JP2564868B2 - Permanent magnet manufacturing method - Google Patents

Permanent magnet manufacturing method

Info

Publication number
JP2564868B2
JP2564868B2 JP62336138A JP33613887A JP2564868B2 JP 2564868 B2 JP2564868 B2 JP 2564868B2 JP 62336138 A JP62336138 A JP 62336138A JP 33613887 A JP33613887 A JP 33613887A JP 2564868 B2 JP2564868 B2 JP 2564868B2
Authority
JP
Japan
Prior art keywords
molded body
permanent magnet
temperature
magnetic
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62336138A
Other languages
Japanese (ja)
Other versions
JPH01179304A (en
Inventor
紀夫 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP62336138A priority Critical patent/JP2564868B2/en
Publication of JPH01179304A publication Critical patent/JPH01179304A/en
Application granted granted Critical
Publication of JP2564868B2 publication Critical patent/JP2564868B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は永久磁石の製造方法に関し、更に詳しくは、
残留磁束密度(Br)、保磁力(iHc)および最大エネル
ギ積((BH)max)などの磁気特性が優れたNd−Fe−B
系の異方性永久磁石を製造する方法に関する。
TECHNICAL FIELD The present invention relates to a method for manufacturing a permanent magnet, and more specifically,
Nd-Fe-B with excellent magnetic properties such as residual magnetic flux density (Br), coercive force (iHc) and maximum energy product ((BH) max)
System for producing anisotropic permanent magnets.

(従来の技術) 2Nd−Fe−B系の焼結型磁石は概ね次のようにして製
造されている。まず、所定組成のNd−Fe−B系合金に常
用の溶湯急冷法を適用して該合金の組成を有する非晶質
の薄帯またはフレークを調製する。ついで、この薄帯ま
たはフレークを粉砕して所定粒度の粉末としたのち、こ
れに熱処理を施して結晶化を進め高いiHcを付与する。
(Prior Art) A 2Nd-Fe-B based sintered magnet is generally manufactured as follows. First, a conventional melt quenching method is applied to an Nd-Fe-B alloy having a predetermined composition to prepare an amorphous ribbon or flake having the composition of the alloy. Next, the thin strips or flakes are crushed to obtain powder having a predetermined particle size, and then heat treatment is applied to this to promote crystallization and impart high iHc.

その後、得られた磁性粉を所定の型内に充填し、冷間
プレスまたはホットプレスを施して成形体に圧縮成形す
る。ホットプレスの場合、その温度は通常700〜800℃で
ある。このとき、一般に形状異方性を有している上記磁
性粉は、そのc軸方向がプレス方向と直交するように配
向することにより成形体には磁気異方性が付与される。
このときの配向度が大きいほど最終的に得られる磁石の
磁気異方性は大きくなる。
Then, the obtained magnetic powder is filled in a predetermined mold and subjected to cold pressing or hot pressing to compression-mold a molded body. In the case of hot pressing, the temperature is usually 700-800 ° C. At this time, the magnetic powder, which generally has shape anisotropy, is oriented so that its c-axis direction is orthogonal to the pressing direction, so that the formed body is given magnetic anisotropy.
The greater the degree of orientation at this time, the greater the magnetic anisotropy of the finally obtained magnet.

得られた成形体は、その後真空中において700〜800℃
の温度で塑性変形処理を施して所定形状に加工したの
ち、これを100℃近辺の温度にまで冷却して製品とす
る。しかし、ホットプレス後にただちに冷却して製品と
する場合もある。
The obtained molded body is then 700 to 800 ° C in vacuum.
After subjecting to plastic deformation at a temperature of 1 to process into a predetermined shape, this is cooled to a temperature around 100 ° C to obtain a product. However, in some cases, the product is immediately cooled after hot pressing.

