JPS62274002A - Rare earth element-iron-boron type magnetic powder and its production - Google Patents

Rare earth element-iron-boron type magnetic powder and its production

Info

Publication number
JPS62274002A
JPS62274002A JP61114765A JP11476586A JPS62274002A JP S62274002 A JPS62274002 A JP S62274002A JP 61114765 A JP61114765 A JP 61114765A JP 11476586 A JP11476586 A JP 11476586A JP S62274002 A JPS62274002 A JP S62274002A
Authority
JP
Japan
Prior art keywords
magnet
iron
rare earth
magnetic powder
boron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61114765A
Other languages
Japanese (ja)
Inventor
Jun Nakagawa
準 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP61114765A priority Critical patent/JPS62274002A/en
Publication of JPS62274002A publication Critical patent/JPS62274002A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To improve the magnetic characteristics of magnetic powder by crushing a rare earth element-iron-boron type magnet with gaseous H2 so as to form flaky particles having a specified thickness and a specified ratio of length to thickness. CONSTITUTION:This magnetic powder consists of a rare earth element, iron and boron and has a flaky shape, <=0.05mm average thickness and >=5/1 ratio of length to thickness. A rare earth element-iron-boron type sintered magnet is put in vacuum, gas adsorbed on the surface of the magnet is removed and gaseous H2 is introduced into the vacuum and occluded in the magnet. The magnet is then allowed to stand and the occluded gaseous H2 is removed as required. Thus, the magnetic powder can be produced. In the occluding stage, while a large amount of gaseous H2 is occluded in the sintered magnet, the magnet is cleaved into flakes and the gaseous H2 penetrates into the interior of the magnet.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は希土類−鉄−ホウ素系磁石用合金粉末及びその
製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a rare earth-iron-boron alloy powder for magnets and a method for producing the same.

〔従来技術とその問題点〕[Prior art and its problems]

現在良く知られている希土類−鉄−ホウ素系磁石は、原
料金属元素を所定の配合で高周波溶解してインゴットを
つくり、これをジョウクラツンヤーやブラウンミルで粗
粉砕し、次いでジェットミル、ボールミル等で微粉砕し
、磁場中で配向プレス成形した後、焼結し、時効処理す
ることにより製作される。
Currently well-known rare earth-iron-boron magnets are produced by high-frequency melting of raw metal elements in a predetermined composition to create an ingot, which is coarsely ground in a Jokura Tsunya or Brown mill, then jet milled or ball milled. It is manufactured by pulverizing it finely, oriented press forming in a magnetic field, sintering it, and subjecting it to aging treatment.

しかし、このような焼結磁石は硬くてもろいために複雑
な形状の加工が困難であり、精密な加工度が要求される
場合にはコスト高となる。そこで、加工性を上げるため
に粉末磁石とプラスチック材料の混合物より成るプラス
チックまたはゴム磁石が用いられている。
However, since such sintered magnets are hard and brittle, it is difficult to process them into complex shapes, and when precision processing is required, the cost becomes high. Therefore, in order to improve workability, plastic or rubber magnets made of a mixture of powdered magnets and plastic materials are used.

希土類−鉄−ホウ素系のプラスチック磁石は。Rare earth-iron-boron based plastic magnets.

高速急冷法で作られた磁石リボンを粉砕、熱処理し、プ
ラスチックで成形することにより製作される。しかしこ
の磁石は異方性化が困難であり等方性であるために焼結
磁石に比べて磁気特性がはるかに劣る。
It is manufactured by crushing magnetic ribbons made using a high-speed quenching method, heat-treating them, and molding them with plastic. However, since it is difficult to make this magnet anisotropic and it is isotropic, its magnetic properties are far inferior to that of sintered magnets.

また、高速急冷法を用いずに、焼結法で製作された希土
類−鉄−ホウ素系磁石を粉砕機で粉砕した粉末を用いる
方法も公知であるが、この系の磁石は粉砕すると粒界層
が乱れ、保磁力が著しく低下する。粉砕後熱処理を施す
ことによりIHcを回復でさるが、!−Hカーブの角型
が悪く、焼結体で(BH)wax =35MGOeのも
のが粉末の状態−c’ (BH) matは22MGO
e以下に低下する。
Another known method is to use powder obtained by pulverizing rare earth-iron-boron magnets produced by sintering using a pulverizer, without using the high-speed quenching method. is disturbed, and the coercive force decreases significantly. IHc can be recovered by heat treatment after crushing, but! -The square shape of the H curve is poor, and the sintered body (BH) wax = 35MGOe is in a powder state -c' (BH) mat is 22MGO
It decreases to below e.

