JPH08201347A - Tube flaw detecting device - Google Patents

Tube flaw detecting device

Info

Publication number
JPH08201347A
JPH08201347A JP7027732A JP2773295A JPH08201347A JP H08201347 A JPH08201347 A JP H08201347A JP 7027732 A JP7027732 A JP 7027732A JP 2773295 A JP2773295 A JP 2773295A JP H08201347 A JPH08201347 A JP H08201347A
Authority
JP
Japan
Prior art keywords
flaw
pipe
eddy current
probe
flaw detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7027732A
Other languages
Japanese (ja)
Inventor
Yoshihiro Matsumoto
善博 松本
Kazuhiko Aoki
一彦 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nuclear Fuel Industries Ltd
Original Assignee
Nuclear Fuel Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nuclear Fuel Industries Ltd filed Critical Nuclear Fuel Industries Ltd
Priority to JP7027732A priority Critical patent/JPH08201347A/en
Publication of JPH08201347A publication Critical patent/JPH08201347A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE: To uniformly detect flaws by inserting a probe into a flaw inspected pipe, arranging multiple eddy current flaw detecting sensors into the array shape in the peripheral direction of the probe while the coil face is faced toward the wall face, and switching the eddy current flaw detecting sensors for scanning. CONSTITUTION: When a probe 1 is inserted into a flaw inspected pipe, a current applying contact piece 3 is rotated in the peripheral direction of the probe 1 by the drive of a motor. The flaw detection of the heat transfer pipe facing a group of multiple eddy current flaw detecting sensors 2 is conducted by the eddy current generated by a group of multiple eddy current flaw detecting sensors 2 connected to the current applying contact piece 3 in sequence. The eddy current generated on the flaw inspected pipe by each sensor 2 is limited in the partial region of the pipe wall, defects formed in the peripheral direction in the heat transfer pipe can be detected, and flaw detection can be uniformly conducted on the whole periphery of the heat transfer pipe. Flaw detection can be quickly conducted on the flaw inspected pipe via switched scanning in sequence.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば金属管の欠陥を
管内面側から渦流探傷する管探傷装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pipe flaw detector for detecting flaws in a metal pipe from the inner surface of the pipe by eddy current flaw detection.

【0002】[0002]

【従来の技術】従来、複数の長い金属管(被探傷管)、
例えば原子炉格納容器内に収納された蒸気発生器の伝熱
管を渦流探傷する管探傷装置として、図2、図3、図4
に示すものが使用されている。
2. Description of the Related Art Conventionally, a plurality of long metal pipes (detected pipes),
For example, as a pipe flaw detector for eddy current flaw detection of a heat transfer pipe of a steam generator housed in a reactor containment vessel, FIG. 2, FIG. 3, FIG.
The ones shown in are used.

【0003】図2(a)は、従来の一般的な管探傷装置
の概略構成を示す説明図である。図2(a)に示すよう
に、従来の管探傷装置は、伝熱管内に挿入されるプロー
ブ21と、渦電流を発生して検出信号を受信する渦流探
傷センサ(自己誘導型コイル)22a,22bとから主
に構成されている。尚、この種の管探傷装置には、前記
プローブ21を伝熱管内のセンタ(軸心)に位置させる
ために前記プローブ21にセンタリングひげ23が設け
られている。
FIG. 2A is an explanatory view showing a schematic structure of a conventional general pipe flaw detector. As shown in FIG. 2A, the conventional pipe flaw detector includes a probe 21 inserted into a heat transfer pipe, an eddy current flaw detection sensor (self-induction coil) 22a that generates an eddy current and receives a detection signal, 22b and the like. In this type of tube flaw detector, a centering whisker 23 is provided on the probe 21 in order to position the probe 21 at the center (axis center) in the heat transfer tube.

【0004】上記のように構成された従来の管探傷装置
においては、図2(b)に示すように、前記プローブ2
1を伝熱管25内に矢印方向へ挿入し、前記2個一対の
渦流探傷センサ22a,22bから発生する渦電流を伝
熱管25の周方向に流し、これら両探傷センサ22a,
22bによって受信され、該探傷センサ22a,22b
のそれぞれから出力される出力信号の差を取ることによ
り、伝熱管25内に欠陥があるか否かを検出している。
尚、このように、2つの検出センサから出力される出力
信号の差を取ることにより欠陥の位置を特定する方式は
一般的に差動型方式(差動型探傷センサ)と呼ばれてい
る。
In the conventional pipe flaw detector constructed as described above, as shown in FIG.
1 is inserted into the heat transfer tube 25 in the direction of the arrow, and an eddy current generated from the pair of two eddy current flaw detection sensors 22a, 22b is caused to flow in the circumferential direction of the heat transfer tube 25, and both flaw detection sensors 22a,
22b, and the flaw detection sensors 22a and 22b are received.
It is detected whether or not there is a defect in the heat transfer tube 25 by taking the difference between the output signals output from the respective.
Incidentally, the method of specifying the position of the defect by taking the difference between the output signals output from the two detection sensors in this way is generally called a differential method (differential flaw detection sensor).