(発明が解決しようとする問題点) しかしながら、上記した方法においては、ホットプレ
スまたは塑性変形処理時の適用温度が700〜800℃である
ため、この過程でNd−Fe−B系合金の結晶粒が粗大化し
て、得られた磁石のiHcが低下するという永久磁石にと
っては最も忌避すべき問題がしばしば発生する。
(Problems to be Solved by the Invention) However, in the above-mentioned method, since the applied temperature at the time of hot pressing or plastic deformation treatment is 700 to 800 ° C., the crystal grains of the Nd—Fe—B alloy are in this process. The problem that should be most avoided for permanent magnets is that the iHc of the obtained magnets decreases due to the coarsening of particles.

このような問題の発生を抑制するために、Nd−Fe−B
系合金組成として更にGaを配合することが知られてい
る。このGa配合のNd−Fe−B系合金に対し上記した製造
方法を適用した場合、磁石のiHcは高くなるが、しかし
他方ではBrの低下を招き結局(BH)maxの低下を招くの
みならず、そもそもGaは高価であるため全体のコスト上
昇を招かざるを得ないという問題がある。
In order to suppress the occurrence of such problems, Nd-Fe-B
It is known to further mix Ga as a system alloy composition. When the above-mentioned manufacturing method is applied to this Ga-blended Nd-Fe-B-based alloy, iHc of the magnet is increased, but on the other hand, Br is lowered and eventually (BH) max is lowered. However, since Ga is expensive in the first place, there is a problem that the total cost must be increased.

本発明者は、ホットプレス後または塑性変形処理後に
おける上記磁気特性の低下を防止すべく鋭意研究を重
ね、上記した製造方法の各単位工程に関し調査したとこ
ろ、ホットプレス後または塑性変形処理後の冷却過程に
おける冷却速度が磁石の特性向上にとっては、極めて重
要であるとの事実を見出し、本発明方法を開発するに到
った。
The present inventor has conducted extensive studies in order to prevent the deterioration of the magnetic properties after hot pressing or after plastic deformation treatment, and inspected each unit step of the above-mentioned manufacturing method. The fact that the cooling rate in the cooling process is extremely important for improving the characteristics of the magnet was found and the method of the present invention was developed.

すなわち、本発明は、Gaのような他の成分を添加しな
くても、ホットプレスまたは塑性変形処理後の成形体に
対する冷却管理のみによって優れた磁気特性、とわけiH
cの高い永久磁石を製造する方法の提供を目的とする。
That is, the present invention has excellent magnetic properties only by cooling control for a molded body after hot pressing or plastic deformation treatment without adding other components such as Ga, iH
It is intended to provide a method for manufacturing a permanent magnet having a high c.

(問題点を解決するための手段) 上記目的を達成するために、本発明の永久磁石の製造
方法は、その構成をNd,Fe,Bを主成分とする合金粉末
に、真空中において600〜800℃の温度域でホットプレス
または塑性変形処理を施して成形体としたのち、該成形
体を5℃/min以上の冷却速度で急冷することを特徴とす
る。
(Means for Solving Problems) In order to achieve the above-mentioned object, the method for producing a permanent magnet of the present invention has a structure in which an alloy powder containing Nd, Fe, and B as a main component is added to 600- It is characterized in that after hot pressing or plastic deformation treatment is performed in a temperature range of 800 ° C to obtain a molded body, the molded body is rapidly cooled at a cooling rate of 5 ° C / min or more.

本発明方法を適用する合金粉末は、Nd−Fe−B系永久
磁石の原料磁性粉として知られているものであれば何で
もあってもよく格別限定されるものではない。
The alloy powder to which the method of the present invention is applied is not particularly limited as long as it is known as a raw material magnetic powder for Nd-Fe-B system permanent magnets.

このNd−Fe−B系の磁性粉は溶湯急冷法で調製した所
定組成のNd−Fe−B系合金の薄帯またはフレークを粉砕
して容易に得ることができる。
This Nd-Fe-B system magnetic powder can be easily obtained by crushing thin strips or flakes of Nd-Fe-B system alloy having a predetermined composition prepared by a melt quenching method.

