JP2548141Y2 - Eddy current flaw detector - Google Patents

Eddy current flaw detector

Info

Publication number
JP2548141Y2
JP2548141Y2 JP3222492U JP3222492U JP2548141Y2 JP 2548141 Y2 JP2548141 Y2 JP 2548141Y2 JP 3222492 U JP3222492 U JP 3222492U JP 3222492 U JP3222492 U JP 3222492U JP 2548141 Y2 JP2548141 Y2 JP 2548141Y2
Authority
JP
Japan
Prior art keywords
detection
eddy current
detection coil
defect
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3222492U
Other languages
Japanese (ja)
Other versions
JPH0592713U (en
Inventor
保夫 荒木
敬 今村
直哉 清水
博策 高見
義広 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP3222492U priority Critical patent/JP2548141Y2/en
Publication of JPH0592713U publication Critical patent/JPH0592713U/en
Application granted granted Critical
Publication of JP2548141Y2 publication Critical patent/JP2548141Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Description

【考案の詳細な説明】[Detailed description of the invention]

【0001】[0001]

【産業上の利用分野】本考案は、例えば鋼管の製造時
や、熱交換器、蒸気発生器の伝熱管の供用期間中の検査
等に用いられる渦電流探傷装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an eddy current flaw detector used, for example, in the manufacture of steel pipes and for the inspection of heat exchangers and steam generators during their service life.

【0002】[0002]

【従来の技術】従来、例えば蒸気発生器等の(伝熱)細
管を検査する渦電流探傷装置は、図5、図6及び図7に
示すように検出コイルと探傷器から構成されている。
2. Description of the Related Art Conventionally, an eddy current flaw detector for inspecting a (heat transfer) thin tube such as a steam generator comprises a detection coil and a flaw detector as shown in FIGS.

【0003】図5は、渦電流探傷装置の全体的な構成例
である。この図5において、1はプローブ、2及び3は
プローブ1に巻装された検出コイル、4はケーブル、5
は探傷器、6は探傷器5の画面、7はこの画面6に表示
される信号波形、8は被検体細管、9は被検体細管8に
存在する割れ等の欠陥、10はプローブ3が移動する方
向を示す矢印である。
FIG. 5 shows an example of the overall configuration of an eddy current flaw detector. In FIG. 5, 1 is a probe, 2 and 3 are detection coils wound around the probe 1, 4 is a cable, 5
Is a flaw detector, 6 is a screen of the flaw detector 5, 7 is a signal waveform displayed on the screen 6, 8 is a subject thin tube, 9 is a defect such as a crack existing in the subject thin tube 8, and 10 is a probe 3 moving. FIG.

【0004】上記プローブ1に巻装された2個の検出コ
イル2,3は、ケーブル4によって探傷器5に接続さ
れ、検出コイル2,3には交流の電流が通電される。検
出コイル2,3に交流電流が通電されることによって、
検出コイル2,3から磁界が発生し、被検体細管8に渦
電流が流れる。この渦電流は被検体細管8に欠陥のない
部分では、流れ方が一定になるが、欠陥9の存在する部
分に近づくと、渦電流の流れ方が乱される。検出コイル
2,3のインピーダンスは、被検体細管8に流れる渦電
流によって変化する。
[0004] The two detection coils 2 and 3 wound around the probe 1 are connected to a flaw detector 5 by a cable 4, and an alternating current is applied to the detection coils 2 and 3. When an alternating current is applied to the detection coils 2 and 3,
A magnetic field is generated from the detection coils 2 and 3, and an eddy current flows through the test subject thin tube 8. The flow of the eddy current is constant at a portion where there is no defect in the subject thin tube 8, but when approaching the portion where the defect 9 exists, the flow of the eddy current is disturbed. The impedance of the detection coils 2 and 3 changes due to the eddy current flowing through the subject thin tube 8.

