the glass and mirror. Can do.
  • the current when the vehicle interior is heated, the current is controlled so that the temperature of the window glass or roof glass on the vehicle interior side is increased, and the vehicle interior is cooled.
  • the current is controlled so that the temperature of the window glass or roof glass on the passenger compartment side is lowered, so these glasses perform the function of so-called indirect air conditioning. This makes it possible to reduce the temperature difference between the vehicle and the center of the passenger compartment and to provide comfortable air conditioning.
  • thermoelectric element since the control of the current to the thermoelectric element can be operated from a remote location, the convenience can be further improved.
  • FIG. 1 is a side view of a vehicle to which the present invention is applied.
  • FIG. 2 is a cross-sectional view schematically showing a configuration in which a thermoelectric element film is attached to the outer surface of glass.
  • FIG. 3 is a cross-sectional view schematically showing a configuration in which a thermoelectric element film is sandwiched in a laminated glass.
  • FIG. 4 is a block diagram showing a configuration for controlling the thermoelectric element film.
  • Fig. 5 is a flow chart for explaining an example of control of the thermoelectric element filter.
  • FIG. 6 is a block diagram showing another configuration for controlling the thermoelectric element film.
  • FIG. 7 is a flowchart for explaining the control example.
  • FIG. 8 is a chart collectively showing the relationship between the sheet sensor that outputs the ON signal and the thermoelectric element filter that is operated.
  • FIG. 9 is a block diagram showing an example in which the driving information and the environment information are also used for control.
  • FIG. 10 is a flowchart for explaining the control example.
  • FIG. 11 is a diagram showing an example of a map used for the control.
  • FIG. 12 is a block diagram showing an example configured to operate in response to an operation request.
  • FIG. 13 is a block diagram showing an example in which defrosting can be performed by remote operation.
  • Fig. 14 is a flowchart for explaining the control example.
  • Figure 15 is a schematic diagram showing the basic configuration of a thermoelectric element that produces the Peltier effect.
  • the present invention can be applied to a light-transmitting plate that partitions a predetermined space.
  • the space is typically a vehicle cabin or a building interior, but is not limited to this, and may be inside a showcase or inside a case that houses optical equipment such as an outdoor camera.
  • the light transmitting plate may be any material as long as it transmits light. Therefore, the light transmitting plate does not need to be completely transparent, and may be a material that blocks light having a predetermined wavelength such as so-called smoke glass.
  • the substrate may be a synthetic resin other than glass.
  • thermoelectric element 1 An example of the principle structure of the thermoelectric element 1 is shown in FIG. 15 (a), and another example is shown in FIG. 15 (b).
  • the P-type semiconductors 2 and 10 and the N-type semiconductor 3 are made of 7 ⁇ by electrode plates 4, 5, 6 and 1 1 made of a good conductor such as copper. It is connected in a letter shape or inverted pi-shape. That is, these electrode plates 4, 5, 6 and 11 connect the semiconductors 2, 10 and 3 in series, and the first electrode plate 4 is connected to the first P-type semiconductor 2.
  • An N-type semiconductor 3 is connected, and a second electrode plate 5 is connected to the first P-type semiconductor 2. Further, the third electrode plate 6 connects the N-type semiconductor 3 and the second P-type semiconductor 10, and the fourth electrode plate 11 is connected to the second P-type semiconductor 10. Then, the DC power source 9 can be connected to the lower second electrode plate 5 and the third electrode plate 6 in (a) of FIG. 15, and the upper first electrode plate 4 and the fourth electrode plate 4 The DC power supply 1 2 can be connected to the electrode plate 1 1. These semiconductors 2, 3, 10 and electrode plates 4, 5, 6, 11 are sandwiched between insulating plates 7, 8.
  • the structure shown in (b) of FIG. 15 is a structure in which a P-type semiconductor 15 is arranged between two N-type semiconductors 14, 2 2, and N-type semiconductors 14, 2 2 and P
  • the type semiconductor 15 is connected in a square shape or vice versa by electrode plates 1 6, 17, 18, 23 made of a good conductor such as copper; That is, these electrode plates 1 6, 1 7, 1 8, 2 3 connect the respective semiconductors 1 4, 2 2, 15 in series, and the first electrode plate 16 is the first electrode plate
  • the N-type semiconductor 14 and the P-type semiconductor 15 are connected to each other, and the second electrode plate 17 is connected to the first N-type semiconductor 14.
  • the third electrode plate 18 connects the P-type semiconductor 15 and the second N-type semiconductor 2 2, and the fourth electrode plate 23 is connected to the second N-type semiconductor 2 2. .
  • the DC power source 2 1 can be connected to the lower second electrode plate 17 and the third electrode plate 18 in FIG. 15 (b), and the upper first electrode plate 16 And a fourth electrode plate 23 can be connected to a DC power supply 24.
  • These semiconductors 14, 15, 2 2 and electrode plates 1 6, 1 7, 1, 2 3 are sandwiched between insulating plates 19, 20.
  • each of the N-type semiconductors 14 is connected to the positive electrode of the DC power supply 21 and the P-type semiconductor 15 is connected to the cathode of the DC power supply 21.
  • the temperature of the electrode plates 16 connecting the 1 4 and 15 is lowered, the temperature becomes the cooling side, and when the temperature of the opposite electrodes 1 7 and 18 is raised, the temperature becomes the heating side.
  • the N-type semiconductor 22 is connected to the anode of the DC power supply 24 and the P-type semiconductor 15 is connected to the cathode of the DC power supply 24, the electrode plates connecting the semiconductors 15 and 22 When the temperature on the 18 side becomes lower, it becomes the cooling side, and on the opposite side of each electrode 16, 23, the temperature becomes higher and becomes the heating side.
  • thermoelectric element 1 has translucency, and light is not particularly blocked even when the thermoelectric element 1 is overlapped with the translucent plate.
  • This kind of translucent thermoelectric element 1 has been developed in recent years. A large number of thermoelectric elements 1 are connected and arranged electrically in series and in parallel thermally to form a module, and in that state, they are attached to one surface of a flexible translucent film. ing. The mounting position is an area where light in the translucent plate should be transmitted. The entire surface is preferred. In other words, it is not necessary to provide the thermoelectric element 1 in the peripheral portion that fits into the frame in order to support the translucent plate.
  • the translucent film is a synthetic resin thin film that can transmit light and has flexibility.
  • a flexible translucent film having a modularized thermoelectric element 1 is attached to the translucent plate described above. Specifically, a flexible translucent film is attached to one surface of the translucent plate. When the light transmitting plate is laminated glass, a flexible light transmitting film is sandwiched between the glass plates.
  • a direct current power source is connected to the thermoelectric element module in the flexible translucent film attached to the translucent plate in this way via a controller.
  • the controller is an electric circuit configured to control the amount of current and the direction of the current.
  • the controller is configured as an electronic control unit mainly composed of a microcomputer, and controls the current using various request signals described later. It is configured.
  • Fig. 1 shows an example in which the present invention is applied to a vehicle.
  • the vehicle shown here is a so-called one-box type vehicle, which has a front window 1 1, a front sunroof 1 2, and a rear light translucent part that separates the inside and outside of the vehicle and transmits light. It has a yasan roof 13, left and right front side windows 14, left and right mid side windows 15, left and right rear side windows 16, and rear windows 17.
  • Each of these windows 1 1,..., 17 is constituted by a translucent plate to which the above-described flexible translucent film is attached. That is, as schematically shown in FIG. 2, the flexible translucent film (hereinafter referred to as a thermoelectric element film) 19 having a thermoelectric element is attached to the outer surface of the window glass 18. .
  • a thermoelectric element film 19 is sandwiched between inner and outer glasses 18 a and 18 b.
  • thermoelectric element film 19 in each of the windows 11 1 to 17 is connected to a controller (control device) 20.
  • the controller 20 is mainly composed of an electric circuit and an electronic control device for controlling the amount of current to the thermoelectric element film 19 and the direction in which the current flows, and a request signal 21 such as an air conditioning operation signal.
  • an operation signal ie, current
  • FIG. 5 is a flowchart for explaining a control example of the thermoelectric element film 19 in the vehicle.
  • an air conditioning operation signal is read (step S 0 1). This may be done by transmitting data between an air conditioning electronic control unit (not shown) in the vehicle and the controller 20.
  • step SO 3 an ON signal is output (step SO 3), and a current is supplied to the thermoelectric element film 19. It is. Thereafter, this routine is temporarily terminated.
  • an ON signal is output in step S 0 3
  • the amount of current is relatively small. It may be. Also, the amount of current according to the difference between the actual room temperature and the target temperature may be used.
  • the direction of the current is the direction in which the temperature of the thermoelectric element film 19 on the passenger compartment side decreases when cooling is required, and heating is required. If so, this is the opposite direction.
  • the temperature in the vicinity of the windows 11, ⁇ 17 is adjusted by energizing the thermoelectric element film 19, so that It eliminates situations such as insufficient air conditioning, such as the difference between the temperature and the temperature near the center of the room, thereby improving the feeling of air conditioning (ie comfort). Further, since air conditioning by circulating air can be supplemented by heat generation or heat absorption by the thermoelectric element film 19, the amount of air blown out and the pressure can be reduced to improve quietness. In particular, at the time of so-called idle stops, or when running on a motor with a hybrid vehicle, an electric vehicle, or a fuel cell vehicle, it is possible to improve the quietness by reducing the blowing sound of the conditioned air.
  • thermoelectric element film 19 since it is possible to use the power regenerated during braking, etc., as the power to operate the thermoelectric element film 19, it is possible to improve the fuel efficiency of the vehicle and further improve the driver's utility. it can.
  • thermoelectric element filters 19 are provided in the windows 11 1 to 17, respectively, so that they are provided at a total of 10 locations. So-called indirect air-conditioning with these thermoelectric element films 19 is limited to the vicinity of windows 1 1, ⁇ 17, whereas vehicles are not always full, so indirect air-conditioning with thermoelectric element film 19 It is preferable to carry out according to the boarding state. More specifically, when the thermoelectric element films 19 in the windows 11, ⁇ 17 are assigned the symbols F 1, ⁇ F 10 as shown in FIG. 1, these thermoelectric element films F 1, ⁇ As shown in Fig. 6, F 10 is individually connected to controller 20 so that each can be controlled independently. On the other hand, an occupant detection sensor (for example, a seat sensor or a seat belt sensor) that detects the presence or absence of an occupant is provided at each seat or seating position in the room, and these sensors are connected to the controller 20.
