JPS6390104A - Manufacture of rare earth-iron-boron permanent magnet - Google Patents

Manufacture of rare earth-iron-boron permanent magnet

Info

Publication number
JPS6390104A
JPS6390104A JP61234368A JP23436886A JPS6390104A JP S6390104 A JPS6390104 A JP S6390104A JP 61234368 A JP61234368 A JP 61234368A JP 23436886 A JP23436886 A JP 23436886A JP S6390104 A JPS6390104 A JP S6390104A
Authority
JP
Japan
Prior art keywords
ingot
iron
rare earth
hydrogen
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61234368A
Other languages
Japanese (ja)
Inventor
Jun Nakagawa
準 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP61234368A priority Critical patent/JPS6390104A/en
Publication of JPS6390104A publication Critical patent/JPS6390104A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0573Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes obtained by reduction or by hydrogen decrepitation or embrittlement

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PURPOSE:To mass-produce a permanent magnet of high magnetism by means of a simple device by a method wherein, after a hydrogen gas has been occluded into and released from a rare earth-iron-boron ingot more than twice in such a way that this occlusion is processed at 30-300 deg.C, the ingot is pulverized and the obtained powders are molded directly. CONSTITUTION:Before a rare earth-iron-boron permanent magnet is produced, an ingot composed of rare earth, iron and boron is prepared. The molten ingot is put in a hermetically sealed container, and this container is evacuated to produce a vacuum so that a gas adsorbed on the surface of the ingot can be released. The inside of the container is transformed into an atmosphere of hydrogen and the hydrogen is occluded into the ingot. After this hydrogen gas has been discharged and the hydrogen has been released from the ingot, the gas adsorbed on the surface is released again in the same manner in a safe state. The hydrogen gas is occluded and released more than twice in such a way that the occlusion is processed at 30-300 deg.C. After the desired powders have been obtained simply without using a mechanical grinder, the powders are molded directly and are then sintered. A permanent magnet of high magnet ism can be mass-produced by means of a simple device.

Description

【発明の詳細な説明】 〔技術分野〕 本,2 Ijlは希土類一鉄ーホウ素系永久磁石の製造
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] This book, 2 Ijl, relates to a method for manufacturing rare earth iron-boron permanent magnets.

〔従来技術とその問題点〕[Prior art and its problems]

現在良く知られている希土類一鉄ーホウ素系永久磁石は
.原料金属元素を所定の配合で高周波溶解して鋳塊をつ
くり,これをジヨウクラッシャーやブラウンミルで粗粉
砕し、次いでジェットミル,ボールミル等で微粉砕し、
磁場中で配向プレス成形した後,焼結し,時効処理する
ことにより製作される。
The currently well-known rare earth iron-boron permanent magnets are: Raw metal elements are high-frequency melted in a predetermined proportion to create an ingot, which is coarsely crushed using a Joe crusher or a brown mill, then finely crushed using a jet mill, ball mill, etc.
It is manufactured by oriented press forming in a magnetic field, sintering, and aging treatment.

しかし、このような鋳塊はS m − C o系のもの
に比べ粘性が高いため粗粉砕が困難である。
However, such an ingot has a higher viscosity than an S m -Co type ingot, and therefore it is difficult to coarsely crush it.

微粉砕工程は乾式粉砕機(ジェットミル等)ではMt成
ずれが起きやす〈粒径の制御が難しい.またアトライタ
ー等の湿式粉砕機では酸素、炭素等特性に悪影響をおよ
ぼす成分が混入しやすい。
In the fine pulverization process, Mt shift easily occurs in dry pulverizers (jet mills, etc.) (difficult to control particle size). In addition, in a wet grinder such as an attritor, components such as oxygen and carbon that adversely affect the properties are likely to be mixed in.

さらに従来の方法では1l粉砕機と微粉砕機を各々別途
のものを使用するため製造工程が複雑になるだけでなく
、粉砕に゛大きな動力を必要とし、九理能力の向上が容
易でない。
Furthermore, in the conventional method, a 1-liter crusher and a pulverizer are used separately, which not only complicates the manufacturing process but also requires a large amount of power for crushing, making it difficult to improve the mechanical ability.