従って、(BH)waxの低下しない希土類−鉄一ホウ
素系磁石粉末及びその製造方法の開発が望まれるが、現
在のところ特性の良い磁石粉末は提供されていない。
Therefore, it is desired to develop a rare earth-iron-boron-based magnet powder that does not reduce (BH) wax and a method for producing the same, but a magnet powder with good characteristics has not been provided at present.

〔発明の目的〕[Purpose of the invention]

本発明は特性の良い希土類−鉄一ホウ素系磁石粉末及び
その製造方法を提供することを目的とする。
An object of the present invention is to provide a rare earth-iron-boron magnet powder with good characteristics and a method for producing the same.

〔発明の概要〕[Summary of the invention]

本発明の磁性粉末は、希土類元素、鉄及びホウ素より成
り、鱗片状の粒子形を有し、平均厚さが0.05m−以
下で長さ/厚さの比が5 / 1以上である磁石特性の
すぐれた磁性粉末である。
The magnetic powder of the present invention is made of rare earth elements, iron and boron, has a scale-like particle shape, has an average thickness of 0.05 m or less, and has a length/thickness ratio of 5/1 or more. A magnetic powder with excellent properties.

この磁性粉末は希土類−鉄一ホウ素焼結磁石を真空中に
入れ1表面後着ガスを除去し、次いでH2ガスを導入し
て焼結磁石にH2ガスを吸蔵させて静ごし、必要があれ
ば吸蔵されたH2ガスを除去することにより製造しうる
This magnetic powder is prepared by placing a rare earth-iron-boron sintered magnet in a vacuum to remove gas deposited on the surface, then introducing H2 gas to make the sintered magnet absorb H2 gas and allowing it to settle. For example, it can be produced by removing occluded H2 gas.

本発明による磁性粉末は、ゴム磁石やプラスチック磁石
の製造に好適であり、熱処理すれば(BH)waxが2
2MGOe以上の特性を有し、しかも形状が鱗片状であ
るため磁場配向性が高く、すぐれた特性の異方性プラス
チック磁石を得ることができる。
The magnetic powder according to the present invention is suitable for manufacturing rubber magnets and plastic magnets, and when heat-treated, the (BH) wax can be reduced to 2.
It has characteristics of 2MGOe or more, and since it has a scale-like shape, it has high magnetic field orientation, and an anisotropic plastic magnet with excellent characteristics can be obtained.

〔発明の詳細な説明〕[Detailed description of the invention]

本発明は希土類−鉄−ホウ素形磁石をH2ガスを用いて
粉砕した粉末及びこのような粉砕方法を特徴とする。と
ころで成る種の金属及び合金がH2を多量に吸蔵し、放
出することは良く知られており、H2の吸蔵の際に金属
や合金の脆化が生じることも知られている。しかしなが
ら、この現象をプラスチック磁石用の磁性粉末の製造工
程へ応用でさることは何人も発見しておらず、本発明者
の研究によって初めて明らかとなったものである。もつ
とも、希土類−鉄−ホウ素系焼結磁石にH2吸蔵による
粉砕工程を用いた例は知られているが(特開昭80−8
314号、 Go−119701号)、これは焼結型磁
石のための原料磁性粉を得る工程に用いられたもので、
特性の良いプラスチック磁石用粉末の製造とは関係がな
い0本発明はH2吸蔵による粉砕がプラスチック磁石に
必要な磁性粉の要件、すなわち粒子形、配向性、il!
気特性を満足させることを見出したために成立し得たの
である。
The present invention features a powder obtained by pulverizing a rare earth-iron-boron magnet using H2 gas, and a method for pulverizing the same. It is well known that certain metals and alloys store and release large amounts of H2, and it is also known that embrittlement of metals and alloys occurs when H2 is stored. However, no one has discovered that this phenomenon can be applied to the manufacturing process of magnetic powder for plastic magnets, and this phenomenon was first discovered through research by the present inventor. However, there are known examples in which a pulverization process using H2 absorption is applied to rare earth-iron-boron based sintered magnets (Japanese Unexamined Patent Application Publication No. 80-808).
No. 314, Go-119701), which was used in the process of obtaining raw material magnetic powder for sintered magnets.
The present invention is not related to the production of powder for plastic magnets with good characteristics.The present invention is based on the requirements of magnetic powder necessary for plastic magnets, such as particle shape, orientation, il!
This was possible because it was discovered that it satisfies the physical characteristics.