【0005】上記検出コイル2,3が被検体細管8の欠
陥9に近づくことによってインピーダンスが変化する状
態を探傷器5により検出し、信号処理して画面6に信号
波形7として表示する。従って、上記プローブ1を矢印
10の方向に動かしながら、探傷器5の画面6の信号波
形7を観察することによって、被検体細管8の欠陥の有
無を知ることができる。
A state in which the impedance changes when the detection coils 2 and 3 approach the defect 9 of the subject thin tube 8 is detected by the flaw detector 5, subjected to signal processing and displayed on a screen 6 as a signal waveform 7. Therefore, by observing the signal waveform 7 on the screen 6 of the flaw detector 5 while moving the probe 1 in the direction of the arrow 10, it is possible to know whether or not there is a defect in the subject thin tube 8.

【0006】図6(a),(b)は、上記従来の渦電流
探傷装置における検出コイル2,3と、その発生磁界の
方向11,12を示したものである。従来では2個の検
出コイル2,3が同軸円状に構成され、各々のコイル
2,3を周回する方向に全周一的な磁界が発生し、従っ
て、細管8の肉質部には周方向の渦電流が発生する。従
って、細管8にその軸方向に長さを有する欠陥9が存在
すると、渦電流の流れ方が乱され、検出コイル2,3の
インピーダンスが変化し、このインピーダンス変化を探
傷器5にて検知することにより、欠陥9の存在を知るこ
とができる。
FIGS. 6A and 6B show the detection coils 2 and 3 and the directions 11 and 12 of the magnetic field generated in the conventional eddy current testing device. Conventionally, two detection coils 2 and 3 are formed in a coaxial circular shape, and a uniform magnetic field is generated all around the coils 2 and 3 in the direction of rotation. An eddy current is generated. Therefore, if a defect 9 having a length in the axial direction exists in the thin tube 8, the flow of the eddy current is disturbed, and the impedance of the detection coils 2 and 3 changes. Thus, the existence of the defect 9 can be known.

【0007】図7は、従来の探傷装置の機能結線図であ
る。同図に示すように検出コイル2,3及び可変インピ
ーダンス21、22は、ブリッジ回路を構成をしてお
り、発振器23から交流の電圧が供給される。このブリ
ッジ回路の出力が増幅・信号処理回路24に入力され、
増幅及び信号処理されて表示部へ伝達される。
FIG. 7 is a functional connection diagram of a conventional flaw detector. As shown in the figure, the detection coils 2 and 3 and the variable impedances 21 and 22 form a bridge circuit, and an AC voltage is supplied from an oscillator 23. The output of the bridge circuit is input to the amplification / signal processing circuit 24,
The signal is amplified and signal-processed and transmitted to the display unit.

【0008】上記検出コイル2,3及び可変インピーダ
ンス21,22で構成されるブリッジ回路は、検出コイ
ル2,3が欠陥の無い所に置かれたときに、その出力が
零になるように調整しておく。検出コイル2,3が欠陥
9の近くに来た時は、検出コイル2,3のいずれかにイ
ンピーダンス変化が生じ、このブリッジ回路に何らかの
出力が発生する。このブリッジ回路に発生した出力は、
増幅/信号処理回路24に入力され、増幅及び信号処理
されて表示部へ伝達される。そして、この表示部に表示
される信号波形を観察することによって欠陥の検出が行
なわれる。
The bridge circuit composed of the detection coils 2 and 3 and the variable impedances 21 and 22 is adjusted so that the output thereof becomes zero when the detection coils 2 and 3 are placed in a place having no defect. Keep it. When the detection coils 2 and 3 come near the defect 9, an impedance change occurs in one of the detection coils 2 and 3, and some output is generated in this bridge circuit. The output generated by this bridge circuit is
The signal is input to the amplification / signal processing circuit 24, amplified and signal-processed, and transmitted to the display unit. Then, the defect is detected by observing the signal waveform displayed on the display unit.

【0009】[0009]

【考案が解決しようとする課題】上記従来の渦電流探傷
装置では、検出コイル2,3が発生する磁界によって生
じる細管肉質部の渦電流は、前述のように周方向にのみ
流れる。従って、軸方向に長さを有しない欠陥、例えば
周方向の割れ等については、渦電流の流れが乱されず、
検出コイル2,3のインピーダンスが欠陥によって変化
しないため、このような欠陥に対する検出感度が低下す
るという問題があった。
In the above-mentioned conventional eddy current flaw detection device, the eddy current of the thin tube fleshy portion caused by the magnetic field generated by the detection coils 2 and 3 flows only in the circumferential direction as described above. Therefore, for defects having no length in the axial direction, for example, cracks in the circumferential direction, the flow of the eddy current is not disturbed,
Since the impedance of the detection coils 2 and 3 does not change due to the defect, there is a problem that the detection sensitivity for such a defect is reduced.