【0005】図3(a)は、従来の別の管探傷装置の概
略構成を示す説明図である。図2において示した管探傷
装置との相違点は、渦電流を発生する前記2個一対の渦
流探傷センサ22a,22bに替えて、コイル面が管壁
面に向けられた一つの渦流探傷センサ24a(図2にお
いて示した渦流探傷センサ22a,22bより小さいコ
イル)をプローブ21の先端部側面に設け、プローブ2
1自身を回転させながら、伝熱管の欠陥を探傷する点で
ある。
FIG. 3A is an explanatory view showing a schematic structure of another conventional pipe flaw detector. The difference from the pipe flaw detector shown in FIG. 2 is that instead of the pair of two eddy current flaw detectors 22a and 22b that generate an eddy current, one eddy current flaw detector 24a (with its coil surface facing the pipe wall surface) A coil smaller than the eddy current flaw detection sensors 22a and 22b shown in FIG.
The point is to detect defects in the heat transfer tube while rotating 1 itself.

【0006】図3(a)に示すように構成された管探傷
装置においては、伝熱管25内に挿入されたプローブ2
1自身を回転させるとともに、前記渦流探傷センサ24
aを伝熱管25の全周面に対向させ、該伝熱管に欠陥が
あるか否かを検出している。尚、前記プローブ21に設
けられた渦流探傷センサ24aは、図3(b)に示すよ
うに、螺旋状となって伝熱管25内を走査する。また、
このように、一つの渦流探傷センサを用いて検出する方
式は差動型方式に対して一般的に絶対型方式(絶対型探
傷センサ)と呼ばれている。
In the pipe flaw detector constructed as shown in FIG. 3A, the probe 2 inserted in the heat transfer pipe 25 is used.
While rotating itself, the eddy current flaw detection sensor 24
The a is made to face the entire peripheral surface of the heat transfer tube 25, and it is detected whether or not there is a defect in the heat transfer tube. It should be noted that the eddy current flaw detection sensor 24a provided on the probe 21 scans the inside of the heat transfer tube 25 in a spiral shape as shown in FIG. 3B. Also,
As described above, the method of detecting by using one eddy current flaw detection sensor is generally called an absolute method (absolute flaw detection sensor) as opposed to the differential type.

【0007】図4は、従来の更に別の管探傷装置の概略
構成を示す説明図である。図2,図3において示した管
探傷装置との相違点は、プローブ21の周面上に、該プ
ローブ21の円周方向に角度を変えながら、多数(4〜
16個)の渦流探傷センサ24aが配設されるようにし
た点である。
FIG. 4 is an explanatory view showing a schematic structure of still another conventional pipe flaw detector. The difference from the pipe flaw detector shown in FIGS. 2 and 3 is that a large number (4 to 4) are formed on the circumferential surface of the probe 21 while changing the angle in the circumferential direction of the probe 21.
This is a point in which 16 eddy current flaw detection sensors 24a are arranged.

【0008】図4に示すように構成された管探傷装置に
おいては、プローブ21を伝熱管内にそのまま挿入する
ことにより、プローブ21の円周方向に角度を変えなが
ら配設された各渦流探傷センサ24aが、各々のセンサ
と対向する伝熱管の内面に向けて渦電流を発生し、この
伝熱管を探傷する。従って、図4に示す管探傷装置にお
いては、図3(b)を用いて説明したように、プローブ
21自身を伝熱管の周方向に回転させる必要がないとい
う利点がある。
In the tube flaw detector constructed as shown in FIG. 4, the probe 21 is inserted into the heat transfer tube as it is, so that each eddy current flaw detection sensor is arranged while changing the angle in the circumferential direction of the probe 21. 24a generates an eddy current toward the inner surface of the heat transfer tube facing the respective sensors, and flaw-detects the heat transfer tube. Therefore, the tube flaw detector shown in FIG. 4 has an advantage that it is not necessary to rotate the probe 21 itself in the circumferential direction of the heat transfer tube, as described with reference to FIG.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、上記各
従来の管探傷装置においては、以下のような問題点があ
った。先ず、図2において説明した管探傷装置において
は、渦電流の流れる方向が周方向であるため、図2
(b)に示すように、前記プローブ21の挿入方向につ
いた傷Aのような欠陥は検出できるが、被探傷管25の
周方向についた傷Bのような欠陥は検出されない場合が
あるという問題点があった。
However, the above-mentioned conventional pipe flaw detectors have the following problems. First, in the pipe flaw detector described with reference to FIG. 2, the eddy current flows in the circumferential direction.
As shown in (b), a defect such as a scratch A in the insertion direction of the probe 21 can be detected, but a defect such as a scratch B in the circumferential direction of the pipe to be inspected 25 may not be detected. There was a point.