本発明方法においては、まず上記Nd−Fe−B系磁性粉
にホットプレスまたは塑性変形処理を施して磁性成形体
を成形する。このとき、周囲の雰囲気は真空状態に維持
されていることが必要で、真空が維持されていない場合
は、酸化してホットプレス時に密度があがらず、また保
磁力も低下するような事態が発生するので不都合であ
る。好適な真空度は1×10-3Torr以上の高真空度であ
る。
In the method of the present invention, first, the Nd-Fe-B magnetic powder is subjected to hot pressing or plastic deformation treatment to form a magnetic compact. At this time, the surrounding atmosphere needs to be maintained in a vacuum state. If the vacuum is not maintained, there is a situation in which the density does not increase during hot pressing and the coercive force also decreases. It is inconvenient. A suitable vacuum degree is a high vacuum degree of 1 × 10 −3 Torr or more.

また、このときの温度は600〜800℃の範囲に設定され
る。この処理温度が600℃未満の場合は、ホットプレス
においては磁性粉を賦形することが困難であり、また、
塑性変形時においては塑性変形が生起しない。逆に800
℃よりも高い温度で処理した場合は、ホットプレス、塑
性変形処理のいずれにおいても磁性粉のNd−Fe−B系合
金の結晶粒が粗大化してそのiHcの低下を招くので不都
合である。650〜750℃であることが好ましい。
The temperature at this time is set in the range of 600 to 800 ° C. If the processing temperature is less than 600 ° C, it is difficult to shape the magnetic powder in the hot press, and
Plastic deformation does not occur during plastic deformation. Conversely 800
When the treatment is carried out at a temperature higher than ° C, the crystal grains of the Nd-Fe-B system alloy of the magnetic powder become coarse and the iHc thereof is lowered in both hot pressing and plastic deformation treatment, which is inconvenient. It is preferably 650 to 750 ° C.

なお、ホットプレス時の圧は0.3〜2tonf/cm2であるこ
とが好ましく、また塑性変形処理においては、0.1〜2to
nf/cm2であることが好ましい。
The pressure during hot pressing is preferably 0.3 to 2 tonf / cm 2 , and in the plastic deformation treatment, 0.1 to 2 tof.
It is preferably nf / cm 2 .

上記したホットプレス後または塑性変形処理後、得ら
れた成形体は5℃/minの冷却速度で急冷される。通常
は、処理後の成形体に例えば常温のArガスを吹きつけて
冷却することが好ましい。このとき、Arガスの吹きつけ
量によって成形体の冷却速度を調節することができる。
After the hot pressing or the plastic deformation treatment described above, the obtained molded body is rapidly cooled at a cooling rate of 5 ° C / min. Usually, it is preferable to blow Ar gas at room temperature onto the treated compact to cool it. At this time, the cooling rate of the molded body can be adjusted by adjusting the amount of Ar gas sprayed.

このような急冷処理は、成形体の温度が300℃程度に
なるまで維続することが好ましく、理由は解明されてい
ないが、この処理によって成形体のiHcは高まり、また
磁気異方性化の程度は向上する。
Such a quenching treatment is preferably continued until the temperature of the molded body reaches about 300 ° C. The reason for this has not been clarified, but this treatment increases iHc of the molded body and also causes magnetic anisotropy. The degree will improve.

いずれにしても、この冷却速度が5℃/minよりも小さ
い場合は、得られた成形体のBr,iHc,(BH)maxの値がい
ずれも小さくなり不都合である。
In any case, when the cooling rate is lower than 5 ° C./min, the values of Br, iHc, (BH) max of the obtained molded body are all small, which is inconvenient.