  • an occupant detection sensor for example, a seat sensor or a seat belt sensor
  • FIG. 7 is a flowchart for explaining an example of control in such a configuration.
  • an air conditioning operation signal is read (step S 11). This is the same control as step S 0 1 shown in FIG.
  • the read signal Whether or not there is an air conditioning operation request is determined based on the number (step S 1 2). If it is determined negative in step S12 due to the absence of an air conditioning operation request, this routine is temporarily terminated without performing any particular control.
  • step S13 the sensor signal for detecting the presence or absence of an occupant is read (step S13). If the sensor is, for example, a seat sensor and a seven-seater vehicle, the first to seventh (No. 1 to No. 7) seat sensors exist, and each of them indicates whether there is a passenger. In response, an ON signal can be output.
  • step S13 signals from all sheet sensors are read. Then, it is determined whether or not any of those sheet sensors is ON, that is, whether or not the sheet sensor signal that constitutes the request signal together with the air conditioning operation signal is ON (step S). 14) . If all the sensor signals are OFF, a negative determination is made in step S 14, and in this case, this routine is terminated once without performing any particular control.
  • step S 14 if at least one of the sensor signals is ON, a positive determination is made in step S 14, and in this case, depending on the sensor signal that is ON or the sheet sensor.
  • the predetermined thermoelectric element films F 1 to F 1 CHONZO FF signals are output (step S 15).
  • the relationship between the sensor signal or sheet sensor and the thermoelectric element films F 1, -F 10 to be energized is summarized in FIG.
  • Sensor signal No. 1 is a signal that is turned on when a passenger is on the right side of the front seat.
  • sensor signal No. 2 is on the left side of the front seat
  • sensor signal No. 3 is on the center seat.
  • sensor signal No. 4 is on the left side of the center seat
  • thermoelectric element film F 1 is provided on the front window 11
  • thermoelectric element film F 2 is provided on the front sunroof 12
  • thermoelectric element film F 3 is provided on the rear sunroof 13
  • thermoelectric element film ⁇ F 4 is provided in the right front side window 14
  • thermoelectric element ⁇ F 5 is provided in the left front side window 14
  • thermoelectric film F 6 is provided in the right side window 15.
  • Thermoelectric element film F7 is provided in the left midside window 15 and thermoelectric element ⁇ F8 is on the right side
  • thermoelectric element film F 9 is provided in the left side window 16 and the thermoelectric element film F 10 is provided in the rear window 17.
  • thermoelectric element filter ⁇ 19 in the windows 11 1 to 17 close to the occupant is energized to perform indirect air conditioning, thereby improving comfort.
  • Fig. 9 is a block diagram showing an example in which travel information, which is information related to the driving state of the vehicle, and environmental information related to the environment around the vehicle are added as request signals.
  • driving information and environmental information are input to the controller 20.
  • the travel information includes vehicle speed information obtained by a vehicle speed sensor (not shown), shift position obtained by a shift position sensor (not shown), and operating state of a parking brake obtained by a parking brake sensor (not shown).
  • the environmental information includes information such as the outside air temperature, the difference between the outside air temperature and the vehicle interior temperature, the amount of solar radiation, altitude, the presence or absence of rainfall or snow, and the presence or absence of fog. (Not shown), information stored in the navigation system, and information sent from external communication means such as a sign post.
  • step S 2 1 An example of control when using travel information and environmental information is shown in a flowchart in FIG. Also in the control example shown here, the air conditioning operation information is read (step S 2 1), and it is determined whether there is an air conditioning operation request based on the read information (step S 2 2). These are the same as the control examples shown in FIG. 5 and FIG. If a negative determination is made in step S 22 because there is no air conditioning operation request, this routine is temporarily terminated without performing any particular control. On the other hand, if a positive determination is made in step S 22 due to the request for air conditioning operation, The first sensor signal is read (step S 2 3), and it is further determined whether any of the sheet sensor signals is ON (step S 24). These steps S 2 3 and S 24 are the same controls as steps S 1 3 and S 14 shown in FIG.
  • step S 24 determines whether a negative determination is made in step S 24 or none of the seat sensors is ON and no occupant is present, so this routine is terminated without performing any particular control.
  • step S 2 4 determines whether the determination in step S 2 4 is positive due to the presence of an occupant, travel information (step S 2 5) and environmental information (step S 2 6) are read. .
  • the heat that can be used in the vehicle and the amount of heat released from the vehicle vary depending on the running state. For example, if the vehicle speed is high, the cooling effect by the wind is high, and if the parking brake is operating, the vehicle is stopped without judging by the vehicle speed and there is almost no cooling effect by the wind. Also, if the engine coolant temperature is low, heating cannot be performed sufficiently. The same applies to the temperature of other equipment in the vehicle. On the other hand, if the difference between the outside air temperature and the interior temperature is large, the demand for air conditioning is strong, and it may be necessary to cool or heat strongly, and if the amount of solar radiation is large, the demand for cooling becomes strong. However, the demand for heating may be weakened.
  • thermoelectric element film 19 is set according to the respective information (step S 27).
  • FIG. 11 shows an example of a map for obtaining the operating temperature
  • (a) is an example of a map for obtaining a temperature difference ⁇ T from the in-vehicle set temperature based on the vehicle speed.
  • the higher the vehicle speed the more heat is taken away by the wind. Therefore, the higher the vehicle speed, the smaller the temperature difference ⁇ T so that it approaches the set temperature.
  • the front window 11 receives the strongest wind, the temperature difference ⁇ T between the temperature of the front window 11 and the set temperature is made smaller than the temperature difference between the other windows 1 2, 1 to 17.
  • (B) shows an example of a map for determining the coefficient according to the outside air temperature. When the outside air temperature is medium, the coefficient string is “1”.
  • the coefficient ⁇ is set to be smaller than ⁇ 1 j on the lower and higher temperature sides. In other words, at high and low temperatures, indirect cooling and heating by the thermoelectric element film 19 is strongly performed.
  • (C) shows an example of a map for determining the coefficient j8 corresponding to the amount of solar radiation and the outside temperature. The larger the amount of solar radiation and the higher the outside temperature, the smaller the coefficient i8 is less than “1”. In other words, as the amount of solar radiation increases, the cooling in the vicinity of the windows 11 1 to 17 becomes less effective, so the difference from the set temperature ⁇ T is reduced to reduce the thermoelectric element film. 1 Cooling by 9 is strongly performed.
  • each thermoelectric element film F 1,... F 10 is calculated as the product of the temperature difference ⁇ T and each coefficient a,; 8. Then, an ON or OFF signal is output to the thermoelectric element films F 1 to F 10 so that the operating temperature is reached (step S 28).
  • the thermoelectric element film that outputs the ON signal is determined based on the sheet sensor signal, as shown in FIG.
  • thermoelectric element filter by controlling the current to the thermoelectric element filter by adding driving information and environmental information, it is possible to perform finer control that also takes into account the transfer of heat with the outside of the vehicle. As a result, the air conditioning inside the vehicle is appropriate and comfort is improved. In addition, since wasteful consumption of energy is suppressed, fuel consumption can be improved and drivability can be improved.
  • the thermoelectric element film 19 can also be configured to be operated by a request signal by an artificial operation.
  • the operation request signal 2 2 can be input to the controller 20, and the operation signal can be output to the thermoelectric element film 19 based on the operation request signal 2 2.
  • the operation request signal 22 may be a switch mounted on a vehicle or a signal output from a switch for air conditioning.
  • thermoelectric element film 19 can heat the glass surface by controlling the direction of current flow. This can be used to perform defrosting and defrosting.
  • Fig. 13 is a block diagram showing an example of this.
  • Controller 20 has information 2 3 from an infrastructure medium that transmits signals wirelessly, such as a mobile phone and a wireless terminal, and ambient temperature sensor information 2 4 Is entered. And The controller 20 is configured to output an operation signal to the thermoelectric element film 19 based on these pieces of information 2 3 and 24 to heat the glass surface.
  • step S 3 1 infrastructure media information is read (step S 3 1).
  • step S 3 2 it is determined whether or not there is an operation request (step S 3 2). If a negative determination is made in step S 3 2 because there is no operation request, this routine is temporarily terminated without performing any particular control. On the other hand, if an affirmative determination is made in step S 3 2 due to an operation request, outside air temperature sensor information is read (step S 3 3).
  • thermoelectric element film 19 It is determined whether or not the operation is necessary based on the read outside air temperature sensor information (step S 3 4). That is, it is determined whether it is necessary to energize the thermoelectric element film 19 to operate it as a means for heating the glass surface. Specifically, it is determined whether or not the outside air temperature is equal to or lower than a preset reference temperature.
  • the reference temperature r ° C is a low temperature of about 3 ° C, for example, and is the temperature at which frost is expected to adhere.
  • step S 3 4 if a negative determination is made in step S 3 4, there is no possibility of frost adhering because the outside air temperature is high, so this routine is temporarily terminated without performing any particular control. That is, the thermoelectric element film 19 is not energized. On the other hand, if a positive determination is made in step S 3 4, frost may adhere to the glass surface, so an ON signal (actuation signal) is sent to thermoelectric element film 19. Is output (step S 3 5). As a result, the thermoelectric element film 19 functions as a heater, the glass surface is heated, and defrosting is performed.
  • the present invention can be applied to a vehicle other than a vehicle window, for example, a vehicle side mirror or door mirror.
  • a thermoelectric film with a translucent thermoelectric element on the entire surface to the surface opposite to the reflective surface of the glass plate, the entire surface is evenly heated and free from spots. Defrosting and anti-fogging can be performed. The same applies to mirrors installed in the bathrooms of residences. The same effect can be obtained by applying to the above.
  • the present invention can be applied not only to the window of a vehicle but also to a translucent part of a building window. In that case, indirect cooling can be achieved by passing an electric current through the thermoelectric element film to cool the interior of the room or showcase. In these cases, the information to be used for control can be appropriately determined according to the application.