上記特開昭80−83304号等の方法では粉砕の困難
な希土類−鉄一ホウ素系の合金に焼結前の成形性を与え
るために粗粉を得るのに利用されたに過ぎず1本発明の
ようにそれ自体で配向性の良い小鱗片状であり、(BH
)s+amの大きい、プラスチック磁石に適した粉末を
得ることを示唆しない。
The method disclosed in JP-A No. 80-83304 was only used to obtain coarse powder to give formability before sintering to rare earth-iron-boron alloys, which are difficult to crush. It is in the form of small scales with good orientation like (BH
) does not suggest obtaining a powder suitable for plastic magnets with a large s+am.

第1図は本発明の磁性粉末を得る方法の1例を示す工程
図であり、第1段階は焼結磁石製造工程であり、これは
本発明の特徴とは無関係の前段工程である。第2段階は
本発明によるプラスチック磁石用粉末の製造工程を示し
、第3段階はプラスチック磁石を作る応用工程を示す。
FIG. 1 is a process diagram showing one example of the method for obtaining the magnetic powder of the present invention, and the first step is a sintered magnet manufacturing process, which is a preliminary step that is unrelated to the features of the present invention. The second stage shows the manufacturing process of the powder for plastic magnets according to the present invention, and the third stage shows the applied process of making plastic magnets.

第1段階は希土類−鉄一ホウ素系原料、例えばNd、F
e、Bの所定割合に混合しく工程l)。
The first stage is rare earth-iron-boron based raw materials, such as Nd, F.
Step 1) of mixing e and B in a predetermined ratio.

高温で溶解してインゴットを作り(工程2)、これをシ
ョークラッシャー、ブラウンミル等で粗粉砕しく工程3
)1次いでジェットミル、ボールミル等で微粉砕しく工
程4)、磁場中で塊状に成形しく工程5)、高温焼結及
び時効処理しく工程6)、焼結体を得る。このものは磁
気異方性を有する。高特性の焼結磁石である。上記は1
例であり1本発明の方法は他の方法によって製造された
希土類−鉄一ホウ素磁石にも適用できる。
Melt at high temperature to make an ingot (Step 2), and coarsely crush this using a show crusher, brown mill, etc. Step 3
) 1) Next, step 4) is finely pulverized using a jet mill, ball mill, etc., step 5) is formed into a lump in a magnetic field, and step 6) is sintered at high temperature and subjected to aging treatment to obtain a sintered body. This material has magnetic anisotropy. It is a sintered magnet with high characteristics. The above is 1
By way of example, the method of the present invention is also applicable to rare earth-iron-boron magnets made by other methods.

第2段階は本発明の方法により本発明の磁性粉末を製造
する工程を示す、すなわち、先ず、塊状の希土類−鉄−
ホウ素系磁石をH2吸蔵粉砕法により粉砕しく工程8)
、次いで熱処理する(工程9)。
The second step shows the process of manufacturing the magnetic powder of the present invention by the method of the present invention, that is, first, the bulk rare earth-iron
Step 8) Grinding the boron-based magnet using the H2 storage grinding method
, followed by heat treatment (step 9).

このH2は吸蔵による粉砕は、上記塊状磁石を密閉容器
に装入して排気して磁石表面に軟着された空気その他の
ガスを十分に除去する0次いで。
This H2 occlusion pulverization is carried out by placing the block magnet in a closed container and evacuating it to sufficiently remove air and other gases that have adhered to the surface of the magnet.