このようにして本発明の永久磁石が得られるが、これ
に更に600℃以下の温度で熱処理を施すと、上記急冷処
理時に成形体に蓄積された歪みを除去することができ、
iHcを一層高めることができるので好適である。500〜60
0℃の温度であることが好ましい。
In this way, the permanent magnet of the present invention can be obtained, but by further subjecting this to a heat treatment at a temperature of 600 ° C. or lower, it is possible to remove the strain accumulated in the compact during the rapid cooling treatment,
It is preferable because iHc can be further increased. 500-60
A temperature of 0 ° C. is preferred.

本発明においては、上記した方法で得られた成形体そ
のものを永久磁石として用いることもできるが、これを
一旦粉砕して粉末とし、エポキシ樹脂のような樹脂マト
リックスと混合して成るプラスチック磁石用の磁性粉と
して用いることもできる。
In the present invention, the molded body itself obtained by the above-mentioned method can be used as a permanent magnet, but it is once pulverized into a powder and mixed with a resin matrix such as an epoxy resin for a plastic magnet. It can also be used as magnetic powder.

(発明の実施例) 実施例1〜7 Nd:32重量%、B:0.6重量%、Al:0.1重量%、Si:0.1重量
%、残部Feから成る組成の合金に溶湯急冷法(片ロール
法)を適用して薄帯とした。この薄帯をX線回折法で測
定したところ、その約80%は非晶質であった。
(Examples of the invention) Examples 1 to 7 Nd: 32% by weight, B: 0.6% by weight, Al: 0.1% by weight, Si: 0.1% by weight, the balance Fe alloy alloy melt composition (single roll method) ) Was applied to form a ribbon. When this ribbon was measured by an X-ray diffraction method, about 80% thereof was amorphous.

ついで薄帯を粉砕し、JISZ8801で規定する篩を用いて
分級し60メッシュ下の粉末を分取した。
Then, the thin strip was crushed and classified using a sieve specified in JIS Z8801, and the powder under 60 mesh was collected.

この粉末を金型に充填し、1×10-3Torrの真空中にお
いて700℃まで4分間で加熱し1tonf/cm2でプレス成形し
た。
This powder was filled in a mold, heated in a vacuum of 1 × 10 −3 Torr to 700 ° C. for 4 minutes, and press-molded at 1 tonf / cm 2 .

3分間プレス成形を維持したのち除圧し成形体を金型
から取り出し、これをArガスを吹きつけて成形体を急冷
した。成形体の50℃までの冷却速度を、熱電対で測定し
た。
After maintaining the press molding for 3 minutes, the pressure was released, the molded body was taken out of the mold, and Ar gas was blown onto the molded body to rapidly cool the molded body. The cooling rate of the molded body up to 50 ° C. was measured with a thermocouple.

得られた成形体の磁気特性を測定し、冷却速度との関
係として第1表に示した。
The magnetic properties of the obtained molded body were measured, and the relationship with the cooling rate is shown in Table 1.

つぎに、実施例2の成形体に表示の条件で熱処理を施
し、得られた磁石の磁気特性を測定した。その結果を第
2表に示した。
Next, the molded body of Example 2 was heat-treated under the conditions shown, and the magnetic characteristics of the obtained magnet were measured. The results are shown in Table 2.

第2表から明らかなように、熱処理温度が600℃を超
えると磁石の磁気特性の低下が認められる。
As is clear from Table 2, when the heat treatment temperature exceeds 600 ° C, the magnetic properties of the magnet deteriorate.

実施例8〜10 Nd:30重量%、B:0.8重量%、Ga:0.2重量%、Co:2重量
%、残部がFeから成る組成の合金に溶湯急冷法(片ロー
ル法)を適用して薄帯とした。この薄帯をX線回折法で
測定したところ、その約90%は非晶質であった。
Examples 8 to 10 Nd: 30% by weight, B: 0.8% by weight, Ga: 0.2% by weight, Co: 2% by weight, the alloy having a composition of Fe as the balance was subjected to the melt quenching method (single roll method). It was a thin strip. When this ribbon was measured by an X-ray diffraction method, about 90% thereof was amorphous.