【0010】本考案は上記実情に鑑みてなされたもの
で、軸方向に長さを有しない欠陥についても確実に検出
でき、探傷性能を大幅に改善し得る渦電流探傷装置を提
供することを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an eddy current flaw detector capable of reliably detecting a defect having no length in the axial direction and greatly improving flaw detection performance. And

【0011】[0011]

【課題を解決するための手段】本考案に係る渦電流探傷
装置は、複数個の半径方向外向突起を有する2個のリン
グ状の磁心を前記突起が対峙するように並行して配置
し、上記各突起にそれぞれ検出コイルを設けて磁極を形
成してなる検出コイル部と、上記検出コイルに選択的に
接続され、この検出コイルに流れる電流の方向を正転、
反転させて上記磁極より発生する磁界の方向を軸方向と
周方向に交互に切換える高速スイッチと、上記検出コイ
ル部の検出信号に基づいて被検体の欠陥を検出する手段
とを備えたことを特徴とするものである。
An eddy current testing apparatus according to the present invention comprises two ring-shaped magnetic cores having a plurality of radially outward projections arranged in parallel so that the projections face each other. A detection coil portion formed by providing a detection coil on each projection to form a magnetic pole, and selectively connected to the detection coil, the direction of the current flowing through the detection coil is forward rotation,
A high-speed switch for inverting and alternately switching the direction of a magnetic field generated from the magnetic pole in an axial direction and a circumferential direction; and a means for detecting a defect of a subject based on a detection signal of the detection coil unit. It is assumed that.

【0012】[0012]

【作用】検出コイルから発生する磁界は、高速スイッチ
による電流の正転、反転毎に軸方向もしくは周方向に切
り換わる。このため、被検体に生じる渦電流は高速スイ
ッチの動作毎に周方向、もしくは軸方向に切り換わるこ
とになる。
The magnetic field generated by the detection coil switches in the axial direction or the circumferential direction each time the current is rotated forward or inverted by the high-speed switch. Therefore, the eddy current generated in the subject is switched in the circumferential direction or the axial direction every time the high-speed switch is operated.

【0013】周方向の磁界が、被検体に作用した場合、
この部分の渦電流は軸方向となり、軸方向に短い欠陥、
例えば周方向の割れ等によって渦電流の流れが乱され、
検出コイルのインピーダンスが変化する。このため軸方
向に短い欠陥についても、検出が可能になる。
When a circumferential magnetic field acts on the subject,
The eddy current in this part is in the axial direction, and short defects in the axial direction,
For example, the flow of the eddy current is disturbed by cracks in the circumferential direction,
The impedance of the detection coil changes. Therefore, it is possible to detect a defect that is short in the axial direction.

【0014】上記のように検出コイルの発生する磁界の
方向が、高速スイッチの動作に伴って反転するため、軸
方向に長さのある欠陥だけではなく、軸方向に長さのな
い(周方向に長さのある)欠陥も検出できるようにな
る。
As described above, since the direction of the magnetic field generated by the detection coil is reversed with the operation of the high-speed switch, not only a defect having a length in the axial direction but also a defect having no length in the axial direction (the circumferential direction). Defect with a longer length).