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

A temperature adjusting device is provided to uniformly cool and heat an entire region though which light is made to pass, thereby making it possible to adjust a temperature in the vicinity of the region to any of high and low ones. In a temperature adjusting device for adjusting a temperature of at least one surface side of light transmissive plates (11-17) to partition a predetermined space; flexible light transmissive films (F1-F10), in which light transmissive thermoelectric elements to cause a Peltier effect are set in their light transmissive regions, are fixed at the light transmissive plates; and a controller is provided to control an electric current flow of the thermoelectric elements in response to a request signal, so that the controller selectively heats and cools the light transmissive plates.

Description

明 細 書 温度調節装置 技術分野  Description Temperature control device Technical field
この発明は、 ウィンドウや屋根のあかリ取リ (トップライ ト) 、 ショ一ケー スなどの所定の空間を外部から仕切る透光部あるいはその近傍の温度を調節する ための装置に関するものである。 背景技術  The present invention relates to an apparatus for adjusting the temperature of a light-transmitting part that partitions a predetermined space such as a window, a roof cover (top light), and a case from the outside, or the vicinity thereof. Background art
この種の透光部は、 外部と直接接触している場合が多く、 そのような場合に は、 外部の温度などの影響を受け、 外部から区画されているとしても、 その近傍 の温度が所期通りにはならない場合がある。 例えば、 室内あるいはショーケース の内部の空調 (エアーコンディショニング) を行っていても、 ウィンドウガラス の近傍では、 外気温度の影響を受けて熱くなつたり、 反対に充分に暖房できずに 寒くなつたりする場合がある。 また、 車両にあっては、 外部が低温の場合にはゥ インドウガラスの外面に霜が付着したり、 あるいは内面に結露が生じたりし、 こ れが原因で視界が遮られることがある。  This type of translucent part is often in direct contact with the outside. In such a case, the temperature in the vicinity of the part is affected by the external temperature, even if it is partitioned from the outside. May not be on time. For example, even when air conditioning is performed indoors or inside a showcase, it may become hot near the window glass due to the influence of outside air temperature, or on the contrary, it may become cold due to insufficient heating. There is. Also, in the case of a vehicle, when the outside is low temperature, frost may adhere to the outer surface of the window glass or condensation may occur on the inner surface, which may block the view.
このような不都合を解消するために、 ウィンドガラスを必要に応じて加熱す ることが行われている。 その一例が車両におけるデフロスタであり、 これはェン ジンの廃熱などを利用して加熱した空気を、 ウィンドウガラスに吹き付けてその 温度を高くすることにより、 霜取りや曇り止めを行うように構成されている。 ま た従来、 車両のサイ ドミラーやドアミラーの曇リ止めを行うために、 鏡面の背面 に電気ヒータを配置することも行われている。 しかしながら、 加熱して昇温した 空気をウィンドウガラスに吹き付けると、 その空気は車室内にも流れるので、 搭 乗者に不快感を与える可能性があり、 また騒音の要因になる。 また、 電気ヒータ で加熱する場合、 必要箇所の全面を充分に加熱するためにはかなりの電力を必要 とし、 バッテリー負荷が増大したり、 あるいは燃費の悪化要因となる可能性があ る。 加熱した空気を吹き付けることに替えて、 ウィンドウガラス自体で発熱させ て霜取りや曇り止めを行うように構成されたウインドウガラスが従来知られてい る。 これは、 熱線をウィンドウガラスに貼り付けた構成であり、 その熱線に通電 して発熱させることにより、 ウィンドウガラスを加熱するようになっている。 し かしながら、 その熱線は細いものの透明ではないから、 視界を遮る要因になり、 使用できる箇所が制限される不都合がある。 In order to eliminate such inconvenience, the wind glass is heated as necessary. One example is a defroster in a vehicle, which is configured to defrost and defrost by blowing air heated by using waste heat from the engine to the window glass to increase its temperature. ing. Conventionally, an electric heater has also been placed on the back of the mirror surface to prevent fogging of vehicle side mirrors and door mirrors. However, if air heated and heated is blown onto the window glass, the air also flows into the passenger compartment, which may cause discomfort to the passengers and cause noise. In addition, when heating with an electric heater, a considerable amount of power is required to fully heat the entire required area, which may increase the battery load or cause a deterioration in fuel consumption. Conventionally, a window glass configured to defrost and defrost by generating heat in the window glass itself instead of blowing heated air is known. This is a configuration in which heat rays are attached to the window glass, and the window glass is heated by energizing the heat rays to generate heat. However, since the heat ray is thin but not transparent, it becomes a factor that obstructs the field of view, and there is an inconvenience that the usable place is restricted.
上記のデフロスタの不都合を解消することを目的とした装置が特開昭 6 4— 9 0 8 4 7号公報ゃ特開 2 0 0 4 - 2 2 1 2 5 9号公報に記載されている。 特開 昭 6 4— 9 0 8 4 7号公報に記載された装置は、 透明導電膜を合わせガラスの外 側ガラスの内面に形成した電熱ガラスを使用し、 加熱した空気である程度の温度 まで加熱して曇りを除去した後は、 電熱ガラスに通電して保温することによリ、 曇り止めを行うように構成されている。 また、 特開 2 0 0 4— 2 2 1 2 5 9号公 報に記載された装置は、 熱電変換素子モジュールを環状に形成し、 これをサファ ィャガラスなどの透明板で挟み、 熱電変換素子モジュールによって透明板をその 周囲から加熱し、 かつ環状をなす熱電変換素子モジュールの内側を透光部とした ものである。  Japanese Patent Application Laid-Open No. 6-4-90 8 47 and Japanese Patent Application Laid-Open No. 2 00 4-2 2 1 2 59 disclose an apparatus intended to eliminate the disadvantages of the above-mentioned defroster. The apparatus described in Japanese Patent Application Laid-Open No. Sho 6 4-9 0 8 4 7 uses an electrothermal glass in which a transparent conductive film is formed on the inner surface of the outer glass, and is heated to a certain temperature with heated air. After removing the fog, the electric glass is energized and kept warm to prevent fogging. In addition, the device described in the publication of Japanese Patent Laid-Open No. 2000-0 2 2 1 2 59 is a thermoelectric conversion element module in which a thermoelectric conversion element module is formed in an annular shape and sandwiched between transparent plates such as sapphire glass. Thus, the transparent plate is heated from its surroundings, and the inside of the annular thermoelectric conversion element module is used as a light transmitting part.
上記の特開昭 6 4— 9 0 8 4 7号公報に記載された装置は、 電熱ガラスに通 電してその温度を高くすることによリ曇リ止めを行うように構成されているか ら、 その機能は、 曇り止めあるいは霜取りのための加熱に限られる。 そのため、 外気温や太陽光の影響でウインドウの近傍の温度が高くなる場合、 そのような温 度の偏リを是正するためには何ら機能しない。 また、 特開 2 0 0 4— 2 2 1 2 5 9号公報に記載された装置は、 熱電変換素子モジュールを備えているので、 冷却 機能を奏するが、 その熱電変換素子モジュールは光を遮るので、 透明板の周辺部 に設けざるを得ず、 そのために透明板の中央部あるいはその近傍の冷却を充分に 行うためには、 熱電変換素子モジュールでの消費電力が大きくなる可能性があ る。 また、 熱電変換素子モジュールが配置されている周辺部と透明板の中央部と には、 透明板の熱伝導性に応じた不可避的な温度差が生じるので、 透明板の中央 部を充分に冷却するべく熱電変換素子モジュールで強力に冷却した場合; 前記温 度差が大きくなって透明板に歪みが生じたリ、 あるいは周辺部分で結露したりす る可能性があった, 発明の開示 The apparatus described in the above Japanese Patent Application Laid-Open No. 6-4-90 8 47 is configured to prevent fogging by energizing the electrothermal glass and increasing its temperature. The function is limited to heating for defrosting or defrosting. Therefore, when the temperature near the window becomes high due to the outside air temperature or sunlight, it does not function to correct such temperature deviation. In addition, since the apparatus described in Japanese Patent Laid-Open No. 2 0 4-2 2 1 2 59 has a thermoelectric conversion element module, the apparatus has a cooling function, but the thermoelectric conversion element module blocks light. For this reason, in order to sufficiently cool the central part of the transparent plate or the vicinity thereof, the power consumption in the thermoelectric conversion element module may increase. In addition, there is an inevitable temperature difference between the peripheral part where the thermoelectric conversion element module is placed and the central part of the transparent plate, depending on the thermal conductivity of the transparent plate, so the central part of the transparent plate is sufficiently cooled. If the thermoelectric conversion element module cools as much as possible; the temperature difference becomes large and the transparent plate is distorted, or condensation occurs in the surrounding area. The disclosure of the invention
この発明は上記の技術的課題に着目してなされたものでぁリ、 光を透過させ る領域の全体を均等に冷却し、 また加熱して前記領域の近傍の温度を高低いずれ にも調整することのできる温度調節装置を提供することを目的とするものであ る。  The present invention has been made by paying attention to the above technical problem, and uniformly cools the entire light transmitting region, and heats it to adjust the temperature in the vicinity of the region to both high and low. It is an object of the present invention to provide a temperature control device that can handle the above.
また、 この発明は、 最近になって開発された透光性のある熱電素子を利用し て、 上記の目的を達成するように構成されたものであり、 具体的には、 この発明 は、 所定の空間を仕切る透光板の少なくとも一方の面側の温度を調整する温度調 節装置において、 ペルチヱ効果を生じる透光性のある熱電素子を、 光を透過させ る領域に備えた可撓性透光フイルムが、 前記透光板に取り付けられ、 要求信号に 応じて前記熱電素子への通電を制御して前記透光板を選択的に加熱および冷却す るコン卜ローラを備えていることを特徴とするものである。  In addition, the present invention is configured to achieve the above-described object by using a translucent thermoelectric element that has been recently developed. Specifically, the present invention provides a predetermined In a temperature control device that adjusts the temperature of at least one surface side of a translucent plate that divides the space, a translucent thermoelectric element that produces a Peltier effect is provided in a flexible translucent region provided in a region that transmits light. An optical film is provided with a controller attached to the translucent plate and selectively heating and cooling the translucent plate by controlling energization to the thermoelectric element in response to a request signal. It is what.
さらに、 この発明は、 上記の発明において、 前記透光板は、 車両のウィンド ゥもしくは屋根の透光部、 あるいは車両の外部に取り付けられたミラー、 もしく は家屋の窓のいずれかに設けられている透光板であることを特徴とする温度調節 装置である。  Further, according to the present invention, in the above invention, the translucent plate is provided either on a translucent part of a vehicle window or a roof, on a mirror attached to the outside of the vehicle, or on a window of a house. It is the light transmission board which is characterized by the above-mentioned.
さらに、 この発明は、 上記の発明において、 前記透光板は、 車両のウィンド ゥガラスもしくはルーフガラスあるいは車両の外部に取リ付けられたミラーであ リ、 前記要求信号は、 前記車両に設けられた乗員検知センサが乗員を検知して出 力する信号を含むことを特徴とする温度調節装置である。  Further, according to the present invention, in the above invention, the translucent plate is a window glass or roof glass of a vehicle or a mirror attached to the outside of the vehicle, and the request signal is provided in the vehicle. The temperature control device includes a signal output by the occupant detection sensor detecting the occupant.
さらに、 この発明は、 上記の発明において、 前記透光板は、 車両のウィンド ゥガラスもしくはルーフガラスあるいは車両の外部に取 y付けられたミラーであ リ、 前記要求信号は、 前記車両の走行状態に関する情報もしくは車両が走行する 箇所の外部環境に基づく冷却要求信号もしくは加熱要求信号を含むことを特徴と する温度調節装置である。  Further, the present invention is the above invention, wherein the translucent plate is a window glass or roof glass of a vehicle or a mirror attached to the outside of the vehicle, and the request signal relates to a traveling state of the vehicle. The temperature control device includes a cooling request signal or a heating request signal based on information or an external environment of a place where the vehicle travels.
さらに、 この発明は、 上記の発明において、 前記透光板は、 車両のウィンド ゥガラスもしくはルーフガラスあるいは車両の外部に取リ付けられたミラーであ リ、 前記要求信号は、 前記車両の外部温度が予め定めた所定温度以下の場合に、 前記透光板の車室の内部に面する側を加熱して霜取リもしくは曇り止めを行う信 号を含むことを特徴とする温度調節装置である。 Further, the present invention is the above invention, wherein the translucent plate is a vehicle window glass or a roof glass, or a mirror attached to the outside of the vehicle. The request signal is a signal for defrosting or anti-fogging by heating the side of the translucent plate facing the interior of the passenger compartment when the external temperature of the vehicle is equal to or lower than a predetermined temperature. It is the temperature control apparatus characterized by including.