密閉容器内にH2ガスを導入する。磁石は大量のH2ガ
スを吸蔵しながら鱗片状に剥離しながら磁石の内部へ浸
透する。数分以上数時間のH2処理が終わったら1周囲
の水素ガスをArガス等の不活性ガスで置換し、それと
同時に、または置換が成る程度進んだら昇温を初め、吸
蔵ガスの放出に適する温度、例えば300℃にし、Ar
ガスを断って真空引きをする。これで粉砕工程が終わる
Introduce H2 gas into the sealed container. The magnet absorbs a large amount of H2 gas and peels off into scales as it penetrates into the inside of the magnet. After completing the H2 treatment for several minutes to several hours, replace the surrounding hydrogen gas with an inert gas such as Ar gas, and at the same time, or once the replacement has progressed to the extent that it is possible, start raising the temperature to a temperature suitable for releasing the occluded gas. , for example, at 300°C and Ar
Turn off the gas and draw a vacuum. This completes the crushing process.

次いで、Arガス等の不活性カスを密閉容器内に導入し
、高温度例えば900°Cに加熱して熱処理を行ない良
好な磁石特性を付加する1次いで室温に冷却すると本発
明のプラスチック磁石用の磁性粉末が得られる。
Next, inert gas such as Ar gas is introduced into a sealed container and heat-treated at a high temperature, for example, 900°C, to impart good magnetic properties. A magnetic powder is obtained.

このようにして得られた磁性粉末は1機械粉砕によるも
の(第1図工程8′)よりもはるかに特性が良い、この
点は後で比較例として示す0本発明の磁性粉末は鱗片状
であり、平均の厚さが50給以下である。また平均の最
大幅/厚ざ比は約5/1以上である0本発明の磁性粉末
は磁界により容易に配向しうる。従って、ゴム、プラス
チック等の適当なバインダーと本発明の磁性粉を混合し
、次いで磁場中成形(第1図工程10)をすると、粉砕
中に機械歪が入らないために磁気特性が良く、(BH)
waxの大きな、異方性プラスチック磁石を得ることが
できる。
The magnetic powder obtained in this way has much better properties than that obtained by mechanical pulverization (Step 8' in Figure 1).This point will be shown later as a comparative example.The magnetic powder of the present invention has a scaly shape. The average thickness is less than 50 mm. Further, the magnetic powder of the present invention having an average maximum width/thickness ratio of about 5/1 or more can be easily oriented by a magnetic field. Therefore, if the magnetic powder of the present invention is mixed with a suitable binder such as rubber or plastic and then molded in a magnetic field (step 10 in Figure 1), the magnetic properties are good because no mechanical strain occurs during crushing. BH)
Anisotropic plastic magnets with large wax can be obtained.

本発明で使用できる希土類元素は、希土類−鉄−ホウ素
磁石が水素吸蔵性となる限り、いかなる元素でも良く、
Nd、Y、La、Ce、Gd、Pr、Sa等の1種以上
を用いることができる。
The rare earth element that can be used in the present invention may be any element as long as the rare earth-iron-boron magnet can absorb hydrogen.
One or more of Nd, Y, La, Ce, Gd, Pr, Sa, etc. can be used.

又、鉄と共に他の遷移金属、例えばCo、Ni、Mn等
、ホウ素と共にSl、AI等の半金属、その他少量の異
種元素を用いることができる。
Further, other transition metals such as Co, Ni, Mn, etc. can be used together with iron, metalloid metals such as Sl, AI, etc. can be used together with boron, and other small amounts of different elements can be used.

より具体的に本発明の水素粉砕工程を述へるに、密閉容
器の排気はIQ→〜1o弓Torr程度まで行い、容器
を排気源から遮断し、H2ガスを導入して数Torr〜
数十気圧にし、数分ないし数時間、例えば1時間保ち1
周囲のH2ガスをArガスで掃気し、掃気と同時または
遅れて Ioo〜500″C1例えば300℃に加熱し
、その温度を保ちなからロータリポンプで1時間排気で
脱水素する。得られた磁性粉末はそのまま、或いは好ま
しくは60メツシ二などのふるいでふるって大径の粒子
を除去した上プラスチックに混合し、成形してプラスチ
ック磁石とする。上記のH2粉砕工程によって得られた
粉末は磁気特性を好ましい範囲にするのにちょうど適し
た寸法及び形状を有するから、微粉砕は必要がなく、ふ
るい分は程度で十分である。
To describe the hydrogen pulverization process of the present invention more specifically, the airtight container is evacuated to IQ→~10 Torr, the container is shut off from the exhaust source, and H2 gas is introduced to the extent of several Torr.
Press the pressure to several tens of atmospheres and keep it for several minutes to several hours, for example, 1 hour.
Scavenge the surrounding H2 gas with Ar gas, heat it to Ioo ~ 500''C1, for example, 300°C, either simultaneously with or after the scavenging, and dehydrogenate it by exhausting with a rotary pump for 1 hour while maintaining that temperature.The obtained magnetic The powder can be used as it is, or preferably sieved through a sieve such as 60 mesh to remove large diameter particles, mixed with plastic, and molded into plastic magnets.The powder obtained by the above H2 crushing process has magnetic properties. Since it has just the right size and shape to achieve the desired range, pulverization is not necessary and sieving is sufficient.