【0015】[0015]

【実施例】以下、本考案の一実施例を図1、図2、図3
及び図4を参照して説明する。図1は、被検体細管8に
挿入された状態のプローブを示している。本考案におけ
るプローブは、第1検出コイル部30a及び第2検出コ
イル部30bからなり、それぞれリング状の磁心31,
32に複数の検出コイルを巻装している。上記2つのリ
ング状の磁心31,32は、一定間隔を保って並行に配
置され、その外周には、それぞれ複数個例えば4個の突
起が等間隔、この場合には90度の間隔で設けられ、こ
れらの突起にそれぞれ検出コイルa1 〜a4 、b1 〜b
4 が巻き付けられて磁極33a〜33d、34a〜34
dを構成している。すなわち、検出コイルa1 〜a4 、
b1 〜b4 に通電することにより、各突起部が磁極33
a〜33d、34a〜34dとして作用する。
FIG. 1, FIG. 2, and FIG. 3 show an embodiment of the present invention.
This will be described with reference to FIG. FIG. 1 shows the probe inserted into the subject thin tube 8. The probe according to the present invention includes a first detection coil unit 30a and a second detection coil unit 30b, and each has a ring-shaped magnetic core 31,
A plurality of detection coils are wound around 32. The two ring-shaped magnetic cores 31 and 32 are arranged in parallel at a constant interval, and a plurality of, for example, four projections are respectively provided on the outer periphery thereof at equal intervals, in this case, at 90 ° intervals. , The detection coils a1 to a4, b1 to b
4 are wound around the magnetic poles 33a to 33d, 34a to 34
d. That is, the detection coils a1 to a4,
By energizing b1 to b4, each protrusion is
They act as a to 33d and 34a to 34d.

【0016】図2は、本考案による渦電流探傷装置の機
能結線図である。同図において、L1 ,L2 は発振器2
3に接続される信号ライン、L0 は検出コイルa1 〜a
4 と検出コイルb1 〜b4 が共通に接続される共通ライ
ンである。上記信号ラインL1 ,L2 間には、ブリッジ
回路を構成する可変インピーダンス21,22が接続さ
れると共に、検出コイルa1 〜a4 が選択的に高速スイ
ッチ41a1 ,41a2 、42a1 ,42a2 を介し
て、また、検出コイルb1 〜b4 が選択的に高速スイッ
チ41b1 ,41b2 、42b1 ,42b2 を介して接
続される。高速スイッチ41a,41bは、駆動電流の
正転時に図の上部端子と接続し、反転時に下部端子と接
続する。また、高速スイッチ42a,42bは、正転時
に図の下部端子と接続し、反転時に上部端子と接続す
る。これらの高速スイッチ41a,42a,41b,4
2bは、全て同期して作動する。
FIG. 2 is a functional connection diagram of the eddy current flaw detector according to the present invention. In the figure, L1 and L2 are oscillators 2
3, a signal line L0 is connected to detection coils a1 to a1.
4 is a common line to which the detection coils b1 to b4 are commonly connected. Variable impedances 21 and 22 constituting a bridge circuit are connected between the signal lines L1 and L2, and detection coils a1 to a4 are selectively connected through high-speed switches 41a1, 41a2, 42a1 and 42a2. The detection coils b1 to b4 are selectively connected via high-speed switches 41b1, 41b2, 42b1, and 42b2. The high-speed switches 41a and 41b are connected to the upper terminal in the figure when the driving current is normal rotation, and are connected to the lower terminal when the driving current is reversed. The high-speed switches 42a and 42b are connected to the lower terminal in the figure at the time of normal rotation, and are connected to the upper terminal at the time of inversion. These high-speed switches 41a, 42a, 41b, 4
2b all operate synchronously.

【0017】上記検出コイルa1 〜a4 のうち、コイル
a1 ,a3 は信号ラインL1 と共通ラインL0 との間に
直接接続され、コイルa2 ,a4 は電流正転時と反転時
とで極性を逆にして信号ラインL1 及び共通ラインL0
に接続される。すなわち、検出コイルa2 ,a4 は、そ
れぞれ一端が高速スイッチ41a1 ,41a2 の共通端
子に接続され、他端が高速スイッチ42a1 ,42a2
の共通端子に接続される。高速スイッチ41a1 ,41
a2 は、正転側端子pが信号ラインL1 に接続され、反
転側端子nが共通ラインL0 に接続される。高速スイッ
チ42a1 ,42a2 は、正転側端子pが共通ラインL
0 に接続され、反転側端子nが信号ラインL1 に接続さ
れる。
Among the detection coils a1 to a4, the coils a1 and a3 are directly connected between the signal line L1 and the common line L0, and the coils a2 and a4 have opposite polarities when the current is normal and when the current is reversed. Signal line L1 and common line L0
Connected to. That is, one end of each of the detection coils a2 and a4 is connected to the common terminal of the high-speed switches 41a1 and 41a2, and the other end is connected to the high-speed switches 42a1 and 42a2.
Are connected to a common terminal. High-speed switches 41a1, 41
In a2, the non-inverting terminal p is connected to the signal line L1, and the inverting terminal n is connected to the common line L0. In the high-speed switches 42a1 and 42a2, the non-rotating side terminal p is connected to the common line L.
0, and the inverting terminal n is connected to the signal line L1.