ついで薄帯をArを雰囲気中で粉砕し、JISZ8801で規定
する篩を用いて分級し60メッシュ下の粉末を分取した。
この粉末を冷間プレスして密度5.8g/cm2の圧粉体とし
た。
Then, the thin strip was crushed with Ar in an atmosphere and classified using a sieve specified in JIS Z8801 to collect powder under 60 mesh.
This powder was cold pressed to obtain a green compact having a density of 5.8 g / cm 2 .

この圧粉体をSUS304製の容器内に収納し、真空脱気処
理を施したのち蓋を溶接して前記圧粉体を容器内に封入
した。その後、700℃の炉中に投入した。容器は30分後
に700℃にまで昇温した。700℃に加熱後、直ちに容器を
その厚みが1/5となるまで、熱圧プレスし、内部の圧粉
体に塑性変形処理を施した。
The green compact was housed in a SUS304 container, subjected to vacuum deaeration, and then the lid was welded to seal the green compact in the container. Then, it was put into a furnace at 700 ° C. After 30 minutes, the temperature of the container was raised to 700 ° C. Immediately after heating to 700 ° C., the container was hot-pressed until its thickness became 1/5, and the green compact inside was subjected to plastic deformation treatment.

ついで成形後の容器を再び炉中に入れ、表示した冷却
速度で冷却した。室温まで冷却したのち容器から成形体
を取出し、これを粉砕し60メッシュ下の粉末とした。
Then, the molded container was put into the furnace again and cooled at the indicated cooling rate. After cooling to room temperature, the molded body was taken out from the container and crushed to obtain powder under 60 mesh.

得られた各磁性粉97.5重量%、エポキシ樹脂2重量
部、滑材としてのステアリン酸亜鉛0.5重量部とを混合
し、パルス着磁によって磁化せしめたのち、全体を20KO
eの磁場中で7tong/cm2の圧で圧縮成形してプラスチック
磁石とした。
After mixing 97.5% by weight of each magnetic powder obtained, 2 parts by weight of epoxy resin, and 0.5 parts by weight of zinc stearate as a lubricant, and magnetizing by pulse magnetization, the whole was 20 KO
A plastic magnet was obtained by compression molding in a magnetic field of e at a pressure of 7 tong / cm 2 .

得られた磁石の磁気特性を冷却速度との関係とて第3
表に示した。
The relationship between the magnetic characteristics of the obtained magnet and the cooling rate
Shown in the table.

(発明の効果) 以上の説明で明らかなように、本発明の永久磁石の製
造方法は、その構成を、Nd,Fe,Bを主成分とする合金粉
末に、真空中において600〜800℃の温度域でホットプレ
スまたは塑性変形処理を施して成形体としたのち、該成
形体を5℃/min以上の冷却速度で急冷するようにしたの
で、Br、iHc、(BH)maxなどの磁気特性のいずれもが優
れたNd−Fe−B系の永久磁石を提供することができ、そ
の工業的価値は極めて大である。
(Effects of the Invention) As is apparent from the above description, the method for producing a permanent magnet of the present invention has a structure in which an alloy powder containing Nd, Fe, and B as the main components has a temperature of 600 to 800 ° C. in a vacuum. After hot pressing or plastic deformation treatment in the temperature range to form a molded body, the molded body was cooled rapidly at a cooling rate of 5 ° C / min or more. Therefore, magnetic properties such as Br, iHc, (BH) max, etc. Any of these can provide an excellent Nd-Fe-B-based permanent magnet, and its industrial value is extremely large.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】Nd,Fe,Bを主成分とする合金粉末に、真空
中において600〜800℃の温度域でホットプレスまたは塑
性変形処理を施して成形体としたのち、該成形体を5℃
/min以上の冷却速度でて急冷することを特徴とする永久
磁石の製造方法。
1. An alloy powder containing Nd, Fe, B as a main component is hot-pressed or plastically deformed in a temperature range of 600 to 800 ° C. in a vacuum to form a molded body, and then the molded body is subjected to 5 ℃
A method for manufacturing a permanent magnet, which comprises rapidly cooling at a cooling rate of not less than / min.
【請求項2】前記急冷処理ののちに、更に600℃以下の
温度で熱処理を施す特許請求の範囲第1項記載の永久磁
石の製造方法。
2. The method for producing a permanent magnet according to claim 1, further comprising a heat treatment at a temperature of 600 ° C. or lower after the quenching treatment.
JP62336138A 1987-12-29 1987-12-29 Permanent magnet manufacturing method Expired - Lifetime JP2564868B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62336138A JP2564868B2 (en) 1987-12-29 1987-12-29 Permanent magnet manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62336138A JP2564868B2 (en) 1987-12-29 1987-12-29 Permanent magnet manufacturing method