【0010】また、図3において説明した管探傷装置に
おいては、周方向の欠陥に対しても検出することができ
るが、前記プローブ21を回転させるため、検出速度が
極めて遅く、被探傷管の全域・全数検査には不向きであ
り、被探傷管の部分検査にのみ使用されているのが実状
である。
Further, in the pipe flaw detector described with reference to FIG. 3, it is possible to detect defects in the circumferential direction, but since the probe 21 is rotated, the detection speed is extremely slow and the entire region of the flaw-detected pipe is detected.・ It is not suitable for 100% inspection, and it is used only for partial inspection of the pipe to be inspected.

【0011】更に、図4において説明した管探傷装置に
おいては、検出ムラが生じるという問題点があった。
Further, the tube flaw detector described with reference to FIG. 4 has a problem that detection unevenness occurs.

【0012】本発明は、上記課題を鑑みて成されたもの
であり、被探傷管の全周を確実に探傷することができる
管探傷装置を得ることを主目的とする。
The present invention has been made in view of the above problems, and a main object of the present invention is to obtain a pipe flaw detection apparatus capable of surely performing flaw detection on the entire circumference of a flaw detection pipe.

【0013】また、本発明の別の目的は、被探傷管の周
方向についた欠陥も探傷することができる管探傷装置を
得ることである。
Another object of the present invention is to provide a pipe flaw detector which can detect flaws in the circumferential direction of a flaw-detected pipe.

【0014】また、本発明の別の目的は、迅速に被探傷
管を探傷することができる管探傷装置を得ることであ
る。
Another object of the present invention is to provide a pipe flaw detector capable of promptly detecting flaws in a flaw-detected pipe.

【0015】更に、本発明の別の目的は、被探傷管をム
ラなく探傷することができる管探傷装置を得ることであ
る。
Still another object of the present invention is to provide a pipe flaw detector capable of uniformly flaw-detecting a flaw-detected pipe.

【0016】[0016]

【課題を解決するための手段】請求項1に記載の発明に
係る管探傷装置は、上記目的を達成するために、被探傷
管内面から渦流探傷するための管探傷装置において、被
探傷管内に挿入されるプローブの周方向にアレイ状に配
列された複数の渦流探傷センサと、前記アレイ状の複数
の渦流探傷センサをスイッチングにより走査する走査手
段とを備えたことを特徴とするものである。
In order to achieve the above object, a pipe flaw detector according to a first aspect of the present invention is a pipe flaw detector for performing eddy current flaw detection from an inner surface of a flaw-detected pipe. It is characterized by comprising a plurality of eddy current flaw detection sensors arranged in an array in the circumferential direction of the probe to be inserted, and a scanning means for scanning the plurality of eddy current flaw detection sensors in the array by switching.

【0017】[0017]

【作用】請求項1に記載の発明による管探傷装置は、プ
ローブと、複数の渦流探傷センサ(小型センサ)と、走
査手段とから構成されている。前記プローブは、被探傷
管内に挿入される。また、前記複数の渦流探傷センサ
は、コイル面を壁面に向けて、前記プローブの周方向に
アレイ状に配列されている。また、前記走査手段は、前
記アレイ状の複数の渦流探傷センサをスイッチングによ
り走査する。
The pipe flaw detector according to the first aspect of the present invention comprises a probe, a plurality of eddy current flaw detection sensors (small sensors), and a scanning means. The probe is inserted into the flaw detection tube. Further, the plurality of eddy current flaw detection sensors are arranged in an array in the circumferential direction of the probe with the coil surface facing the wall surface. The scanning means scans the plurality of array-shaped eddy current flaw detection sensors by switching.