【0018】一方、検出コイルb1 〜b4 は、コイルb
2 ,b4 が信号ラインL2 と共通ラインL0 との間に直
接接続され、コイルb1 ,b3 は電流正転時と反転時と
で極性を逆にして信号ラインL2 及び共通ラインL0 に
接続される。すなわち、検出コイルb1 ,b3 は、それ
ぞれ一端が高速スイッチ41b1 ,41b2 の共通端子
に接続され、他端が高速スイッチ42b1 ,42b2 の
共通端子に接続される。高速スイッチ41b1 ,41b
2 は、正転側端子pが共通ラインL0 に接続され、反転
側端子nが信号ラインL2 に接続される。高速スイッチ
42b1 ,42b2 は、正転側端子pが信号ラインL2
に接続され、反転側端子nが共通ラインL0 に接続され
る。
On the other hand, the detection coils b1 to b4
The coils b1 and b4 are directly connected between the signal line L2 and the common line L0, and the coils b1 and b3 are connected to the signal line L2 and the common line L0 with their polarities reversed when the current is normal and when the current is reversed. That is, one end of each of the detection coils b1 and b3 is connected to the common terminal of the high-speed switches 41b1 and 41b2, and the other end is connected to the common terminal of the high-speed switches 42b1 and 42b2. High-speed switches 41b1, 41b
2 has a non-inverting terminal p connected to the common line L0 and an inverting terminal n connected to the signal line L2. In the high-speed switches 42b1 and 42b2, the non-inverting terminal p is connected to the signal line L2.
, And the inverting terminal n is connected to the common line L0.

【0019】そして、上記共通ラインL0 及び可変イン
ピーダンス21,22の共通接続点から取り出される信
号が増幅・信号処理回路24へ入力される。この場合、
共通ラインL0 は、接地して使用される。増幅・信号処
理回路24は、ブリッジ回路に発生した信号を増幅及び
処理して表示部へ伝達する。次に上記実施例の動作を説
明する。
A signal extracted from the common connection point between the common line L0 and the variable impedances 21 and 22 is input to an amplification / signal processing circuit 24. in this case,
The common line L0 is used by grounding. The amplification / signal processing circuit 24 amplifies and processes the signal generated in the bridge circuit and transmits the signal to the display unit. Next, the operation of the above embodiment will be described.

【0020】図2に示すようにブリッジ回路を構成する
検出コイルは、コイルa2 ,a4 が高速スイッチ41
a,42aにより、また、コイルb1 ,b3 が高速スイ
ッチ41b,42bにより極性が切換えられる。
As shown in FIG. 2, the detection coils constituting the bridge circuit are composed of coils a2 and a4 which are high-speed switches 41.
The polarities of the coils b1 and b3 are switched by the high speed switches 41b and 42b.

【0021】高速スイッチ41a,42a、41b,4
2bが正転時にあるとき、第1検出コイル部30aの磁
極33a〜33dはN極に、第2検出コイル部30bの
磁極34a〜34dはS極になるように接続される。こ
のときの磁界の方向は、図3に示すようになる。磁力線
は、N極からS極の方向で発生するため、磁界の方向も
A1 〜A4 に示すように磁極33aから磁極34a、磁
極33bから磁極34bのような方向になる。つまり、
磁界は、A1 〜A4 に示す軸方向に発生することにな
り、図6で示した従来の検出コイル2,3と同様の方向
となり、従来と同様の検出性が得られる。
High-speed switches 41a, 42a, 41b, 4
When 2b is in forward rotation, the magnetic poles 33a to 33d of the first detection coil unit 30a are connected to the N pole, and the magnetic poles 34a to 34d of the second detection coil unit 30b are connected to the S pole. The direction of the magnetic field at this time is as shown in FIG. Since the lines of magnetic force are generated in the direction from the N pole to the S pole, the direction of the magnetic field also changes from the magnetic pole 33a to the magnetic pole 34a and from the magnetic pole 33b to the magnetic pole 34b as indicated by A1 to A4. That is,
The magnetic field is generated in the axial direction indicated by A1 to A4, and has the same direction as that of the conventional detection coils 2 and 3 shown in FIG. 6, so that the same detectability as the conventional one can be obtained.