さらに、 この発明は、 上記の発明において、 前記透光板は、 車両のウィンド ゥガラスもしくはルーフガラスであり、 前記要求信号は、 前記車両が室内の暖房 を行っている場合には前記透光板の前記室内に面する側を加熱し、 また前記車両 が室内の冷房を行っている場合には前記透光板の前記室内に面する側を冷却する 信号を含むことを特徴とする温度調節装置である。  Furthermore, this invention is the above-mentioned invention, wherein the translucent plate is a window glass or a roof glass of a vehicle, and the request signal is a signal of the translucent plate when the vehicle is heating indoors. A temperature control device including a signal for heating the side facing the room and cooling the side facing the room of the light transmitting plate when the vehicle is cooling the room. is there.
さらに、 この発明は、 上記いずれかの発明において、 前記コントローラは、 所定の外部端末装置からワイャレスで発せられる信号を受信して前記熱電素子へ の通電を制御する手段を含むことを特徴とする温度調節装置である。  Further, the present invention provides the temperature according to any one of the above-described aspects, wherein the controller includes means for receiving a wirelessly transmitted signal from a predetermined external terminal device and controlling energization to the thermoelectric element. It is an adjustment device.
さらに、 この発明によれば、 ペルチェ効果を生じる熱電素子が可撓性の透光 フイルムにおける光を透過させる領域に設けられている。 その熱電素子が透明な ど光を透過させる構成になっているので、 そのフィルムを取り付けた透光板の光 の透過性能が阻害されない。 すなわち、 透光板の光の透過機能が維持される。 ま た、 その熱電素子はペルチェ効果を奏するものであるから、 電流を流す方向を適 宜に切リ替えることにより、 前記フイルムの一方の面の温度が高くなって加熱作 用が生じ、 あるいはこれとは反対に低くなつて冷却作用が生じる。 したがって、 要求信号に基づいてコントローラから熱電素子に電流が流され、 その結果、 前記 フィルムが取り付けられている透光板が加熱され、 あるいは冷却されるので、 そ の透光板やその近傍の温度を調節することができる。  Further, according to the present invention, the thermoelectric element that generates the Peltier effect is provided in a region that transmits light in the flexible light-transmitting film. Since the thermoelectric device is configured to transmit light such as being transparent, the light transmission performance of the translucent plate to which the film is attached is not hindered. That is, the light transmission function of the light transmitting plate is maintained. In addition, since the thermoelectric element exhibits the Peltier effect, by appropriately switching the direction in which the current flows, the temperature of one surface of the film is increased, causing a heating action, or this. On the contrary, the cooling action occurs when the temperature is lowered. Therefore, a current is passed from the controller to the thermoelectric element based on the request signal, and as a result, the translucent plate to which the film is attached is heated or cooled, so that the temperature of the translucent plate and the vicinity thereof is increased. Can be adjusted.
さらに、 この発明によれば、 室内のいわゆる間接空調を行うことができる。 また、 車両のウィンドウやルーフに用いることにより、 間接空調に加えて、 デフ ロスタの機能を生じさせることができる。 Sリ止めの機能は、 車両の外部に取り 付けられたミラーに用いた場合にも生じさせることができる。 その場合、 加熱し た空気を吹き付ける必要がないので、 不快感を生じさせる要因をなくすことがで き、 また光が透過する領域で発熱するので、 温度斑やそれに伴う部分的な曇りな どを解消することができる。  Furthermore, according to the present invention, so-called indirect air conditioning in the room can be performed. In addition to indirect air conditioning, it can be used as a defroster function by using it for vehicle windows and roofs. The S-restraining function can also occur when used on a mirror mounted outside the vehicle. In that case, since there is no need to blow heated air, it is possible to eliminate the cause of discomfort, and heat is generated in the area where light is transmitted, so temperature spots and partial cloudiness associated therewith can be eliminated. Can be resolved.
さらに、 この発明によれば、 車両に乗員がいる場合に限って前記要求信号が 発せられるので、 ウィンドウガラスやルーフガラスあるいはミラーに設けられて いる熱電素子に無駄に通電して電力を消費することを防止することができる。 Further, according to the present invention, the request signal is generated only when an occupant is present in the vehicle. Therefore, it is possible to prevent wasteful energization of the thermoelectric elements provided in the window glass, the roof glass, or the mirror to consume power.
さらに、 この発明によれば、 車両の走行や停止、 あるいは車速やシフ トポジ シヨンもしくは制動の有無、 車速などの走行状態に関する情報、 あるいは外気温 度や日射虽などの走行環境に関する情報に基づく前記要求信号によって前記熱電 素子に対する電流が制御されるので、 より適切に、 また効率よく空調や曇り止め などを行うことができる。  Further, according to the present invention, the request based on traveling or stopping of the vehicle, information on a traveling state such as vehicle speed, shift position or presence / absence of braking, vehicle speed, or information on a traveling environment such as outside air temperature or solar radiation. Since the current to the thermoelectric element is controlled by the signal, air conditioning and anti-fogging can be performed more appropriately and efficiently.
さらに、 この発明によれば、 車両の外部の温度が低い場合には透光板が加熱 されて霜取りや曇り止めが行われ、 したがって自動的かつ適切にガラスやミラー の霜取りあるいは曇り止めを行うことができる。  Furthermore, according to the present invention, when the temperature outside the vehicle is low, the translucent plate is heated to perform defrosting and anti-fogging, and thus automatically and appropriately defrosting or anti-fogging the glass and mirror. Can do.
さらに、 この発明によれば、 車室内が暖房されている場合には、 ウィンドウ ガラスやルーフガラスの車室側の面の温度が高くなるように電流が制御され、 ま た車室内が冷房されている場合には、 ウィンドウガラスやルーフガラスの車室側 の面の温度が低くなるように電流が制御されるので、 これらのガラスがいわゆる 間接空調のための機能を果たし、 その結果、 ガラスの近傍と車室の中央部との温 度差を少なく し、 快適な空調を行うことが可能になる。  Furthermore, according to the present invention, when the vehicle interior is heated, the current is controlled so that the temperature of the window glass or roof glass on the vehicle interior side is increased, and the vehicle interior is cooled. The current is controlled so that the temperature of the window glass or roof glass on the passenger compartment side is lowered, so these glasses perform the function of so-called indirect air conditioning. This makes it possible to reduce the temperature difference between the vehicle and the center of the passenger compartment and to provide comfortable air conditioning.
さらに、 この発明によれば、 離れた箇所から前記熱電素子への電流の制御を 操作することができるので、 利便性を更に向上させることができる。 図面の簡単な説明  Furthermore, according to the present invention, since the control of the current to the thermoelectric element can be operated from a remote location, the convenience can be further improved. Brief Description of Drawings
図 1は、 この発明を適用した車両の側面図である。  FIG. 1 is a side view of a vehicle to which the present invention is applied.
図 2は、 ガラスの外面に熱電素子フィルムを貼リ付けた構成を模式的に示す 断面図である。  FIG. 2 is a cross-sectional view schematically showing a configuration in which a thermoelectric element film is attached to the outer surface of glass.
図 3は、 合わせガラスの内部に熱電素子フィルムを挾み込んだ構成を模式的 に示す断面図である。  FIG. 3 is a cross-sectional view schematically showing a configuration in which a thermoelectric element film is sandwiched in a laminated glass.
図 4は、 熱電素子フイルムの制御のための構成を示すブロック図である。 図 5は、 熱電素子フィル厶の制御の一例を説明するためのフローチヤ一卜で める。  FIG. 4 is a block diagram showing a configuration for controlling the thermoelectric element film. Fig. 5 is a flow chart for explaining an example of control of the thermoelectric element filter.
図 6は、 熱電素子フィルムの制御のための他の構成を示すブロック図であ る。 FIG. 6 is a block diagram showing another configuration for controlling the thermoelectric element film. The
図 7は、 その制御例を説明するためのフローチヤ一トである。  FIG. 7 is a flowchart for explaining the control example.
図 8は、 O N信号を出力するシートセンサと動作させられる熱電素子フィル 厶との関係をまとめて示す図表である。  FIG. 8 is a chart collectively showing the relationship between the sheet sensor that outputs the ON signal and the thermoelectric element filter that is operated.
図 9は、 走行情報および環境情報をも採用して制御を行うように構成した例 を示すブロック図である。  FIG. 9 is a block diagram showing an example in which the driving information and the environment information are also used for control.
図 1 0は、 その制御例を説明するためのフローチヤ一トである。  FIG. 10 is a flowchart for explaining the control example.
図 1 1は、 その制御で使用するマップの一例を示す図である。  FIG. 11 is a diagram showing an example of a map used for the control.
図 1 2は、 作動要求に応じて動作させるように構成した例を示すブロック図 である。  FIG. 12 is a block diagram showing an example configured to operate in response to an operation request.
図 1 3は、 リモート操作で霜取リを行えるように構成した例を示すプロック 図である。  FIG. 13 is a block diagram showing an example in which defrosting can be performed by remote operation.
図 1 4は、 その制御例を説明するためのフローチヤ一トである。  Fig. 14 is a flowchart for explaining the control example.
図 1 5は、 ペルチェ効果を生じる熱電素子の原理的な構成を示す模式図であ る。 発明を実施するための最良の形態  Figure 15 is a schematic diagram showing the basic configuration of a thermoelectric element that produces the Peltier effect. BEST MODE FOR CARRYING OUT THE INVENTION
つぎにこの発明をより具体的に説明する。 この発明は、 所定の空間を仕切る 透光板に適用することができる。 その空間は、 車両の車室や建物の室内が典型的 な例であるが、 これらに限らずショーケースの内部や屋外設置のカメラなどの光 学機器を収容するケースの内部などであってよい。 また、 透光板は、 要は、 光を 透過するものであればよく、 したがって完全に透明である必要なく、 いわゆるス モークガラスなどの所定の波長の光を遮断するものであってもよい。 なお、 基質 はガラス以外に合成樹脂であってもよい。  Next, the present invention will be described more specifically. The present invention can be applied to a light-transmitting plate that partitions a predetermined space. The space is typically a vehicle cabin or a building interior, but is not limited to this, and may be inside a showcase or inside a case that houses optical equipment such as an outdoor camera. . The light transmitting plate may be any material as long as it transmits light. Therefore, the light transmitting plate does not need to be completely transparent, and may be a material that blocks light having a predetermined wavelength such as so-called smoke glass. The substrate may be a synthetic resin other than glass.
その透光板に、 ペルチェ効果を生じる熱電素子を備えた透光フィルムが取リ 付けられている。 その熱電素子 1の原理的な構造の一例を図 1 5の ( a ) に示 し、 他の例を図 1 5の (b ) に示してある。 先ず、 図 1 5の ( a ) の構造につい て説明すると、 P型半導体 2 , 1 0と N型半導体 3とが、 銅などの良導体からな る電極板 4 , 5 , 6 , 1 1 によって 7Γ字型あるいは逆 π字型に接続されている。 すなわち、 これらの電極板 4 , 5 , 6 , 1 1 は各半導体 2 , 1 0, 3を直列に接 続するものであって、 第一の電極板 4は、 第一の P型半導体 2と N型半導体 3と を接続し、 その第一の P型半導体 2に第二の電極板 5が接続されている。 さらに 第三の電極板 6は N型半導体 3と第二の P型半導体 1 0とを接続し、 その第二の P型半導体 1 0に第四の電極板 1 1が接続されている。 そして、 図 1 5の ( a ) における下側の第二の電極板 5と第三の電極板 6とに対して直流電源 9を接続で き、 また上側の第一の電極板 4と第四の電極板 1 1 とに対して直流電源 1 2を接 続できるようになつている。 そして、 これら半導体 2 , 3 , 1 0および電極板 4 , 5 , 6 , 1 1が絶縁板 7 , 8によって挟み込まれている。 A translucent film equipped with a thermoelectric element that generates the Peltier effect is attached to the translucent plate. An example of the principle structure of the thermoelectric element 1 is shown in FIG. 15 (a), and another example is shown in FIG. 15 (b). First, the structure of (a) in FIG. 15 will be described. The P-type semiconductors 2 and 10 and the N-type semiconductor 3 are made of 7Γ by electrode plates 4, 5, 6 and 1 1 made of a good conductor such as copper. It is connected in a letter shape or inverted pi-shape. That is, these electrode plates 4, 5, 6 and 11 connect the semiconductors 2, 10 and 3 in series, and the first electrode plate 4 is connected to the first P-type semiconductor 2. An N-type semiconductor 3 is connected, and a second electrode plate 5 is connected to the first P-type semiconductor 2. Further, the third electrode plate 6 connects the N-type semiconductor 3 and the second P-type semiconductor 10, and the fourth electrode plate 11 is connected to the second P-type semiconductor 10. Then, the DC power source 9 can be connected to the lower second electrode plate 5 and the third electrode plate 6 in (a) of FIG. 15, and the upper first electrode plate 4 and the fourth electrode plate 4 The DC power supply 1 2 can be connected to the electrode plate 1 1. These semiconductors 2, 3, 10 and electrode plates 4, 5, 6, 11 are sandwiched between insulating plates 7, 8.