【0018】つまり、複数個の渦流探傷センサをプロー
ブの周方向にアレイ状に配列し、走査手段によって前記
複数個の渦流探傷センサを順次スイッチング走査するこ
とにより、被探傷管の全周を渦流探傷する。
That is, a plurality of eddy current flaw detection sensors are arranged in an array in the circumferential direction of the probe, and the plurality of eddy current flaw detection sensors are sequentially switched to be scanned by the scanning means, so that the entire circumference of the pipe to be inspected is eddy current flaw detection. To do.

【0019】この結果、被探傷管の全周を確実に探傷す
ることが可能になる。従って、被探傷管の周方向につい
た欠陥も探傷することが可能になるとともに、被探傷管
をムラなく探傷することも可能になる。更に、前記複数
個の渦流探傷センサを順次スイッチングにより走査する
ため、管内面との相対回転運動を生じることなく、迅速
に被探傷管を探傷することも可能になる。
As a result, it is possible to surely detect the entire circumference of the pipe to be inspected. Therefore, it is possible to detect defects in the circumferential direction of the flaw-detecting pipe, and it is possible to uniformly detect the flaw-detecting pipe. Further, since the plurality of eddy current flaw detection sensors are sequentially switched to scan, the flaw detection target pipe can be promptly detected without causing relative rotational motion with the inner surface of the pipe.

【0020】[0020]

【実施例】図1(a)は、本発明の一実施例に係る管探
傷装置の概略構成を示す説明図である。本実施例に係る
管探傷装置は、図1(a)に示すように、複数の渦流探
傷センサ(例えば、自己誘導型コイル)群2が、プロー
ブ1の周方向にアレイ状に配列されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1A is an explanatory view showing the schematic construction of a pipe flaw detector according to an embodiment of the present invention. In the pipe flaw detector according to this embodiment, as shown in FIG. 1A, a plurality of eddy current flaw detector sensors (for example, self-induction type coils) 2 are arranged in an array in the circumferential direction of a probe 1. .

【0021】図1(b)は、前記プローブ1の内部を示
す概略構成図であり、図1(b)に示すように、プロー
ブ1の内部には前記複数の渦流探傷センサ群2に電流を
印加する電流印加触子(走査手段)3が、前記複数の渦
流探傷センサ群2の電流印加端子2aに当接されてい
る。尚、前記電流印加触子3は、モータ(図示せず)の
駆動によってプローブ1の周方向に回動可能となってい
る。
FIG. 1B is a schematic configuration diagram showing the inside of the probe 1. As shown in FIG. 1B, a current is supplied to the plurality of eddy current flaw detection sensor groups 2 inside the probe 1. A current applying probe (scanning means) 3 to be applied is in contact with a current applying terminal 2a of the plurality of eddy current flaw detection sensor groups 2. The current applying probe 3 can be rotated in the circumferential direction of the probe 1 by driving a motor (not shown).

【0022】上記のように構成された本実施例に係る管
探傷装置においては、プローブ1が被探傷管(例えば原
子炉格納容器内に収納された蒸気発生器の伝熱管)内に
挿入されると、電流印加触子3が不図示のモータの駆動
によってプローブ1の周方向に回動される。
In the pipe flaw detector according to this embodiment constructed as described above, the probe 1 is inserted into the flaw-detected pipe (for example, the heat transfer pipe of the steam generator housed in the reactor containment vessel). Then, the current applying tentacle 3 is rotated in the circumferential direction of the probe 1 by driving a motor (not shown).

【0023】この結果、前記電流印加触子3と順次接続
される前記複数の渦流探傷センサ群2から発生される渦
電流によって、前記複数の渦流探傷センサ群2と対向す
る伝熱管の探傷が行われる。
As a result, eddy currents generated from the plurality of eddy current flaw detection sensor groups 2 sequentially connected to the current applying contactor 3 detect flaws in the heat transfer tube facing the plurality of eddy current flaw detection sensor groups 2. Be seen.

【0024】個々のセンサによって被探傷管に発生する
渦電流は、管壁の部分的な領域に限定されるため、伝熱
管内についた周方向の欠陥も探傷することができるとと
もに、伝熱管を全周ムラなく探傷することもできる。更
に、前記複数の渦流探傷センサ群2を前記電流印加触子
3によって順次スイッチング走査するため、管内面に対
する機械的な相対回転なしに従来装置(図3参照)より
も高速な走査で被探傷管を迅速に探傷することもでき
る。
The eddy current generated in the flaw-detecting pipe by each sensor is limited to a partial region of the pipe wall, so that the flaw in the circumferential direction in the heat-transfer pipe can be detected and the heat-transfer pipe can be detected. It is possible to detect flaws evenly around the entire circumference. Further, since the plurality of eddy current flaw detection sensor groups 2 are sequentially switched and scanned by the current applying probe 3, the flaw detection target tube can be scanned at a higher speed than the conventional device (see FIG. 3) without mechanical relative rotation with respect to the inner surface of the tube. It is also possible to quickly detect flaws.