【0022】次に高速スイッチ41a,42a、41
b,42bが反転したとき、コイルa2 ,a4 ,b1 ,
b4 に流れる電流方向が逆になり、図4に示すように第
1検出コイル部30aは、磁極33a、33cがN局、
磁極33b,33dがS局となる。また、第2検出コイ
ル部30bは、磁極34a、34cがN局、磁極34
b,34dがS極になる。磁力線はN極からS極の方向
でしか発生しないため、この場合の磁界は図4に示すよ
うに磁極33a,33cから磁極33b,33dの方
向、また、磁極34a,34cから磁極34b,34d
の方向、つまり、B1〜B4 に示す周方向に発生する。
Next, the high-speed switches 41a, 42a, 41
When b and 42b are inverted, the coils a2, a4, b1,
The direction of the current flowing to b4 is reversed, and as shown in FIG. 4, the first detection coil unit 30a has the magnetic poles 33a and 33c of the N station,
The magnetic poles 33b and 33d are S stations. The second detection coil unit 30b has the magnetic poles 34a and 34c at the N station and the magnetic poles 34a and 34c.
b and 34d become S poles. Since magnetic lines of force are generated only in the direction from the N pole to the S pole, the magnetic field in this case is, as shown in FIG. 4, in the direction from the magnetic poles 33a, 33c to the magnetic poles 33b, 33d, and from the magnetic poles 34a, 34c to the magnetic poles 34b, 34d.
, That is, in the circumferential direction indicated by B1 to B4.

【0023】周方向の磁界が、被検体細管8の肉質部に
作用した場合、この部分の渦電流は軸方向となり、軸方
向に短い欠陥、例えば周方向の割れ等によって、この渦
電流の流れが乱され、コイルのインピーダンスが変化す
るため、このような軸方向に短い欠陥についても検出が
可能になる。
When a circumferential magnetic field acts on the fleshy portion of the subject thin tube 8, the eddy current in this portion becomes axial, and the eddy current flows due to a short defect in the axial direction, for example, a crack in the circumferential direction. Is disturbed and the impedance of the coil changes, so that it is possible to detect such a defect that is short in the axial direction.

【0024】上記のように本考案による探傷装置では、
検出コイルの発生する磁界の方向が、高速スイッチ41
a,42a、41b,42bの動作に伴って反転するた
め、軸方向に長さのある欠陥だけではなく、軸方向に長
さのない(周方向に長さのある)欠陥も検出できるよう
になる。なお、上記実施例では、周方向一列の磁極の数
を4個としたが、4個に限られるものではなく、もっと
少なくても、多くても良い。
As described above, in the flaw detector according to the present invention,
The direction of the magnetic field generated by the detection coil
Since it is reversed with the operations of a, 42a, 41b and 42b, not only defects having a length in the axial direction but also defects having a length in the axial direction (length in the circumferential direction) can be detected. Become. In the above embodiment, the number of magnetic poles in one row in the circumferential direction is four, but the number is not limited to four and may be smaller or larger.

【0025】また、上記実施例では、細管内面からの検
出コイルについて例示したが、本考案は、これに限定さ
れるものではなく、細管または丸棒の外部からによる探
傷にも適用できるだけでなく、平板状のものについても
適用することができる。
Further, in the above-described embodiment, the detection coil from the inner surface of the thin tube has been exemplified. However, the present invention is not limited to this, and can be applied not only to flaw detection from outside the thin tube or round bar, but also to The present invention can also be applied to a flat plate.