また、 図 1 5の ( b) に示す構造は、 二つの N型半導体 1 4, 2 2の間に P 型半導体 1 5を配置したものであって、 N型半導体 1 4 , 2 2と P型半導体 1 5 とが、 銅などの良導体からなる電極板 1 6 , 1 7 , 1 8 , 2 3によって丌字型あ るいは逆; Γ字型に接続されている。 すなわち、 これらの電極板 1 6 , 1 7 , 1 8 , 2 3は各半導体 1 4 , 2 2 , 1 5を直列に接続するものであって、 第一の電 極板 1 6は、 第一の N型半導体 1 4と P型半導体 1 5とを接続し、 その第一の N 型半導体 1 4に第二の電極板 1 7が接続されている。 さらに第三の電極板 1 8は P型半導体 1 5と第二の N型半導体 2 2とを接続し、 その第二の N型半導体 2 2 に第四の電極板 2 3が接続されている。 そして、 図 1 5の ( b ) における下側の 第二の電極板 1 7と第三の電極板 1 8とに対して直流電源 2 1 を接続でき、 また 上側の第一の電極板 1 6と第四の電極板 2 3とに対して直流電源 2 4を接続でき るようになっている。 そして、 これら半導体 1 4 , 1 5 , 2 2および電極板 1 6 , 1 7 , 1 , 2 3が絶縁板 1 9 , 2 0によって挟み込まれている。  The structure shown in (b) of FIG. 15 is a structure in which a P-type semiconductor 15 is arranged between two N-type semiconductors 14, 2 2, and N-type semiconductors 14, 2 2 and P The type semiconductor 15 is connected in a square shape or vice versa by electrode plates 1 6, 17, 18, 23 made of a good conductor such as copper; That is, these electrode plates 1 6, 1 7, 1 8, 2 3 connect the respective semiconductors 1 4, 2 2, 15 in series, and the first electrode plate 16 is the first electrode plate The N-type semiconductor 14 and the P-type semiconductor 15 are connected to each other, and the second electrode plate 17 is connected to the first N-type semiconductor 14. Further, the third electrode plate 18 connects the P-type semiconductor 15 and the second N-type semiconductor 2 2, and the fourth electrode plate 23 is connected to the second N-type semiconductor 2 2. . Then, the DC power source 2 1 can be connected to the lower second electrode plate 17 and the third electrode plate 18 in FIG. 15 (b), and the upper first electrode plate 16 And a fourth electrode plate 23 can be connected to a DC power supply 24. These semiconductors 14, 15, 2 2 and electrode plates 1 6, 1 7, 1, 2 3 are sandwiched between insulating plates 19, 20.
したがって、 図 1 5の ( a ) に示す構造では、 N型半導体 3を直流電源 9の 陽極に接続し、 かつ P型半導体 2を直流電源 9の陰極に接続すると、 各半導体 2 , 3を接続している電極板 4側の温度が低くなつて冷却側となり、 これとは反 対の各電極 5 , 6側の温度が高くなつて加熱側となる。 また、 N型半導体 3を直 流電源 1 2の陽極に接続し、 かつ P型半導体 1 0を直流電源 1 2の陰極に接続す ると、 各半導体 3 , 1 0を接続している電極板 6側の温度が低くなつて冷却側と なり、 これとは反対の各電極 4 , 1 1側の温度が高くなつて加熱側となる。 また、 図 1 5の ( b ) に示す構造では、 N型半導体 1 4を直流電源 2 1の陽 極に接続し、 かつ P型半導体 1 5を直流電源 2 1の陰極に接続すると、 各半導体 1 4 , 1 5を接続している電極板 1 6側の温度が低くなつて冷却側となり、 これ とは反対の各電極 1 7 , 1 8側の温度が高くなつて加熱側となる。 また、 N型半 導体 2 2を直流電源 2 4の陽極に接続し、 かつ P型半導体 1 5を直流電源 2 4の 陰極に接続すると、 各半導体 1 5 , 2 2を接続している電極板 1 8側の温度が低 くなつて冷却側となり、 これとは反対の各電極 1 6 , 2 3側の温度が高くなつて 加熱側となる。 Therefore, in the structure shown in (a) of Fig. 15, when the N-type semiconductor 3 is connected to the anode of the DC power source 9 and the P-type semiconductor 2 is connected to the cathode of the DC power source 9, the semiconductors 2 and 3 are connected. On the other hand, the temperature on the electrode plate 4 side becomes the cooling side, while the temperature on the opposite side of each electrode 5, 6 becomes the heating side. Further, when the N-type semiconductor 3 is connected to the anode of the direct current power source 12 and the P-type semiconductor 10 is connected to the cathode of the DC power source 12, an electrode plate connecting the semiconductors 3 and 10. When the temperature on the 6th side becomes lower, it becomes the cooling side, and when the temperature on the opposite side of each electrode 4, 11 becomes higher, it becomes the heating side. In the structure shown in Fig. 15 (b), each of the N-type semiconductors 14 is connected to the positive electrode of the DC power supply 21 and the P-type semiconductor 15 is connected to the cathode of the DC power supply 21. When the temperature of the electrode plates 16 connecting the 1 4 and 15 is lowered, the temperature becomes the cooling side, and when the temperature of the opposite electrodes 1 7 and 18 is raised, the temperature becomes the heating side. When the N-type semiconductor 22 is connected to the anode of the DC power supply 24 and the P-type semiconductor 15 is connected to the cathode of the DC power supply 24, the electrode plates connecting the semiconductors 15 and 22 When the temperature on the 18 side becomes lower, it becomes the cooling side, and on the opposite side of each electrode 16, 23, the temperature becomes higher and becomes the heating side.
この発明における上記の熱電素子 1が透光性を有しておリ、 前記透光板と重 ね合わせた場合であっても光が特には遮られないようになつている。 この種の透 光性のある熱電素子 1は近年開発されている。 そして、 多数の熱電素子 1が電気 的には直列に、 熱的には並列に接続かつ配置されてモジュール化され、 その状態 で可撓性のある透光フィルムの一方の面に取リ付けられている。 その取り付け位 置は、 透光板における光を透過させるべき領域である。 好ましくはその全面であ る。 言い換えれば、 透光板を支持するために枠に嵌め込む周辺部分には、 熱電素 子 1 を設けなくてよい。 また、 透光フィルムは、 光を透過させることのできる合 成樹脂製の薄膜であり、 可撓性を有している。  The thermoelectric element 1 according to the present invention has translucency, and light is not particularly blocked even when the thermoelectric element 1 is overlapped with the translucent plate. This kind of translucent thermoelectric element 1 has been developed in recent years. A large number of thermoelectric elements 1 are connected and arranged electrically in series and in parallel thermally to form a module, and in that state, they are attached to one surface of a flexible translucent film. ing. The mounting position is an area where light in the translucent plate should be transmitted. The entire surface is preferred. In other words, it is not necessary to provide the thermoelectric element 1 in the peripheral portion that fits into the frame in order to support the translucent plate. The translucent film is a synthetic resin thin film that can transmit light and has flexibility.
モジュール化された熱電素子 1 を備えた可撓性透光フィルムが前述した透光 板に取り付けられている。 具体的には、 可撓性透光フイルムが透光板の一方の面 に貼り付けられている。 また、 透光板が合わせガラスの場合には、 可撓性透光フ ィル厶がガラス板の間に挟み込まれている。 このようにして透光板に取リ付けら れた可撓性透光フィルムにおける熱電素子モジュールに直流電源がコントローラ を介して接続されている。 そのコントローラは、 電流量および電流の方向を制御 するように構成された電気回路であり、 一例としてマイクロコンピュータを主体 とする電子制御装置として構成され、 後述する各種の要求信号によって電流を制 御するに構成されている。  A flexible translucent film having a modularized thermoelectric element 1 is attached to the translucent plate described above. Specifically, a flexible translucent film is attached to one surface of the translucent plate. When the light transmitting plate is laminated glass, a flexible light transmitting film is sandwiched between the glass plates. A direct current power source is connected to the thermoelectric element module in the flexible translucent film attached to the translucent plate in this way via a controller. The controller is an electric circuit configured to control the amount of current and the direction of the current. As an example, the controller is configured as an electronic control unit mainly composed of a microcomputer, and controls the current using various request signals described later. It is configured.
図 1 にこの発明を車両に適用した例を示してある。 ここに示す車両は、 いわ ゆるワンボックスタイプの車両であり、 車両の内部と外部とを仕切りかつ光を透 過させる透光部として、 フロントウィンドウ 1 1、 フロントサンルーフ 1 2、 リ ヤサンルーフ 1 3、 左右のフロントサイ ドウインドウ 1 4、 左右のミッ ドサイ ド ウィンドウ 1 5、 左右のリャサイ ドウインドウ 1 6、 リャウィンドウ 1 7を備え ている。 これらの各ウィンドウ 1 1 , ~ 1 7は、 前述した可撓性透光フイルムを 取り付けた透光板によって構成されている。 すなわち、 図 2に模式的に示すよう に、 ウィンドウガラス 1 8の外面に、 熱電素子を備えた前記可撓性透光フィルム (以下、 仮に熱電素子フィルムと記す) 1 9が貼り付けられている。 あるいは図 3に模式的に示すように、 合わせガラスの場合には、 内外のガラス 1 8 a , 1 8 bの間に熱電素子フイルム 1 9が挟み込まれている。 Fig. 1 shows an example in which the present invention is applied to a vehicle. The vehicle shown here is a so-called one-box type vehicle, which has a front window 1 1, a front sunroof 1 2, and a rear light translucent part that separates the inside and outside of the vehicle and transmits light. It has a yasan roof 13, left and right front side windows 14, left and right mid side windows 15, left and right rear side windows 16, and rear windows 17. Each of these windows 1 1,..., 17 is constituted by a translucent plate to which the above-described flexible translucent film is attached. That is, as schematically shown in FIG. 2, the flexible translucent film (hereinafter referred to as a thermoelectric element film) 19 having a thermoelectric element is attached to the outer surface of the window glass 18. . Alternatively, as schematically shown in FIG. 3, in the case of laminated glass, a thermoelectric element film 19 is sandwiched between inner and outer glasses 18 a and 18 b.
各ウィンドウ 1 1 , ~ 1 7における熱電素子フィルム 1 9は、 図 4に示すよ うに、 コントローラ (制御装置) 2 0に接続されている。 このコントローラ 2 0 は、 前述したように、 熱電素子フィルム 1 9に対する電流量や電流を流す方向を 制御する電気回路および電子制御装置を主体とするものであり、 空調作動信号な どの要求信号 2 1 に応じて作動信号 (すなわち電流) を熱電素子フィルム 1 9に 出力するように構成されている。  As shown in FIG. 4, the thermoelectric element film 19 in each of the windows 11 1 to 17 is connected to a controller (control device) 20. As described above, the controller 20 is mainly composed of an electric circuit and an electronic control device for controlling the amount of current to the thermoelectric element film 19 and the direction in which the current flows, and a request signal 21 such as an air conditioning operation signal. In response to this, an operation signal (ie, current) is output to the thermoelectric element film 19.
図 5は、 上記の車両における熱電素子フィルム 1 9の制御例を説明するため のフローチャートであり、 先ず、 空調作動信号の読み込みが行われる (ステップ S 0 1 ) 。 これは、 車両における空調用電子制御装置 (図示せず) と前記コント ローラ 2 0との間でデータを伝送することにより行えばよい。 ついで、 読み込ん だ信号に基づいて空調作動要求があるか否かが判断される (ステップ S O 2 ) 。 空調作動要求がないことによリこのステップ S 0 2で否定的に判断された場合に は、 特に制御を行うことなく このルーチンを一旦終了する。  FIG. 5 is a flowchart for explaining a control example of the thermoelectric element film 19 in the vehicle. First, an air conditioning operation signal is read (step S 0 1). This may be done by transmitting data between an air conditioning electronic control unit (not shown) in the vehicle and the controller 20. Next, it is determined whether there is an air conditioning operation request based on the read signal (step S O 2). If it is determined negative in step S 02 due to the absence of an air conditioning operation request, this routine is temporarily terminated without performing any particular control.
これに対して空調作動要求があることによリステップ S 0 2で肯定的に判断 された場合には、 O N信号が出力され (ステップ S O 3 ) 、 熱電素子フイルム 1 9に対して電流が流される。 その後、 このルーチンを一旦終了する。 ステップ S 0 3で O N信号が出力される場合、 熱電素子フィルム 1 9による加熱もしくは冷 却が、 車両が備えている空調システムによる空調を補完するものであれば、 電流 量は比較的少ない一定電流であってよい。 また、 実際の室温と目標温度との差に 応じた電流量としてもよい。 なお、 電流の方向は、 冷房が要求されている場合に は、 熱電素子フィルム 1 9の車室側の面の温度が低下する方向であり、 暖房が要 求されている場合には、 これとは反対の方向である。 On the other hand, if a positive determination is made in step S 0 2 due to the air conditioning operation request, an ON signal is output (step SO 3), and a current is supplied to the thermoelectric element film 19. It is. Thereafter, this routine is temporarily terminated. If an ON signal is output in step S 0 3, if the heating or cooling by the thermoelectric element film 19 complements the air conditioning by the vehicle's air conditioning system, the amount of current is relatively small. It may be. Also, the amount of current according to the difference between the actual room temperature and the target temperature may be used. The direction of the current is the direction in which the temperature of the thermoelectric element film 19 on the passenger compartment side decreases when cooling is required, and heating is required. If so, this is the opposite direction.