以下に本発明の詳細な説明する。The present invention will be explained in detail below.

実施例 Nd34wt%、B1wt%及びFe残部より成る焼結
磁石(第1図に関連して説明した第1段階の諸工程で製
造されたもの)を、密閉容器に装入し、約2時間かけて
II)’Torrまで減圧した0次に排気ポンプへの弁
を閉じ、H2ガス源の弁を開いてH2ガスを密閉容器内
に導入し、常温常圧で約1時間保持し、これにより磁石
にH2を吸蔵させて粉末化した1次いで、H2ガス源を
閉じ、Arガス源を密閉容器に接続し弁を開いた。同時
にヒータにより容器内を 300°Cまで徐々に加熱し
た。適当な時点でArガスを断ち、真空引きを上記温度
を保ちながら約1時間続けた0次に、こうして得られた
磁性粉末をAガス雰囲気を有する炉に装入して900°
Cで約1時間熱処理し、放冷して本発明の磁性粉末を得
た(実施例粉末)。
Example A sintered magnet consisting of 34wt% Nd, 1wt% B, and the balance of Fe (manufactured in the steps of the first stage described in connection with FIG. 1) was placed in a closed container and heated for about 2 hours. II) Close the valve to the zero-order exhaust pump whose pressure has been reduced to 'Torr, open the H2 gas source valve to introduce H2 gas into the sealed container, and keep it at room temperature and pressure for about 1 hour. The H2 gas source was then closed, the Ar gas source was connected to the airtight container, and the valve was opened. At the same time, the inside of the container was gradually heated to 300°C using a heater. At an appropriate point, the Ar gas was cut off, and evacuation was continued for about 1 hour while maintaining the above temperature.Next, the magnetic powder thus obtained was charged into a furnace with an A gas atmosphere and heated at 900°.
C for about 1 hour and allowed to cool to obtain a magnetic powder of the present invention (example powder).

比較のため、181図において工程8′に示したように
ブラウンミルによる粉砕を行ない、次いで上記と同様な
熱処理を行った(比較例粉末)。
For comparison, the powder was ground in a Brown mill as shown in step 8' in Figure 181, and then heat treated in the same manner as above (comparative example powder).

実施例粉末と比較例粉末をBOメツシュのふるいでふる
い分けし、顕微鏡により実施例粉末の平均厚さと平均最
大径(長さ)を求めた。これにより平均厚さ約0!04
+a+a、平均長さ/平均厚さ比が約5/1の鱗片状粒
子であることが分った。一方比較例粉末は不定形の粒子
であった。これらの粉末の磁気特性を下記の表に示した
The example powder and the comparative example powder were sieved through a BO mesh sieve, and the average thickness and average maximum diameter (length) of the example powder were determined using a microscope. This results in an average thickness of approximately 0!04
+a+a, the average length/average thickness ratio was found to be scaly particles of about 5/1. On the other hand, the comparative powder had irregularly shaped particles. The magnetic properties of these powders are shown in the table below.

〔作用効果〕[Effect]

以上から分かるように、本発明の方法及び磁性粉末は、
従来の機械粉砕によるものに比べてすぐれた特性のプラ
スチック磁石を提供できる。その理由は、機械粉砕に比
して磁性粉末の歪が少なし1こと、粒子形状が偏平な鱗
片状であるので配向性が良いことなどが考えられる。
As can be seen from the above, the method and magnetic powder of the present invention are
It is possible to provide plastic magnets with superior properties compared to those produced by conventional mechanical pulverization. The reason for this is thought to be that the distortion of the magnetic powder is less than that produced by mechanical pulverization1, and that the particle shape is flat and scaly, so it has good orientation.