〔発11の目的〕 本発明はこのような粗粉砕、微粉砕の工程を用いないで
特性の良い希土類−鉄−ホウ素系永久磁石を経済的に製
造する方法を提供することを目的とする。
[Objective of Part 11] An object of the present invention is to provide a method for economically producing rare earth-iron-boron permanent magnets with good characteristics without using such coarse pulverization and fine pulverization steps.

〔発明の概要〕[Summary of the invention]

本発明の希土類−鉄一ホウ素系永久磁石の製造方法は、
希土類、鉄及びホウ素より成るtjJillに次の粉砕
方法を適用して実施できる。
The method for producing a rare earth-iron monoboron permanent magnet of the present invention includes:
The following pulverization method can be applied to tjJill made of rare earth elements, iron, and boron.

(1)溶MPI魂を密閉容器に入れ真空に引いて表面吸
着ガスを取除く。
(1) Place the dissolved MPI spirit in a sealed container and draw a vacuum to remove surface adsorbed gas.

(2)容器内を水素雰囲気にすることにより鋳塊に水素
を吸蔵させる。
(2) Hydrogen is stored in the ingot by creating a hydrogen atmosphere inside the container.

(3)安全のため、水素をhr′t4置換するなどして
水素ガスを取除いたのち、容器内を真空で引ぐ、この操
作で鋳塊は水素を放出する。
(3) For safety, after removing hydrogen gas by replacing hydrogen with hr't4, the inside of the container is evacuated. With this operation, the ingot releases hydrogen.

得られた粉末はそのまま成形、焼結を行って永久磁石に
することができる。
The obtained powder can be molded and sintered as it is to make a permanent magnet.

本発明の方法によって得られた希土類−鉄一ホウ素系永
久磁石は組成ずれや炭素の混入が少ない、また工程の面
からも、機械的な粗粉砕、微粉砕によらないで、一つの
工程で粉砕することができ、処理量の増大が容易であり
、高価な希土類の粉砕ロスがすくないなどの利益が得ら
れる。
The rare earth-iron-boron permanent magnet obtained by the method of the present invention has less compositional deviation and less carbon contamination, and in terms of process, it can be produced in one step without mechanical coarse grinding or fine grinding. It can be pulverized, the throughput can be easily increased, and there are advantages such as less loss of expensive rare earth metals during pulverization.

〔発明の詳細な説明〕[Detailed description of the invention]

本発明では希」二類−鉄−ホウ素系鋳塊をH2ガスを用
いて粉砕する。ところで成る種の金属及び合金がH2を
多量に吸蔵し、放出することは良く知られており、H2
の吸蔵の際に金属や合金の脆化が生じることも知られて
いる。希土類−鉄−ホウ素系焼結磁石・にH2吸蔵によ
る粉砕工程を用いた例は知られているが(特開昭80−
81304号、 [10−119701号)、これは粗
粉砕のために用いられたものに過ぎず、焼結型磁石のた
めの原料磁性粉を得るにはさらに機械的な微粉砕を必要
とするものである。
In the present invention, a rare class 2-iron-boron ingot is pulverized using H2 gas. By the way, it is well known that certain metals and alloys absorb and release large amounts of H2.
It is also known that embrittlement of metals and alloys occurs when occlusion occurs. Examples of using a pulverization process using H2 absorption in rare earth-iron-boron based sintered magnets are known (Japanese Patent Application Laid-Open No. 1989-1999).
No. 81304, [No. 10-119701), which is only used for coarse pulverization and requires further mechanical pulverization to obtain raw magnetic powder for sintered magnets. It is.

本発明は機械粉砕を用いないで水素だけをもちいて粉砕
を行うことを特徴とする点で従来と本質的に相違する。
The present invention is essentially different from the conventional method in that the pulverization is carried out using only hydrogen without using mechanical pulverization.

只−回の水素吸蔵粉砕では焼結磁石の為の磁性粉末とし
て十分な微粉末を製造することはできない、木発明者は
上記あ工程(2)と(3)の工程を少なくとも2回反復
することにより所定の微粉末を得ることができることを
見出した。
It is not possible to produce sufficient fine powder as magnetic powder for sintered magnets by just one hydrogen-absorbing pulverization process, so the inventor repeats steps (2) and (3) above at least twice. It has been found that a predetermined fine powder can be obtained by this method.