したがって上記のように構成されたこの発明に係る温度調整装置によれば、 ウィンドウ 1 1 , 〜 1 7の近傍における温度を熱電素子フィルム 1 9に通電する ことによリ調整するので、 窓際での温度と室内の中央寄りの箇所での温度との差 が大きくなるなど、 空調の効きが不足するなどの事態を解消し、 冷暖房感 (すな わち快適性) を向上させることができる。 また、 空気を循環させることによリ空 調を熱電素子フイルム 1 9による発熱あるいは吸熱で補うことができるので、 空 気の吹き出し量や圧力を低下させて静粛性を向上させることができる。 特にいわ ゆるアイ ドルストツプ時や、 ハイブリッ ド車もしくは電気自動車あるいは燃料電 池車でモータ走行するときに、 空調空気の吹き出し音を低下させて静粛性を向上 させることができる。 また、 遮音性の高い高級車などでは空調空気の吹き出し音 を低下させて、 高級感を更に向上させることができる。 さらに、 熱電素子フィル ム 1 9を動作させるための電力として、 制動時などに回生した電力を用いること も可能であるから、 車両の燃費を向上させ、 さらにはドライバピリティを向上さ せることができる。  Therefore, according to the temperature adjustment device according to the present invention configured as described above, the temperature in the vicinity of the windows 11, ˜ 17 is adjusted by energizing the thermoelectric element film 19, so that It eliminates situations such as insufficient air conditioning, such as the difference between the temperature and the temperature near the center of the room, thereby improving the feeling of air conditioning (ie comfort). Further, since air conditioning by circulating air can be supplemented by heat generation or heat absorption by the thermoelectric element film 19, the amount of air blown out and the pressure can be reduced to improve quietness. In particular, at the time of so-called idle stops, or when running on a motor with a hybrid vehicle, an electric vehicle, or a fuel cell vehicle, it is possible to improve the quietness by reducing the blowing sound of the conditioned air. In addition, high-quality cars with high sound insulation can lower the sound of air-conditioning air blowing and further improve the sense of quality. Furthermore, since it is possible to use the power regenerated during braking, etc., as the power to operate the thermoelectric element film 19, it is possible to improve the fuel efficiency of the vehicle and further improve the driver's utility. it can.
ところで図 1 に示す例では、 上記の熱電素子フィル厶 1 9が各ウインドウ 1 1 , ~ 1 7に設けられているので、 合計で 1 0箇所に設けられている。 これらの 熱電素子フィルム 1 9によるいわゆる間接空調はウインドウ 1 1 , ~ 1 7の近傍 に限られ、 これに対して車両は常時満席になるわけではないので、 熱電素子フィ ルム 1 9による間接空調は乗車状態に応じて行うことが好ましい。 具体的に説明 すると、 各ウィンドウ 1 1 , 〜 1 7の熱電素子フィルム 1 9に、 図 1 に示すよう に F 1 , 〜 F 1 0の符号を付すと、 これらの熱電素子フィルム F 1 , ~ F 1 0を 図 6に示すように、 個別にコン トローラ 2 0に接続し、 それぞれを独立して制御 できるように構成する。 また一方、 室内の各シートもしくは着座位置に乗員の有 無を検出する乗員検知センサ (例えばシートセンサやシートベルトセンサなど) を設けておき、 それらの各センサをコントローラ 2 0に接続しておく。  Incidentally, in the example shown in FIG. 1, the thermoelectric element filters 19 are provided in the windows 11 1 to 17, respectively, so that they are provided at a total of 10 locations. So-called indirect air-conditioning with these thermoelectric element films 19 is limited to the vicinity of windows 1 1, ~ 17, whereas vehicles are not always full, so indirect air-conditioning with thermoelectric element film 19 It is preferable to carry out according to the boarding state. More specifically, when the thermoelectric element films 19 in the windows 11, ˜ 17 are assigned the symbols F 1, ˜ F 10 as shown in FIG. 1, these thermoelectric element films F 1, ˜ As shown in Fig. 6, F 10 is individually connected to controller 20 so that each can be controlled independently. On the other hand, an occupant detection sensor (for example, a seat sensor or a seat belt sensor) that detects the presence or absence of an occupant is provided at each seat or seating position in the room, and these sensors are connected to the controller 20.
図 7はこのように構成した場合の制御例を説明するためのフローチヤ一卜で あり、 先ず、 空調作動信号の読み込みが行われる (ステップ S 1 1 ) 。 これは、 前述した図 5に示すステツプ S 0 1 と同様の制御である。 ついで、 読み込んだ信 号に基づいて空調作動要求があるか否かが判断される (ステップ S 1 2) 。 空調 作動要求がないことによリこのステップ S 1 2で否定的に判断された場合には、 特に制御を行うことなく このルーチンを一旦終了する。 FIG. 7 is a flowchart for explaining an example of control in such a configuration. First, an air conditioning operation signal is read (step S 11). This is the same control as step S 0 1 shown in FIG. Next, the read signal Whether or not there is an air conditioning operation request is determined based on the number (step S 1 2). If it is determined negative in step S12 due to the absence of an air conditioning operation request, this routine is temporarily terminated without performing any particular control.
空調作動要求があることによリステツプ S 1 2で肯定的に判断された場合に は、 乗員の有無を検出する前記センサの信号が読み込まれる (ステップ S 1 3 ) 。 そのセンサが例えばシートセンサであって、 7人乗りの車両であれば、 第 1から第 7 (N o . 1 ~ N o . 7 ) のシートセンサが存在していてそれぞれが乗 員の有無に応じて O N信号を出力することができるので、 ステップ S 1 3では全 てのシートセンサからの信号を読み込む。 そして、 それらのシートセンサのいず れかが O Nとなっているか否か、 すなわち前記空調作動信号と併せて要求信号を 構成しているシートセンサ信号が O Nか否かが判断される (ステップ S 1 4) 。 全てのセンサ信号が O F Fであれば、 ステップ S 1 4で否定的に判断され、 その 場合は特に制御を行うことなくこのルーチンを一旦終了する。  If a positive determination is made in step S12 due to the request for air conditioning operation, the sensor signal for detecting the presence or absence of an occupant is read (step S13). If the sensor is, for example, a seat sensor and a seven-seater vehicle, the first to seventh (No. 1 to No. 7) seat sensors exist, and each of them indicates whether there is a passenger. In response, an ON signal can be output. In step S13, signals from all sheet sensors are read. Then, it is determined whether or not any of those sheet sensors is ON, that is, whether or not the sheet sensor signal that constitutes the request signal together with the air conditioning operation signal is ON (step S). 14) . If all the sensor signals are OFF, a negative determination is made in step S 14, and in this case, this routine is terminated once without performing any particular control.
これとは反対にいずれか少なくとも一つのセンサ信号が O Nであれば、 ステ ップ S 1 4で肯定的に判断され、 その場合は、 O Nとなっているセンサ信号もし くはシ一トセンサに応じた所定の熱電素子フィルム F 1 , 〜 F 1 CH O NZO F F信号が出力される (ステップ S 1 5 ) 。 そのセンサ信号もしくはシートセンサ と、 通電される熱電素子フィルム F 1 , - F 1 0との関係を図 8にまとめて示し てある。 なお、 センサ信号 N o . 1 は前席右側に乗員がいる場合に O Nとなる信 号であり、 以下同様に、 センサ信号 N o . 2は前席左側、 センサ信号 N o . 3は 中央席右側、 センサ信号 N o . 4は中央席左側、 センサ信号 N o . 5は後席右 側、 センサ信号 N o . 6は後席中央、 センサ信号 N o . 7は後席左側にそれぞれ 乗員がいる場合に O Nとなる信号である。 また、 熱電素子フィルム F 1はフロン トウインドウ 1 1に設けられ、 熱電素子フィルム F 2はフロントサンルーフ 1 2 に設けられ、 熱電素子フイルム F 3はリヤサンルーフ 1 3に設けられ、 熱電素子 フィル厶 F 4は右のフロントサイ ドウインドウ 1 4に設けられ、 熱電素子フィル 厶 F 5は左のフロントサイ ドウインドウ 1 4に設けられ、 熱電素子フィルム F 6 は右のミッ ドサイ ドウインドウ 1 5に設けられ、 熱電素子フィルム F 7は左のミ ッ ドサイ ドウインドウ 1 5に設けられ、 熱電素子フィル厶 F 8は右のリャサイ ド ウィンドウ 1 6に設けられ、 熱電素子フィルム F 9は左のリャサイ ドウインドウ 1 6に設けられ、 熱電素子フィルム F 1 0はリャウィンドウ 1 7に設けられてい る。 On the contrary, if at least one of the sensor signals is ON, a positive determination is made in step S 14, and in this case, depending on the sensor signal that is ON or the sheet sensor. The predetermined thermoelectric element films F 1 to F 1 CHONZO FF signals are output (step S 15). The relationship between the sensor signal or sheet sensor and the thermoelectric element films F 1, -F 10 to be energized is summarized in FIG. Sensor signal No. 1 is a signal that is turned on when a passenger is on the right side of the front seat. Similarly, sensor signal No. 2 is on the left side of the front seat, and sensor signal No. 3 is on the center seat. Right, sensor signal No. 4 is on the left side of the center seat, sensor signal No. 5 is on the right side of the rear seat, sensor signal No. 6 is in the center of the rear seat, and sensor signal No. 7 is on the left side of the rear seat. This signal turns ON when The thermoelectric element film F 1 is provided on the front window 11, the thermoelectric element film F 2 is provided on the front sunroof 12, the thermoelectric element film F 3 is provided on the rear sunroof 13, and the thermoelectric element film 厶 F 4 is provided in the right front side window 14, the thermoelectric element 厶 F 5 is provided in the left front side window 14, and the thermoelectric film F 6 is provided in the right side window 15. Thermoelectric element film F7 is provided in the left midside window 15 and thermoelectric element 厶 F8 is on the right side The thermoelectric element film F 9 is provided in the left side window 16 and the thermoelectric element film F 10 is provided in the rear window 17.
図 8に示すように、 上記の温度調節装置では、 乗員に近い箇所のウィンドウ 1 1 , 〜 1 7における熱電素子フィル厶 1 9に通電されて、 間接空調を行うの で、 快適性を向上させることができるだけでなく、 不必要に間接空調を行うこと やそれに伴って無駄にエネルギを消費したリ、 燃費を悪化させたりする不都合を 防止もしくは抑制することができる。  As shown in FIG. 8, in the above-described temperature control device, the thermoelectric element filter 厶 19 in the windows 11 1 to 17 close to the occupant is energized to perform indirect air conditioning, thereby improving comfort. In addition, it is possible to prevent or suppress inconveniences such as unnecessary indirect air conditioning, unnecessary energy consumption, and worsening fuel consumption.
この発明の更に他の例を説明する。 図 9は要求信号として、 車両の走行状態 に関する情報である走行情報と、 車両の周囲の環境に関する環境情報とを追加し た例を示すブロック図であり、 前述した空調作動情報およびシートセンサ信号に 加えて、 走行情報および環境情報がコントローラ 2 0に入力されている。 その走 行情報は、 車速センサ (図示せず) によって得られる車速情報、 シフ トポジショ ンセンサ (図示せず) によって得られるシフ トポジション、 パーキングブレーキ センサ (図示せず) によって得られるパーキングブレーキの動作状態の情報、 ェ ンジン冷却水や排気浄化触媒あるいは変速機油温などの温度情報、 バッテリ (図 示せず) の充電容量の情報などを含み、 要は、 車両の各部の状態に関する情報で ある。 これらは、 車両の各部に設けられたセンサによって得ることができる。 ま た、 環境情報は、 外気温度や外気温度と車内温度との差、 日射量、 高度、 降雨も しくは降雪の有無、 霧の有無などの情報を含み、 これらは車載されている温度セ ンサ (図示せず) やナビゲーシヨンシステムで記憶している情報、 サインポスト などの外部通信手段から送られる情報として得ることができる。  Still another example of the present invention will be described. Fig. 9 is a block diagram showing an example in which travel information, which is information related to the driving state of the vehicle, and environmental information related to the environment around the vehicle are added as request signals. In addition, driving information and environmental information are input to the controller 20. The travel information includes vehicle speed information obtained by a vehicle speed sensor (not shown), shift position obtained by a shift position sensor (not shown), and operating state of a parking brake obtained by a parking brake sensor (not shown). Information on engine cooling water, exhaust purification catalyst or temperature of transmission oil, information on charging capacity of battery (not shown), and so on. These can be obtained by sensors provided in each part of the vehicle. The environmental information includes information such as the outside air temperature, the difference between the outside air temperature and the vehicle interior temperature, the amount of solar radiation, altitude, the presence or absence of rainfall or snow, and the presence or absence of fog. (Not shown), information stored in the navigation system, and information sent from external communication means such as a sign post.
走行情報や環境情報を利用する場合の制御例を図 1 0にフローチヤ一卜で示 してある。 ここに示す制御例においても、 空調作動情報を読み込み (ステップ S 2 1 ) 、 その読み込んだ情報に基づいて空調作動要求があるか否かが判断される (ステップ S 2 2 ) 。 これらは、 前述した図 5や図 7に示す制御例と同様であ る。 空調作動要求がないことによリス亍ップ S 2 2で否定的に判断された場合に は、 特に制御を行うことなく このルーチンを一旦終了する。 これとは反対に空調 の作動要求があることによリステップ S 2 2で肯定的に判断された場合には、 シ 一卜センサ信号が読み込まれ (ステップ S 2 3 ) 、 さらにいずれかのシートセン サ信号が O Nか否かが判断される (ステップ S 2 4 ) 。 これらステップ S 2 3お よびステップ S 2 4は、 図 7に示すステップ S 1 3およびステップ S 1 4と同様 の制御である。 An example of control when using travel information and environmental information is shown in a flowchart in FIG. Also in the control example shown here, the air conditioning operation information is read (step S 2 1), and it is determined whether there is an air conditioning operation request based on the read information (step S 2 2). These are the same as the control examples shown in FIG. 5 and FIG. If a negative determination is made in step S 22 because there is no air conditioning operation request, this routine is temporarily terminated without performing any particular control. On the other hand, if a positive determination is made in step S 22 due to the request for air conditioning operation, The first sensor signal is read (step S 2 3), and it is further determined whether any of the sheet sensor signals is ON (step S 24). These steps S 2 3 and S 24 are the same controls as steps S 1 3 and S 14 shown in FIG.