【0026】[0026]

【考案の効果】以上詳記したように本考案によれば、検
出コイルに流れる電流の方向を高速スイッチにより正
転、反転させて磁極より発生する磁界の方向を軸方向と
周方向に交互に切換えるようにしているので、軸方向に
長さのある欠陥だけではなく、従来の探傷装置では検出
が困難であった軸方向に長さのない欠陥についても検出
でき、探傷装置の性能を大幅に改善することができる。
According to the present invention, as described in detail above, the direction of the current flowing through the detection coil is rotated forward and reverse by the high-speed switch, and the direction of the magnetic field generated from the magnetic pole is alternately arranged in the axial direction and the circumferential direction. Because it is switched, not only defects with a length in the axial direction, but also defects without a length in the axial direction, which were difficult to detect with conventional flaw detection equipment, can be detected, greatly improving the performance of flaw detection equipment. Can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本考案の一実施例に係る渦電流探傷装置の検出
コイル部分の構成図。
FIG. 1 is a configuration diagram of a detection coil portion of an eddy current inspection device according to an embodiment of the present invention.

【図2】同実施例における機能結線図。FIG. 2 is a functional connection diagram in the embodiment.

【図3】同実施例における検出コイルの磁界を示す図。FIG. 3 is a view showing a magnetic field of a detection coil in the embodiment.

【図4】同実施例における検出コイルの磁界を示す図。FIG. 4 is a view showing a magnetic field of a detection coil in the embodiment.

【図5】従来の渦電流探傷装置を示す構成図。FIG. 5 is a configuration diagram showing a conventional eddy current inspection device.

【図6】従来の検出コイルと、その磁界の方向を示す
図。
FIG. 6 is a diagram showing a conventional detection coil and a direction of a magnetic field thereof.

【図7】従来の渦電流探傷装置の機能結線図。FIG. 7 is a functional connection diagram of a conventional eddy current testing device.

【符号の説明】 5…探傷器、6…画面、7…信号波形、8…被検体細
管、9…欠陥、21,22…可変インピーダンス、23
…発振器、24…増幅・信号処理回路、30a…第1検
出コイル部、30b…第2検出コイル部、31,32…
磁心、33a〜33d、34a〜34d…磁極、41a
1 ,41a2 ,41b1 ,41b2 ,42a1 ,42a
2 ,42b1 ,42b2 …高速スイッチ、a1 〜a4 、
b1 〜b4…検出コイル、L1 ,L2 …信号ライン、L0
…共通ライン。
[Description of Symbols] 5 ... flaw detector, 6 ... screen, 7 ... signal waveform, 8 ... subject thin tube, 9 ... defect, 22, 22 ... variable impedance, 23
... Oscillator, 24 ... Amplification / signal processing circuit, 30a ... First detection coil unit, 30b ... Second detection coil unit, 31, 32 ...
Magnetic core, 33a to 33d, 34a to 34d ... magnetic pole, 41a
1, 41a2, 41b1, 41b2, 42a1, 42a
2, 42b1, 42b2 ... high-speed switches, a1 to a4,
b1 to b4: detection coil, L1, L2: signal line, L0
... a common line.

───────────────────────────────────────────────────── フロントページの続き (72)考案者 清水 直哉 兵庫県神戸市兵庫区和田崎町一丁目1番 1号 三菱重工業株式会社神戸造船所内 (72)考案者 高見 博策 兵庫県高砂市荒井町新浜二丁目8番25号 高菱エンジニアリング株式会社内 (72)考案者 小島 義広 兵庫県高砂市荒井町新浜二丁目8番25号 高菱エンジニアリング株式会社内 (56)参考文献 実開 昭55−97448(JP,U) ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Naoya Shimizu 1-1-1, Wadazakicho, Hyogo-ku, Hyogo-ku, Kobe-shi, Hyogo Mitsubishi Heavy Industries, Ltd.Kobe Shipyard (72) Inventor Hirosaku Takami Niihama, Araimachi, Takasago-shi, Hyogo 2-8-8 Takahashi Engineering Co., Ltd. (72) Inventor Yoshihiro Kojima 2-8-25 Aramachi Shinhama, Takasago City, Hyogo Prefecture Takahashi Engineering Co., Ltd. (56) References Real Opening Sho 55-97448 (JP) , U)