上記(2)の水素吸蔵工程は30〜300’C!。The hydrogen storage process in (2) above is carried out at temperatures of 30 to 300'C! .

好丈しくは5o〜2 Q O’Qの温度で行われる。3
0℃よりも低いと2応速度が遅く効率が悪い、また30
0℃以上では吸収量が足りず効率が落ちる。
It is preferably carried out at a temperature of 5°C to 2°C. 3
If it is lower than 0°C, the reaction speed will be slow and the efficiency will be low;
At temperatures above 0°C, the amount of absorption is insufficient and the efficiency decreases.

次いで安全のためArガスなどで周りの水素ガフを取除
いた後、容器内を排気する上記(3)の工程を1行する
。この操作により吸蔵された水素が放出され粉砕が進む
Next, for safety, the surrounding hydrogen gaff is removed using Ar gas or the like, and then the step (3) above is performed for one row to exhaust the inside of the container. This operation releases the occluded hydrogen and progresses the grinding.

これら二工程を二回以上繰返すことにより、粉砕の程度
が進行し、磁石化したときに特性をより向上しうる。
By repeating these two steps two or more times, the degree of pulverization progresses, and the properties when magnetized can be further improved.

より具体的に本発明の水素粉砕工程を述べるに、密閉容
器の排気は10″″2〜10”4Torr程度まで行い
、容器を排気源から遮断し、H2ガスを導入して数To
rr〜数気圧にし、  30〜300’Cテ5〜160
分間保ち1周囲のH2ガスをArガスで掃気し、ロータ
リポンプで 時間排気で脱水素する。
To describe the hydrogen pulverization process of the present invention more specifically, the airtight container is evacuated to about 10''2 to 10''4 Torr, the container is shut off from the exhaust source, and H2 gas is introduced to several Torr.
rr to several atmospheres, 30 to 300'C Te5 to 160
Hold for 1 minute, scavenge the surrounding H2 gas with Ar gas, and dehydrogenate by exhausting with a rotary pump for 1 hour.

この吸収、放出操作を2〜910回繰返す。This absorption and release operation is repeated 2 to 910 times.

本発明で使用できる希土類元素は、希土類−鉄一ホウ素
磁石が水素吸蔵性となる限り、いかなる元本でも良く、
Nd、Dy、Y、4a、Ce、Gd、Pr等の1種以上
を用いることができる。
The rare earth element that can be used in the present invention may be of any type as long as the rare earth-iron-boron magnet has hydrogen storage properties.
One or more of Nd, Dy, Y, 4a, Ce, Gd, Pr, etc. can be used.

又、鉄と共に他の遷移金属1例えば(o、Ni。In addition to iron, other transition metals 1 such as (o, Ni.

M 、n kJ、ホウ素と共にSt、AI等の半金属、
その他少量の異種元素を用いることができる。
M, n kJ, semimetals such as St and AI along with boron,
Small amounts of other different elements can also be used.

以下に本発す1の実施例を説明する。A first embodiment of the present invention will be described below.

:LI Nd30.3wt96i−Dy1.3wt%−B1 、
1 w t%−Fe残部の鋳塊を密閉容器に入れ、10
0℃に加熱しながら真空中で表面ガスの除去を行った。
: LI Nd30.3wt96i-Dy1.3wt%-B1,
1 wt%-Fe remaining ingot was placed in a sealed container, and 10
Surface gas was removed in vacuum while heating to 0°C.

その後、100”02気圧のH22ff囲気でH2を合
金に吸収させた後、再び真空に引きH2ガスを合金から
放出させた。この吸収、放出操作を20回繰り返して微
粉末を得た。この粉末の組成は鋳塊と同じであった。
After that, H2 was absorbed into the alloy in a H22ff atmosphere of 100"02 atm, and then vacuum was drawn again to release H2 gas from the alloy. This absorption and release operation was repeated 20 times to obtain a fine powder. This powder The composition of the ingot was the same as that of the ingot.

上記微粉末を磁場中でプレスし;′真空中1100℃で
焼結後、Ar中590℃で1時間時効処理し、焼結磁石
を得た。この磁石はBr−11,6kG、  五 Hc
−12,1kOe、   (BH)saw  −31,
9MGOeであツタ。
The fine powder was pressed in a magnetic field; sintered in vacuum at 1100°C, and then aged in Ar at 590°C for 1 hour to obtain a sintered magnet. This magnet is Br-11,6kG, 5Hc
-12,1kOe, (BH)saw -31,
Tsuta in 9MGOe.