したがってステップ S 2 4で否定的に判断された場合にはいずれのシ一トセ ンサも O N動作しておらず、 乗員がいないことになるので、 特に制御を行うこと なくこのルーチンを一旦終了する。 これとは反対に乗員がいることによリス亍ッ プ S 2 4で肯定的に判断された場合には、 走行情報 (ステップ S 2 5 ) および環 境情報 (ステップ S 2 6 ) が読み込まれる。  Therefore, if a negative determination is made in step S 24, none of the seat sensors is ON and no occupant is present, so this routine is terminated without performing any particular control. On the other hand, if the determination in step S 2 4 is positive due to the presence of an occupant, travel information (step S 2 5) and environmental information (step S 2 6) are read. .
ところで、 車両で利用できる熱や車両からの放熱量は、 走行状態によって異 なる。 例えば、 車速が速ければ風による冷却効果が高く、 またパーキングブレー キが動作していれば、 車速で判断するまでもなく車両が停止していて風による冷 却効果が殆どない。 またエンジンの冷却水温度が低ければ暖房を充分に行うこと ができない。 これは車両の他の機器の温度についても同様である。 一方、 外気温 度と車内温度との差が大きい場合には、 空調の要求が強く、 冷房あるいは暖房を 強力に行う必要が考えられ、 また日射量が多い場合には、 冷房の要求は強くなる が暖房の要求は弱くなることが考えられる。 また、 高度が高い場合や降雨もしく は降雪がある場合、 さらには霧が濃い場合などには、 冷房の要求は弱くなるが暖 房の要求が強くなることが考えられる。 このように走行状態および環境によって 空調に対する要求が異なるので、 各熱電素子フィルム 1 9の作動温度を、 それぞ れの情報に応じて設定する (ステップ S 2 7 ) 。  By the way, the heat that can be used in the vehicle and the amount of heat released from the vehicle vary depending on the running state. For example, if the vehicle speed is high, the cooling effect by the wind is high, and if the parking brake is operating, the vehicle is stopped without judging by the vehicle speed and there is almost no cooling effect by the wind. Also, if the engine coolant temperature is low, heating cannot be performed sufficiently. The same applies to the temperature of other equipment in the vehicle. On the other hand, if the difference between the outside air temperature and the interior temperature is large, the demand for air conditioning is strong, and it may be necessary to cool or heat strongly, and if the amount of solar radiation is large, the demand for cooling becomes strong. However, the demand for heating may be weakened. In addition, when the altitude is high, when there is rainfall or snowfall, or when the fog is dense, it is possible that the cooling requirement will be weak but the heating requirement will be strong. Since the requirements for air conditioning differ depending on the traveling state and environment as described above, the operating temperature of each thermoelectric element film 19 is set according to the respective information (step S 27).
図 1 1 は、 その作動温度を求めるためのマップの例を示しており、 ( a ) は 車速に基づいて車内設定温度との温度差厶 Tを求めるためのマップの一例であ る。 高車速ほど風によって奪われる熱量が多くなることが考えられるので、 高車 速ほど設定温度に近づけるように、 温度差 Δ Tを小さくするようになつている。 また、 フロントウィンドウ 1 1が最も強く風を受けるので、 フロントウィンドウ 1 1の温度と設定温度との温度差 Δ Tを他のウインドウ 1 2 , 〜 1 7での温度差 より小さく してある。 また ( b ) は外気温度に応じた係数 を求めるためのマツ プの一例を示しており、 外気温度が中程度の場合に係数ひが 「 1」 となり、 それ よリ低温側および高温側では係数 αが Γ 1 j より小さくなるように設定されてい る。 すなわち、 高温時および低温時では、 熱電素子フィルム 1 9による間接的な 冷房や暖房を強く行うようになっている。 そして、 (c ) は日射量および外気温 に応じた係数 j8を求めるためのマツプの一例を示しておリ、 日射量が多いほど、 また外気温が高いほど、 係数 i8が 「 1』 より小さくなるように設定されている。 すなわち、 日射量が多いほど、 ウィンドウ 1 1 , 〜 1 7の近傍での冷房が効きに く くなるので、 設定温度との差 Δ Tを小さく して熱電素子フィルム 1 9による冷 却を強く行うようになっている。 FIG. 11 shows an example of a map for obtaining the operating temperature, and (a) is an example of a map for obtaining a temperature difference 厶 T from the in-vehicle set temperature based on the vehicle speed. The higher the vehicle speed, the more heat is taken away by the wind. Therefore, the higher the vehicle speed, the smaller the temperature difference ΔT so that it approaches the set temperature. Further, since the front window 11 receives the strongest wind, the temperature difference ΔT between the temperature of the front window 11 and the set temperature is made smaller than the temperature difference between the other windows 1 2, 1 to 17. (B) shows an example of a map for determining the coefficient according to the outside air temperature. When the outside air temperature is medium, the coefficient string is “1”. The coefficient α is set to be smaller than Γ 1 j on the lower and higher temperature sides. In other words, at high and low temperatures, indirect cooling and heating by the thermoelectric element film 19 is strongly performed. (C) shows an example of a map for determining the coefficient j8 corresponding to the amount of solar radiation and the outside temperature. The larger the amount of solar radiation and the higher the outside temperature, the smaller the coefficient i8 is less than “1”. In other words, as the amount of solar radiation increases, the cooling in the vicinity of the windows 11 1 to 17 becomes less effective, so the difference from the set temperature ΔT is reduced to reduce the thermoelectric element film. 1 Cooling by 9 is strongly performed.
各熱電素子フイルム F 1 , ~ F 1 0の作動温度は、 上記の温度差 Δ Tと各係 数 a , ;8の積として算出される。 そして、 その作動温度となるように熱電素子フ イルム F 1 , ~ F 1 0に O Nもしくは O F Fの信号が出力される (ステップ S 2 8 ) 。 なお、 O N信号が出力される熱電素子フイルムは、 シートセンサ信号に基 づいて決められ、 これは、 前述した図 8に示したとおりである。  The operating temperature of each thermoelectric element film F 1,... F 10 is calculated as the product of the temperature difference ΔT and each coefficient a,; 8. Then, an ON or OFF signal is output to the thermoelectric element films F 1 to F 10 so that the operating temperature is reached (step S 28). The thermoelectric element film that outputs the ON signal is determined based on the sheet sensor signal, as shown in FIG.
したがって、 走行情報や環境情報を加えて熱電素子フィル厶への電流を制御 すれば、 車両の外部との熱の授受をも加味したよリ細かい制御を行うことができ る。 そのため、 車内の空調がょリ適切なものとなって快適性が向上する。 また、 無駄にエネルギを消費することが抑制されるので、 燃費を向上させることがで き、 またドライバビリ亍ィを向上させることができる。  Therefore, by controlling the current to the thermoelectric element filter by adding driving information and environmental information, it is possible to perform finer control that also takes into account the transfer of heat with the outside of the vehicle. As a result, the air conditioning inside the vehicle is appropriate and comfort is improved. In addition, since wasteful consumption of energy is suppressed, fuel consumption can be improved and drivability can be improved.
なお、 熱電素子フイルム 1 9は人為的な操作による要求信号によって動作さ せるように構成することもできる。 例えば図 1 2に示すように、 コントローラ 2 0に作動要求信号 2 2を入力し、 その作動要求信号 2 2に基づいて熱電素子フィ ルム 1 9に作動信号を出力するように構成することができる。 なお、 その作動要 求信号 2 2は、 車両に搭載されたスィッチであってもよく、 あるいは空調を行う ためのスィツチから出力される信号であってもよい。  The thermoelectric element film 19 can also be configured to be operated by a request signal by an artificial operation. For example, as shown in FIG. 12, the operation request signal 2 2 can be input to the controller 20, and the operation signal can be output to the thermoelectric element film 19 based on the operation request signal 2 2. . The operation request signal 22 may be a switch mounted on a vehicle or a signal output from a switch for air conditioning.
前述したように熱電素子フィルム 1 9は電流を流す方向を制御することによ リガラス面を加熱することができる。 これを利用して霜取リや曇り止めを行うよ うに構成することができる。 図 1 3はその一例を示すブロック図であり、 コント ローラ 2 0には、 携帯電話機やワイヤレス端末器などの無線で信号を送信するィ ンフラ媒体からの情報 2 3と、 外気温センサ情報 2 4が入力されている。 そし て、 コントローラ 2 0は、 これらの情報 2 3 , 2 4に基づいて熱電素子フイルム 1 9に作動信号を出力してガラス面を加熱するように構成されている。 As described above, the thermoelectric element film 19 can heat the glass surface by controlling the direction of current flow. This can be used to perform defrosting and defrosting. Fig. 13 is a block diagram showing an example of this. Controller 20 has information 2 3 from an infrastructure medium that transmits signals wirelessly, such as a mobile phone and a wireless terminal, and ambient temperature sensor information 2 4 Is entered. And The controller 20 is configured to output an operation signal to the thermoelectric element film 19 based on these pieces of information 2 3 and 24 to heat the glass surface.
その制御の一例を図 1 4にフローチャートで示してある。 先ず、 インフラ媒 体情報が読み込まれる (ステップ S 3 1 ) 。 ついで、 作動要求があるか否かが判 断される (ステップ S 3 2 ) 。 作動要求がないことによりステップ S 3 2で否定 的に判断された場合には特に制御を行うことなくこのルーチンを一旦終了する。 これとは反対に作動要求があることによりステップ S 3 2で肯定的に判断された 場合には、 外気温センサ情報が読み込まれる (ステップ S 3 3 ) 。  An example of the control is shown in the flowchart of FIG. First, infrastructure media information is read (step S 3 1). Next, it is determined whether or not there is an operation request (step S 3 2). If a negative determination is made in step S 3 2 because there is no operation request, this routine is temporarily terminated without performing any particular control. On the other hand, if an affirmative determination is made in step S 3 2 due to an operation request, outside air temperature sensor information is read (step S 3 3).
その読み込まれた外気温センサ情報に基づいて作動の必要があるか否かが判 断される (ステップ S 3 4 ) 。 すなわち熱電素子フィルム 1 9に通電してこれを ガラス面の加熱手段として動作させる必要があるか否かが判断される。 具体的に は、 外気温度が予め設定した基準温度) 以下か否かが判断される。 その基準温 度 r °Cは例えば 3 °C程度の低温度であって、 霜が付着することが予想される温度 である。  It is determined whether or not the operation is necessary based on the read outside air temperature sensor information (step S 3 4). That is, it is determined whether it is necessary to energize the thermoelectric element film 19 to operate it as a means for heating the glass surface. Specifically, it is determined whether or not the outside air temperature is equal to or lower than a preset reference temperature. The reference temperature r ° C is a low temperature of about 3 ° C, for example, and is the temperature at which frost is expected to adhere.
したがってステップ S 3 4で否定的に判断された場合には、 外気温度が高く て霜が付着する可能性がないので、 特に制御を行うことなくこのルーチンを一旦 終了する。 すなわち熱電素子フィルム 1 9に通電しない。 これとは反対にステツ プ S 3 4で肯定的に判断された場合には、 ガラス面に霜が付着する可能性がある ために、 熱電素子フイルム 1 9に対して O N信号 (作動信号) が出力される (ス 亍ップ S 3 5 ) 。 その結果、 熱電素子フィルム 1 9がヒータとして機能し、 ガラ ス面が加熱されて霜取リが行われる。  Therefore, if a negative determination is made in step S 3 4, there is no possibility of frost adhering because the outside air temperature is high, so this routine is temporarily terminated without performing any particular control. That is, the thermoelectric element film 19 is not energized. On the other hand, if a positive determination is made in step S 3 4, frost may adhere to the glass surface, so an ON signal (actuation signal) is sent to thermoelectric element film 19. Is output (step S 3 5). As a result, the thermoelectric element film 19 functions as a heater, the glass surface is heated, and defrosting is performed.
このように図 1 3に示すように構成した場合には、 乗車する前にリモート制 御によって霜取りや曇り止めを行うことができるので、 発進時の快適性を向上さ せることができ、 また利便性を向上させることができる。  When configured as shown in Fig. 13 in this way, defrosting and anti-fogging can be performed by remote control before boarding, so it is possible to improve starting comfort and convenience. Can be improved.
なお、 この発明は車両のウインドウ以外にも適用することができるのであ リ、 例えば車両のサイ ドミラーやドアミラーにも適用することができる。 すなわ ち透光性のある熱電素子を全面に備えた熱電フィル厶を、 ガラス板の反射面とは 反対側の表面に貼リ付けることによリ、 全面を均等に加熱して斑のない霜取リや 曇り止めを行うことができる。 これは、 住居の浴室などに設けられる鏡にも同様 に適用して同様の効果を得ることができる。 さらに、 この発明は、 車両のウィン ドウだけでなく、 建築物の窓ゃショ一ケースの透光部にも適用することができ る。 その場合、 室内やショーケースの内部を冷却するように熱電素子フイルムに 電流を流すことにより、 間接的な冷房が可能になる。 またこれらの場合、 制御の ために採用する情報は、 用途に応じて適宜決めることができる。 Note that the present invention can be applied to a vehicle other than a vehicle window, for example, a vehicle side mirror or door mirror. In other words, by attaching a thermoelectric film with a translucent thermoelectric element on the entire surface to the surface opposite to the reflective surface of the glass plate, the entire surface is evenly heated and free from spots. Defrosting and anti-fogging can be performed. The same applies to mirrors installed in the bathrooms of residences. The same effect can be obtained by applying to the above. Furthermore, the present invention can be applied not only to the window of a vehicle but also to a translucent part of a building window. In that case, indirect cooling can be achieved by passing an electric current through the thermoelectric element film to cool the interior of the room or showcase. In these cases, the information to be used for control can be appropriately determined according to the application.