【0025】尚、本実施例における渦流探傷センサ群2
は、従来例で説明した差動型方式あるいは絶対型方式の
いずれの方式のセンサを用いても良い。
The eddy current flaw detection sensor group 2 in this embodiment
May use the sensor of either the differential type or the absolute type described in the conventional example.

【0026】また、本実施例においては、電流印加触子
3をモータによってプローブの周方向に回動させること
により、プローブの周方向にアレイ状に配列された複数
の渦流探傷センサ群2から順次渦電流が発生するような
有接点方式のスイッチング走査の場合を説明したが、前
記複数の渦流探傷センサ2を電子回路による無接点方式
のスイッチング走査で動作させるものも本発明の技術的
範疇に含まれることは述べるまでもない。
Further, in the present embodiment, by rotating the current applying probe 3 in the circumferential direction of the probe by the motor, the plurality of eddy current flaw detection sensor groups 2 arranged in an array in the circumferential direction of the probe are sequentially arranged. Although the case of contact-type switching scanning in which an eddy current is generated has been described, it is also within the technical scope of the present invention to operate the plurality of eddy current flaw detection sensors 2 by contactless-type switching scanning by an electronic circuit. It goes without saying that it will be done.

【0027】[0027]

【発明の効果】本発明は以上説明したとおり、被探傷管
の全周を確実に探傷することができるという効果があ
る。
As described above, the present invention has an effect that the entire circumference of the pipe to be inspected can be surely inspected.

【0028】また、本発明では、被探傷管の周方向につ
いた欠陥を探傷することができるという効果もある。
The present invention also has the effect of being able to detect defects in the circumferential direction of the pipe to be detected.

【0029】また、本発明では、迅速に被探傷管を探傷
することができるという効果もある。
Further, the present invention has an effect that it is possible to detect a flaw in the flaw-detecting pipe promptly.

【0030】また、本発明では、被探傷管をムラなく探
傷することができるという効果もある。
Further, the present invention has an effect that it is possible to perform flaw detection on the flaw-detected pipe without unevenness.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)は本発明の一実施例に係る管探傷装置の
概略構成を示す説明図である。(b)はプローブの内部
を示す概略構成図である。
FIG. 1A is an explanatory diagram showing a schematic configuration of a pipe flaw detector according to an embodiment of the present invention. (B) is a schematic block diagram which shows the inside of a probe.

【図2】(a)は従来の一般的な管探傷装置の概略構成
を示す説明図である。(b)は被探傷管内を流れる渦流
の方向を示す説明図である。
FIG. 2A is an explanatory diagram showing a schematic configuration of a conventional general pipe flaw detector. (B) is an explanatory view showing the direction of the vortex flow flowing in the flaw detection tube.

【図3】(a)は従来の別の管探傷装置の概略構成を示
す説明図である。(b)は被探傷管内を走査する渦流探
傷センサの方向を示す説明図である。
FIG. 3A is an explanatory diagram showing a schematic configuration of another conventional tube flaw detector. (B) is an explanatory view showing the direction of the eddy current flaw detection sensor for scanning the inside of the flaw detection tube.

【図4】従来の更に別の管探傷装置の概略構成を示す説
明図である。
FIG. 4 is an explanatory diagram showing a schematic configuration of still another conventional tube flaw detector.

【符号の説明】[Explanation of symbols]

1:プローブ 2:渦流探傷センサ 3:電流印加触子(走査手段) 1: Probe 2: Eddy current flaw detection sensor 3: Current application probe (scanning means)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 被探傷管内面から渦流探傷するための管
探傷装置において、 被探傷管内に挿入されるプローブの周方向にアレイ状に
配列された複数の渦流探傷センサと、 前記アレイ状の複数の渦流探傷センサをスイッチングに
より走査する走査手段と、を備えたことを特徴とする管
探傷装置。
1. A pipe flaw detector for eddy current flaw detection from an inner surface of a flaw detection pipe, comprising: a plurality of eddy current flaw detection sensors arranged in an array in a circumferential direction of a probe inserted into the flaw detection pipe; And a scanning unit that scans the eddy current flaw detection sensor by switching.
JP7027732A 1995-01-25 1995-01-25 Tube flaw detecting device Withdrawn JPH08201347A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7027732A JPH08201347A (en) 1995-01-25 1995-01-25 Tube flaw detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7027732A JPH08201347A (en) 1995-01-25 1995-01-25 Tube flaw detecting device