比較例として、同じ鋳塊をショークラッシャー、ブラウ
ンミル、ジェットミルを用い3段階の機械粉砕で微粉を
得た。この微粉を実施例と同じ条件でプレス、焼結処理
をした。得られた成型体は焼結が不充分で、しかも組成
ずれのため保磁力は1kOeよりも小さかった。またこ
の機械粉砕で得られた微粉のNd[は28.2wt%と
少なくなっていた。焼結が不充分なのはこのためと考え
られる。
As a comparative example, the same ingot was mechanically pulverized in three stages using a show crusher, a brown mill, and a jet mill to obtain fine powder. This fine powder was pressed and sintered under the same conditions as in the example. The obtained molded body was insufficiently sintered and had a coercive force of less than 1 kOe due to compositional deviation. Further, the Nd content of the fine powder obtained by this mechanical pulverization was as low as 28.2 wt%. This is thought to be the reason why sintering is insufficient.

(作用効果〕 以上の結果から水素吸収粉砕で微粉化したサンプルは組
成ずれがなく高い磁9c特性が得られることが分かる。
(Effects) From the above results, it can be seen that the sample pulverized by hydrogen absorption pulverization has no compositional deviation and has high magnetic 9c characteristics.

また使用粉砕装置が1つなので生産性も良い。In addition, since only one crushing device is used, productivity is also good.

手続補正書 昭和62年 9月14日 特許庁長官 小 川 邦 夫 殿 事件の表示 昭和61年 特願第 2!4568号発明
の名称  希土類−鉄一ホウ素系永久磁石の製造方法補
正をする者
Procedural amendment September 14, 1988 Kunio Ogawa, Commissioner of the Patent Office Indication of the case 1988 Patent application No. 2!4568 Title of the invention Person making amendments to the manufacturing method of rare earth-iron monoboron permanent magnets

Claims (2)

【特許請求の範囲】[Claims] (1)希土類−鉄−ホウ素の鋳塊に水素ガスを二回以上
吸蔵、放出させることにより鋳塊を粉砕し、得られた粉
末を直接成形し、焼結することを特徴とする永久磁石の
製造方法。
(1) A permanent magnet characterized by pulverizing a rare earth-iron-boron ingot by occluding and releasing hydrogen gas two or more times, and directly molding and sintering the resulting powder. Production method.
(2)吸蔵が30〜300℃で行なわれることを特徴と
する前記特許請求範囲第1項に記載の製造方法。
(2) The manufacturing method according to claim 1, wherein the occlusion is carried out at a temperature of 30 to 300°C.
JP61234368A 1986-10-03 1986-10-03 Manufacture of rare earth-iron-boron permanent magnet Pending JPS6390104A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61234368A JPS6390104A (en) 1986-10-03 1986-10-03 Manufacture of rare earth-iron-boron permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61234368A JPS6390104A (en) 1986-10-03 1986-10-03 Manufacture of rare earth-iron-boron permanent magnet

Publications (1)

Publication Number Publication Date
JPS6390104A true JPS6390104A (en) 1988-04-21

Family

ID=16969910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61234368A Pending JPS6390104A (en) 1986-10-03 1986-10-03 Manufacture of rare earth-iron-boron permanent magnet

Country Status (1)

Country Link
JP (1) JPS6390104A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0239503A (en) * 1988-07-29 1990-02-08 Mitsubishi Metal Corp Rare earth-fe-b anisotropic permanent magnet and its manufacture
FR2664086A1 (en) * 1990-07-02 1992-01-03 Centre Nat Rech Scient IMPROVED PROCESS FOR THE OPTIMIZATION OF MAGNETIC PROPERTIES OF POWDER MAGNETIC MATERIALS AND PRODUCTS THUS OBTAINED.
FR2665295A1 (en) * 1990-07-25 1992-01-31 Aimants Ugimag Sa METHOD OF OBTAINING IN DIVIDED FORM OF EARTH-RARE TYPE MAGNETIC MATERIAL - TRANSITION - BORON METALS FOR CORROSION RESISTANT MAGNETS.
US5091020A (en) * 1990-11-20 1992-02-25 Crucible Materials Corporation Method and particle mixture for making rare earth element, iron and boron permanent sintered magnets
US5110374A (en) * 1987-08-19 1992-05-05 Mitsubishi Materials Corporation Rare earth-iron-boron magnet powder and process of producing same
US5127970A (en) * 1991-05-21 1992-07-07 Crucible Materials Corporation Method for producing rare earth magnet particles of improved coercivity
US5143560A (en) * 1990-04-20 1992-09-01 Hitachi Metals, Inc., Ltd. Method for forming Fe-B-R-T alloy powder by hydrogen decrepitation of die-upset billets