Claims

請 求 の 範 囲 The scope of the claims
1 . 所定の空間を仕切る透光板の少なくとも一方の面側の温度を調整する温度 調節装置において、 1. In a temperature control device that adjusts the temperature of at least one surface side of a translucent plate that partitions a predetermined space,
ペルチェ効果を生じる透光性のある熱電素子が、 光を透過させる領域に設けら れ、 かつ前記透光板に取リ付けられた可撓性透光フィルムと、  A light-transmitting thermoelectric element that generates a Peltier effect is provided in a light-transmitting region, and a flexible light-transmitting film attached to the light-transmitting plate;
要求信号に応じて前記熱電素子への通電を制御して前記透光板を選択的に加熱 および冷却するコントローラと  A controller for selectively heating and cooling the translucent plate by controlling energization to the thermoelectric element in accordance with a request signal;
を備えていることを特徴とする温度調節装置。 A temperature control device comprising:
2 . 前記透光板は、 車両のウィンドウもしくは屋根の透光部、 あるいは車両の 外部に取り付けられたミラー、 もしくは家屋の窓のいずれかに設けられている透 明板を含むことを特徴とする請求項 1 に記載の温度調節装置。 2. The translucent plate includes a translucent plate provided on either a translucent part of a vehicle window or a roof, a mirror attached to the outside of the vehicle, or a window of a house. The temperature control device according to claim 1.
3 . 前記透光板は、 車両のウィンドウガラスもしくはルーフガラスあるいは車 両の外部に取り付けられたミラーを含み、 3. The translucent plate includes a window glass or roof glass of a vehicle or a mirror attached to the outside of the vehicle,
前記要求信号は、 前記車両に設けられた乗員検知センサが乗員を検知して出力 する信号を含む  The request signal includes a signal output by an occupant detection sensor provided in the vehicle detecting the occupant.
ことを特徴とする請求項 1に記載の温度調節装置。 The temperature control device according to claim 1, wherein:
4 . 前記透光板は、 車両のウィンドウガラスもしくはルーフガラスあるいは車 両の外部に取リ付けられたミラーを含み、 4. The translucent plate includes a vehicle window glass or roof glass or a mirror attached to the outside of the vehicle,
前記要求信号は、 前記車両の走行状態に関する情報もしくは車両が走行する箇 所の外部環境に基づく冷却要求信号もしくは加熱要求信号を含む  The request signal includes a cooling request signal or a heating request signal based on information related to the traveling state of the vehicle or an external environment where the vehicle travels.
ことを特徴とする請求項 1に記載の温度調節装置。 The temperature control device according to claim 1, wherein:
5 . 前記透光板は、 車両のウィンドウガラスもしくはルーフガラスあるいは車 雨の外部に取り付けられたミラーを含み、 5. The translucent plate includes a vehicle window glass or roof glass or a mirror attached to the outside of the vehicle rain,
前記要求信号は、 前記車両の外部温度が予め定めた所定温度以下の場合に、 前 記透光板の車室の内部に面する側を加熱して霜取りもしくは曇り止めを行う信号 を含む When the external temperature of the vehicle is equal to or lower than a predetermined temperature, the request signal is Includes a signal to heat the side facing the interior of the translucent plate to defrost or defrost
ことを特徴とする請求項 1に記載の温度調節装置。 The temperature control device according to claim 1, wherein:
6 . 前記透光板は、 車両のウィンドウガラスもしくはルーフガラスを含み、 前記要求信号は、 前記車両が室内の暖房を行っている場合には前記透光板の前 記室内に面する側を加熱し、 また前記車両が室内の冷房を行っている場合には前 記透光板の前記室内に面する側を冷却する信号を含む 6. The translucent plate includes a window glass or a roof glass of a vehicle, and the request signal heats the side facing the interior of the translucent plate when the vehicle is heating a room. And a signal for cooling the side of the translucent plate facing the room when the vehicle is cooling the room.
ことを特徴とする請求項 1に記載の温度調節装置。 The temperature control device according to claim 1, wherein:
7 . 前記コントローラは、 所定の外部端末装置からワイヤレスで発せられる信 号を受信して前記熱電素子への通電を制御する手段を含むことを特徴とする請求 項 1ないし 6のいずれかに記載の温度調節装置。 7. The controller according to any one of claims 1 to 6, further comprising means for receiving a signal generated wirelessly from a predetermined external terminal device and controlling energization to the thermoelectric element. Temperature control device.
PCT/JP2008/059404 2007-05-23 2008-05-15 Temperature adjusting device WO2008146689A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009516272A JP5212367B2 (en) 2007-05-23 2008-05-15 Temperature control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007137000 2007-05-23
JP2007-137000 2007-05-23

Publications (1)

Publication Number Publication Date
WO2008146689A1 true WO2008146689A1 (en) 2008-12-04

Family

ID=40074944

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/059404 WO2008146689A1 (en) 2007-05-23 2008-05-15 Temperature adjusting device

Country Status (2)

Country Link
JP (1) JP5212367B2 (en)
WO (1) WO2008146689A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4782897B1 (en) * 2011-04-11 2011-09-28 隆彌 渡邊 Air conditioning
JP4791611B1 (en) * 2011-05-20 2011-10-12 隆彌 渡邊 Air conditioning
JP4856282B1 (en) * 2011-07-30 2012-01-18 隆彌 渡邊 Air conditioning
WO2012140800A1 (en) * 2011-04-11 2012-10-18 Watanabe Takaya Cooling and heating device
WO2014167774A1 (en) * 2013-04-12 2014-10-16 株式会社デンソー Radiant heater air-conditioning system
JP2016060322A (en) * 2014-09-17 2016-04-25 トヨタ紡織株式会社 Vehicle seat
JP2018144622A (en) * 2017-03-03 2018-09-20 大日本印刷株式会社 vehicle
JP2018144623A (en) * 2017-03-03 2018-09-20 大日本印刷株式会社 vehicle
JP2019094022A (en) * 2017-11-27 2019-06-20 株式会社デンソー Window fogging adjustment system
WO2021015271A1 (en) * 2019-07-23 2021-01-28 株式会社デンソー Heating apparatus for vehicle
JP2021007750A (en) * 2020-04-02 2021-01-28 深▲せん▼市予一電子科技有限公司 Depilatory apparatus and semiconductor cooling piece
CN114991634A (en) * 2022-06-29 2022-09-02 浙江极氪智能科技有限公司 Temperature-adjustable glass and automobile

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03114467U (en) * 1990-03-09 1991-11-25
JPH05105032A (en) * 1991-10-16 1993-04-27 Nippondenso Co Ltd Air conditioner for electric automobile and control method thereof
JPH07139750A (en) * 1993-11-15 1995-05-30 Shimizu Corp Removing device of sensible heat load on window surface
JP2004243862A (en) * 2003-02-13 2004-09-02 Denso Corp Electric heater energization control device for vehicle windowpane

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03114467U (en) * 1990-03-09 1991-11-25
JPH05105032A (en) * 1991-10-16 1993-04-27 Nippondenso Co Ltd Air conditioner for electric automobile and control method thereof
JPH07139750A (en) * 1993-11-15 1995-05-30 Shimizu Corp Removing device of sensible heat load on window surface
JP2004243862A (en) * 2003-02-13 2004-09-02 Denso Corp Electric heater energization control device for vehicle windowpane

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4782897B1 (en) * 2011-04-11 2011-09-28 隆彌 渡邊 Air conditioning
WO2012140800A1 (en) * 2011-04-11 2012-10-18 Watanabe Takaya Cooling and heating device
JP4791611B1 (en) * 2011-05-20 2011-10-12 隆彌 渡邊 Air conditioning
JP4856282B1 (en) * 2011-07-30 2012-01-18 隆彌 渡邊 Air conditioning
WO2014167774A1 (en) * 2013-04-12 2014-10-16 株式会社デンソー Radiant heater air-conditioning system
JP2014205432A (en) * 2013-04-12 2014-10-30 株式会社デンソー Radiation heater air conditioning system
CN105142942A (en) * 2013-04-12 2015-12-09 株式会社电装 Radiant heater air-conditioning system
US9873309B2 (en) 2013-04-12 2018-01-23 Denso Corporation Radiant heater air-conditioning system
JP2016060322A (en) * 2014-09-17 2016-04-25 トヨタ紡織株式会社 Vehicle seat
JP2018144623A (en) * 2017-03-03 2018-09-20 大日本印刷株式会社 vehicle
JP2018144622A (en) * 2017-03-03 2018-09-20 大日本印刷株式会社 vehicle
JP2019094022A (en) * 2017-11-27 2019-06-20 株式会社デンソー Window fogging adjustment system
WO2021015271A1 (en) * 2019-07-23 2021-01-28 株式会社デンソー Heating apparatus for vehicle
JP2021007750A (en) * 2020-04-02 2021-01-28 深▲せん▼市予一電子科技有限公司 Depilatory apparatus and semiconductor cooling piece
JP2021010741A (en) * 2020-04-02 2021-02-04 深▲せん▼市予一電子科技有限公司 Semiconductor cooling piece and dehairing device
CN112533554A (en) * 2020-04-02 2021-03-19 深圳市予一电子科技有限公司 Appearance and semiconductor refrigeration piece moult
JP6994544B2 (en) 2020-04-02 2022-01-14 深▲せん▼市予一電子科技有限公司 Semiconductor cooling piece and epilator
JP6994543B2 (en) 2020-04-02 2022-01-14 深▲せん▼市予一電子科技有限公司 Epilator and semiconductor cooling piece
CN112533554B (en) * 2020-04-02 2023-09-22 深圳市予一电子科技有限公司 Dehairing instrument and semiconductor refrigerating sheet
CN114991634A (en) * 2022-06-29 2022-09-02 浙江极氪智能科技有限公司 Temperature-adjustable glass and automobile
CN114991634B (en) * 2022-06-29 2024-04-16 浙江极氪智能科技有限公司 Temperature-adjustable glass and automobile

Also Published As

Publication number Publication date
JPWO2008146689A1 (en) 2010-08-19
JP5212367B2 (en) 2013-06-19

Similar Documents

Publication Publication Date Title
JP5212367B2 (en) Temperature control device
JP3222415B2 (en) Vehicle air conditioner
JP6439471B2 (en) Anti-fogging deicing device for vehicles
CN105383444A (en) Windshield defogging system and method
JP7088047B2 (en) Vehicle control unit
JP2015074243A (en) Vehicle
CN112261749A (en) Vehicle defrosting and demisting control circuit and method and vehicle
AU2013265463B2 (en) Device for heating and/or cooling a chamber
US9855920B2 (en) Panoramic roof panel thermal management module of panoramic roof panel
JP4984441B2 (en) Energy control device for heating and cooling
WO2019137088A1 (en) Self-adaptive cabin air conditioning system, control method therefor, and mobile vehicle having the system
US20210284024A1 (en) Transportation moving body, and automobile
JP2018144752A (en) Air-conditioning control device of electric vehicle
CN210026978U (en) Vehicle and vehicle-mounted glass device thereof
JP4905298B2 (en) Translucent plate heating device
CN114425977A (en) Seat temperature control device and control method thereof
JPS61110613A (en) Air conditioner for car
CN113335033A (en) Glass structure and heating method thereof
WO2019192025A1 (en) Intelligent control system for vehicle environment
JP2009292249A (en) Air-conditioning device
US20240166015A1 (en) System for electrically heating vehicle windshield
CA2974909A1 (en) Heating and cooling system for transport instruments
JP5943378B2 (en) Temperature control system for vehicles
CN208233010U (en) A kind of automatic heating demisting shield glass
JP6350118B2 (en) Heater air conditioning system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08753076

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2009516272

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08753076

Country of ref document: EP

Kind code of ref document: A1