Claims (1)

(57)【実用新案登録請求の範囲】(57) [Scope of request for utility model registration] 【請求項1】 複数個の半径方向外向突起を有する2個
のリング状の磁心を前記突起が対峙するように並行して
配置し、上記各突起にそれぞれ検出コイルを設けて磁極
を形成してなる検出コイル部と、上記検出コイルに選択
的に接続され、この検出コイルに流れる電流の方向を正
転、反転させて上記磁極より発生する磁界の方向を軸方
向と周方向に交互に切換える高速スイッチと、上記検出
コイル部の検出信号に基づいて被検体の欠陥を検出する
手段とを具備したことを特徴とする渦電流探傷装置。
1. A two-pole magnetic core having a plurality of radially outward projections is arranged in parallel so that the projections face each other, and a magnetic pole is formed by providing a detection coil on each of the projections. And a high-speed switching device selectively connected to the detection coil and rotating and reversing the direction of a current flowing through the detection coil to alternately change the direction of a magnetic field generated from the magnetic pole in an axial direction and a circumferential direction. An eddy current flaw detection device comprising: a switch; and means for detecting a defect of the subject based on a detection signal of the detection coil unit.
JP3222492U 1992-05-15 1992-05-15 Eddy current flaw detector Expired - Lifetime JP2548141Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3222492U JP2548141Y2 (en) 1992-05-15 1992-05-15 Eddy current flaw detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3222492U JP2548141Y2 (en) 1992-05-15 1992-05-15 Eddy current flaw detector

Publications (2)

Publication Number Publication Date
JPH0592713U JPH0592713U (en) 1993-12-17
JP2548141Y2 true JP2548141Y2 (en) 1997-09-17

Family

ID=12352991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3222492U Expired - Lifetime JP2548141Y2 (en) 1992-05-15 1992-05-15 Eddy current flaw detector

Country Status (1)

Country Link
JP (1) JP2548141Y2 (en)

Also Published As

Publication number Publication date
JPH0592713U (en) 1993-12-17

Similar Documents

Publication Publication Date Title
JP4917899B2 (en) Eddy current flaw detection sensor and eddy current flaw detection method
JP2714385B2 (en) Eddy current probe
AU595748B2 (en) Magnetic flux leakage probe with radially offset coils for use in nondestructives testing of pipes and tubes
JP3276295B2 (en) Eddy current flaw detector
JP2011002409A (en) Leak flux flaw detecting device
JP2008032575A (en) Eddy current measuring probe and flaw detection device using it
US6377040B1 (en) Eddy current probe and process for checking the edges of metal articles
JP2548141Y2 (en) Eddy current flaw detector
JP3245057B2 (en) Eddy current flaw detector
WO2020111526A1 (en) Probe for nondestructive inspection apparatus using intersecting gradient-type induced currents, and method for manufacturing induction coil for nondestructive inspection apparatus
JP2004251839A (en) Pipe inner surface flaw inspection device
JP2007163263A (en) Eddy current flaw detection sensor
EP1877767A2 (en) Near fieldtm and combination near fieldtm - remote field electromagnetic testing (et) probes for inspecting ferromagnetic pipes and tubes such as those used in heat exchangers
JP2004028897A (en) Eddy-current flaw detection apparatus
JP2002214202A (en) Eddy current flaw detection probe
JP2001272379A (en) Method and device for non destructive test for tube
JPS63274859A (en) Eddy current flaw detection coil
JPS62145162A (en) Split type rotary magnetic field eddy current flaw detector
JPH08201347A (en) Tube flaw detecting device
JP2000275223A (en) Inspecting tool and its using method
JPS609718Y2 (en) Flaw detection coil device
JPS58843Y2 (en) Eddy current flaw detector
JPS63235854A (en) Flaw detector
JPH075408Y2 (en) Metal flaw detection probe
JPH0943204A (en) Coil for detecting defect in circumferential direction

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970415

EXPY Cancellation because of completion of term