第1図は本発明の方法を示す流れ図で、一部従来法を併
記した図である。
FIG. 1 is a flowchart showing the method of the present invention, with a part of the conventional method also shown.

第1図Figure 1

Claims (2)

【特許請求の範囲】[Claims] (1)希土類元素、鉄、及びホウ素を主成分とし、鱗片
状の粒子形を有し、平均厚みが0.05mm以下で長さ
/厚さの比が5/1以上である磁性粉末。
(1) Magnetic powder containing rare earth elements, iron, and boron as main components, having a scaly particle shape, an average thickness of 0.05 mm or less, and a length/thickness ratio of 5/1 or more.
(2)希土類−鉄−ホウ素焼結磁石にH_2ガスを吸蔵
させて粉砕することより成る鱗片状の粒子形を有する磁
性粉末の製造方法。
(2) A method for producing magnetic powder having a scaly particle shape, which comprises occluding H_2 gas in a rare earth-iron-boron sintered magnet and pulverizing it.
JP61114765A 1986-05-21 1986-05-21 Rare earth element-iron-boron type magnetic powder and its production Pending JPS62274002A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61114765A JPS62274002A (en) 1986-05-21 1986-05-21 Rare earth element-iron-boron type magnetic powder and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61114765A JPS62274002A (en) 1986-05-21 1986-05-21 Rare earth element-iron-boron type magnetic powder and its production

Publications (1)

Publication Number Publication Date
JPS62274002A true JPS62274002A (en) 1987-11-28

Family

ID=14646122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61114765A Pending JPS62274002A (en) 1986-05-21 1986-05-21 Rare earth element-iron-boron type magnetic powder and its production

Country Status (1)

Country Link
JP (1) JPS62274002A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6335701A (en) * 1986-07-31 1988-02-16 Showa Denko Kk Flaky metallic powder having high magnetic permeability
JPH02153003A (en) * 1988-12-05 1990-06-12 Kobe Steel Ltd Magnetic compound material having excellent magnetic characteristic and manufacture thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6335701A (en) * 1986-07-31 1988-02-16 Showa Denko Kk Flaky metallic powder having high magnetic permeability
JPH02153003A (en) * 1988-12-05 1990-06-12 Kobe Steel Ltd Magnetic compound material having excellent magnetic characteristic and manufacture thereof

Similar Documents

Publication Publication Date Title
JPS62291904A (en) Mafufacture of permanent magnet
US5314548A (en) Fine grained anisotropic powder from melt-spun ribbons
JP3129593B2 (en) Manufacturing method of rare earth, iron and boron sintered magnets or bonded magnets
JP2001076917A (en) Manufacture of anisotropic rare-earth magnet powder
JP7255514B2 (en) Method for producing rare earth magnet powder
JPS60204862A (en) Rare earth element-iron type permanent magnet alloy
JPH1131610A (en) Manufacture of rare-earth magnet powder with superior magnetic anisotropy
JPS60228652A (en) Magnet containing rare earth element and its manufacture
JPS62274002A (en) Rare earth element-iron-boron type magnetic powder and its production
JPS6390104A (en) Manufacture of rare earth-iron-boron permanent magnet
JPH045739B2 (en)
JP2926161B2 (en) Manufacturing method of permanent magnet
JPH07110965B2 (en) Method for producing alloy powder for resin-bonded permanent magnet
JPH0418441B2 (en)
JP2874392B2 (en) Production method of rare earth cobalt 1-5 permanent magnet alloy
JPH06151137A (en) Powder of rare earth magnet material with excellent anisotropy
JPS63137136A (en) Manufacture of rare earth-iron group sintered permanent magnet material
JPH03222304A (en) Manufacture of permanent magnet
JP2002367819A (en) Method of manufacturing rare-earth permanent magnet
JPH06224015A (en) Manufacture of rare earth-fe-n intermetallic compound magnetic material particle and magnetic material powder of rare earth-fe-n intermetallic compound produced by same
TW202337590A (en) Magnet and method of fabricating the same
JPS6383243A (en) Production of sintered rare earth element-iron-boron magnet
JPH03167803A (en) Manufacture of rare-earth permanent magnet
JPH04107244A (en) Rare earth magnet material and its manufacture
JPH08279406A (en) R-tm-b permanent magnet and manufacture thereof