Publications (2)

Publication Number Publication Date
JPH01179304A JPH01179304A (en) 1989-07-17
JP2564868B2 true JP2564868B2 (en) 1996-12-18

Family

ID=18296085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62336138A Expired - Lifetime JP2564868B2 (en) 1987-12-29 1987-12-29 Permanent magnet manufacturing method

Country Status (1)

Country Link
JP (1) JP2564868B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102494520A (en) * 2011-11-14 2012-06-13 牛江林 Method for extracting waste residue after oil refining from roses and device thereof
JP6221978B2 (en) * 2014-07-25 2017-11-01 トヨタ自動車株式会社 Rare earth magnet manufacturing method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60242608A (en) * 1984-05-16 1985-12-02 Daido Steel Co Ltd Manufacture of rare-earth cobalt magnet
JPS63286511A (en) * 1987-05-18 1988-11-24 Seiko Epson Corp Manufacture of permanent magnet

Also Published As

Publication number Publication date
JPH01179304A (en) 1989-07-17

Similar Documents

Publication Publication Date Title
US4765848A (en) Permanent magnent and method for producing same
US4921551A (en) Permanent magnet manufacture from very low coercivity crystalline rare earth-transition metal-boron alloy
JPH0366105A (en) Rare earth anisotropic powder and magnet, and manufacture thereof
JPH01219143A (en) Sintered permanent magnet material and its production
USRE34838E (en) Permanent magnet and method for producing same
JP2731150B2 (en) Magnetic anisotropic bonded magnet, magnetic anisotropic magnetic powder used therefor, method for producing the same, and magnetic anisotropic powder magnet
JP2564868B2 (en) Permanent magnet manufacturing method
JPH0320046B2 (en)
JPH1070023A (en) Permanent magnet and manufacture thereof
JPH045740B2 (en)
KR900006533B1 (en) Anisotropic magnetic materials and magnets made with it and making method for it
JPS6329908A (en) Manufacture of r-fe-b rare earth magnet
JP2725004B2 (en) Manufacturing method of permanent magnet
JP2794704B2 (en) Manufacturing method of anisotropic permanent magnet
JPH08288113A (en) Manufacture of rare-earth magnetic material powder and rare-earth magnet
JPS6077961A (en) Permanent magnet material and its manufacture
JPH01175207A (en) Manufacture of permanent magnet
JPS63211705A (en) Anisotropic permanent magnet and manufacture thereof
JPS63286515A (en) Manufacture of permanent magnet
JPH0422102A (en) Method of manufacturing permanent magnet
JP2992808B2 (en) permanent magnet
JPS63196014A (en) Magnetically anisotropic magnet and manufacture thereof
JPS63140063A (en) Manufacture of permanent magnet
JPH0422105A (en) Method of manufacturing permanent magnet
JPS62274002A (en) Rare earth element-iron-boron type magnetic powder and its production