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5110374A (en) * 1987-08-19 1992-05-05 Mitsubishi Materials Corporation Rare earth-iron-boron magnet powder and process of producing same
JPH0239503A (en) * 1988-07-29 1990-02-08 Mitsubishi Metal Corp Rare earth-fe-b anisotropic permanent magnet and its manufacture
US5143560A (en) * 1990-04-20 1992-09-01 Hitachi Metals, Inc., Ltd. Method for forming Fe-B-R-T alloy powder by hydrogen decrepitation of die-upset billets
FR2664086A1 (en) * 1990-07-02 1992-01-03 Centre Nat Rech Scient IMPROVED PROCESS FOR THE OPTIMIZATION OF MAGNETIC PROPERTIES OF POWDER MAGNETIC MATERIALS AND PRODUCTS THUS OBTAINED.
FR2665295A1 (en) * 1990-07-25 1992-01-31 Aimants Ugimag Sa METHOD OF OBTAINING IN DIVIDED FORM OF EARTH-RARE TYPE MAGNETIC MATERIAL - TRANSITION - BORON METALS FOR CORROSION RESISTANT MAGNETS.
JPH06120015A (en) * 1990-07-25 1994-04-28 Aimants Ugimag Sa Method for manufacture of pulverized rare- earth/transistion metal/boron-type msgnetic material for corrosion-resistant magnet
US5091020A (en) * 1990-11-20 1992-02-25 Crucible Materials Corporation Method and particle mixture for making rare earth element, iron and boron permanent sintered magnets
US5127970A (en) * 1991-05-21 1992-07-07 Crucible Materials Corporation Method for producing rare earth magnet particles of improved coercivity

Similar Documents

Publication Publication Date Title
CN106941038B (en) Rare-earth sintering magnet and its manufacturing method
JP3452254B2 (en) Method for producing anisotropic magnet powder, raw material powder for anisotropic magnet powder, and bonded magnet
JP5609783B2 (en) Method for producing rare earth-transition metal alloy powder
JP2005223263A (en) Method for manufacturing rare earth permanent magnet and resulting rare earth permanent magnet
McGuiness et al. The production and characterization of bonded, hot-pressed and die-upset HDDR magnets
JPH0340082B2 (en)
JPS6333505A (en) Production of raw material powder for permanent magnet material
JPH0424401B2 (en)
JPS6390104A (en) Manufacture of rare earth-iron-boron permanent magnet
JPH0257663A (en) Magnetic anisotropy material and its manufacture
JPS6181606A (en) Preparation of rare earth magnet
JPS6181603A (en) Preparation of rare earth magnet
JPH0320046B2 (en)
JP2004256877A (en) Dehydrogenation method, hydrogen atomizing method, and method for manufacturing rare-earth permanent magnet
JPS6181607A (en) Preparation of rare earth magnet
JP3157661B2 (en) Method for producing R-Fe-B permanent magnet material
JP3611870B2 (en) Method for producing R-Fe-B permanent magnet material
JPH0372011A (en) Manufacture of rare earth metal-ion-boron series alloy powder for sintered magnet
JPH0718366A (en) Production of r-fe-b permanent magnet material
JPS62132302A (en) Rare earth element-iron-boron alloy powder and manufacture thereof
JPH0617535B2 (en) Method of manufacturing permanent magnet material
JPH04116101A (en) Magnetic powder for high-coercive-force anisotropic bond magnet and its production
JP3157660B2 (en) Method for producing R-Fe-B permanent magnet material
JPS62274002A (en) Rare earth element-iron-boron type magnetic powder and its production
JPS6333506A (en) Production of raw material powder for permanent magnet material