Publications (1)

Publication Number Publication Date
JPH08201347A true JPH08201347A (en) 1996-08-09

Family

ID=12229203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7027732A Withdrawn JPH08201347A (en) 1995-01-25 1995-01-25 Tube flaw detecting device

Country Status (1)

Country Link
JP (1) JPH08201347A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008197016A (en) * 2007-02-14 2008-08-28 Mitsubishi Heavy Ind Ltd Sensor element and eddy current flaw detection probe
CN104569147A (en) * 2014-12-25 2015-04-29 中国原子能科学研究院 Array eddy current probe for spent fuel rod inspection
CN105806929A (en) * 2014-12-30 2016-07-27 中核武汉核电运行技术股份有限公司 Ferromagnetic thin-walled tube circumferential AC magnetization magnetic flux leakage detection array probe
CN105806933A (en) * 2014-12-30 2016-07-27 中核武汉核电运行技术股份有限公司 Inward passing-type colossal magnetoresistance array probe for nonferromagnetic thin-walled tube defect detection
CN109979620A (en) * 2017-12-27 2019-07-05 核动力运行研究所 A kind of heterotype tubing eddy current array detection probe

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008197016A (en) * 2007-02-14 2008-08-28 Mitsubishi Heavy Ind Ltd Sensor element and eddy current flaw detection probe
CN104569147A (en) * 2014-12-25 2015-04-29 中国原子能科学研究院 Array eddy current probe for spent fuel rod inspection
CN105806929A (en) * 2014-12-30 2016-07-27 中核武汉核电运行技术股份有限公司 Ferromagnetic thin-walled tube circumferential AC magnetization magnetic flux leakage detection array probe
CN105806933A (en) * 2014-12-30 2016-07-27 中核武汉核电运行技术股份有限公司 Inward passing-type colossal magnetoresistance array probe for nonferromagnetic thin-walled tube defect detection
CN109979620A (en) * 2017-12-27 2019-07-05 核动力运行研究所 A kind of heterotype tubing eddy current array detection probe
CN109979620B (en) * 2017-12-27 2024-02-09 核动力运行研究所 Special-shaped pipe eddy current array detection probe

Similar Documents

Publication Publication Date Title
US5767410A (en) Lamb wave ultrasonic probe for crack detection and measurement in thin-walled tubing
JP3276295B2 (en) Eddy current flaw detector
JPH11502938A (en) Eddy current sensor and tube inspection device having at least one sensor
KR101756263B1 (en) Apparatus for detecting defect using rotational megnetic sensor
JPH08201347A (en) Tube flaw detecting device
JPH0254165A (en) Vortex flaw detection method of pipe and bar material
JPH06501105A (en) How to inspect heat exchanger pipes inside a heat exchanger
JPH01212352A (en) Method and apparatus for electromagnetic flaw detection
GB2280507A (en) SCAN - Method and apparatus for ultrasonic testing of tubular products.
JP2990820B2 (en) Surface defect inspection equipment
KR102265354B1 (en) annular array eddy currentprobe non-destructive inspection device equipped with magnetic lenses
WO2020111526A1 (en) Probe for nondestructive inspection apparatus using intersecting gradient-type induced currents, and method for manufacturing induction coil for nondestructive inspection apparatus
JPH06186207A (en) Eddy-current flaw detecting probe
JPS61191960A (en) Ultrasonic inspection of tube or bar material
JPS63274859A (en) Eddy current flaw detection coil
JPS61133843A (en) Surface inspector
JPS62116237A (en) Detector for surface flaw
JP2002122573A (en) Method and apparatus for inspection of defect of round material
JPH10246793A (en) Inspection method and device for welding part of nuclear fuel rod end plug
JPS6039554A (en) Ultrasonic inspecting method of pipe material or bar material
JP3205678B2 (en) Ultrasonic flaw detector for lead sheath tube
JP2000258397A (en) Nondestructive inspection device of pipe
JPH09171003A (en) Eddy-current flow detector and flow detection method for pipe
JPH06186205A (en) Eddy-current flaw detecting apparatus
JP2548141Y2 (en) Eddy current flaw detector

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020402