JP2543686B2 - Resin-sealed semiconductor device - Google Patents

Resin-sealed semiconductor device

Info

Publication number
JP2543686B2
JP2543686B2 JP61269752A JP26975286A JP2543686B2 JP 2543686 B2 JP2543686 B2 JP 2543686B2 JP 61269752 A JP61269752 A JP 61269752A JP 26975286 A JP26975286 A JP 26975286A JP 2543686 B2 JP2543686 B2 JP 2543686B2
Authority
JP
Japan
Prior art keywords
resin composition
liquid resin
semiconductor device
eta
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61269752A
Other languages
Japanese (ja)
Other versions
JPS63125563A (en
Inventor
隆 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61269752A priority Critical patent/JP2543686B2/en
Publication of JPS63125563A publication Critical patent/JPS63125563A/en
Application granted granted Critical
Publication of JP2543686B2 publication Critical patent/JP2543686B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、特定の性質を有する液状樹脂組成物を用い
て封止した薄型実装半導体装置に係り、特に被膜外観に
優れ、均一な厚さに被覆された、高信頼性の樹脂封止型
半導体装置に関する。
Description: TECHNICAL FIELD The present invention relates to a thin mounted semiconductor device encapsulated with a liquid resin composition having specific properties, and particularly, to an excellent film appearance and a uniform thickness. The present invention relates to a highly reliable resin-encapsulated semiconductor device covered with a resin.

〔従来の技術〕[Conventional technology]

従来、半導体素子の表面を保護する液状樹脂組成物と
しては多くの種類のものが開発されている。
Conventionally, many kinds of liquid resin compositions have been developed for protecting the surface of semiconductor elements.

その中で、顔料を配合したレゾール硬化型エポキシ系
液状樹脂組成物を、絶縁性基板の開口部にリード線を介
して接続した半導体素子の表面、及びリード線の部分に
塗布したが、漏れのない均一な厚さの被膜を形成するこ
とはできなかつた。
Among them, a resol-curable epoxy-based liquid resin composition containing a pigment was applied to the surface of the semiconductor element connected to the opening of the insulating substrate through a lead wire, and the lead wire portion. It was not possible to form a coating with no uniform thickness.

この液状樹脂組成物の粘度を測定したところ、回転数
依存性がないことが判明した。そして、これらの樹脂封
止型半導体装置を、85℃、85%RH下で動作試験を240時
間まで行つたところ、20個中3個の不良が発生して、満
足な信頼性が得られなかつた。
When the viscosity of this liquid resin composition was measured, it was found that there was no rotation speed dependency. Then, when these resin-sealed semiconductor devices were subjected to an operation test at 85 ° C. and 85% RH for up to 240 hours, 3 out of 20 defects occurred and satisfactory reliability was not obtained. It was

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上記従来の技術では、液状樹脂組成物の粘性(チキソ
トロピー性)の点について配慮がなされてなく、均一な
厚さで、ボイドのない被膜を形成することができないと
いう問題点があつた。
The above-mentioned conventional technique has a problem in that the viscosity (thixotropic property) of the liquid resin composition is not taken into consideration and a void-free coating film having a uniform thickness cannot be formed.

本発明の目的は、チキソトロピー性を調整した液状樹
脂組成物と、それを塗布することにより、ボイドがな
く、均一な厚さの被膜が半導体素子表面に形成され、信
頼性の向上した樹脂封止型半導体装置を提供することに
ある。
An object of the present invention is to provide a liquid resin composition having an adjusted thixotropy property, and by applying the liquid resin composition, a void-free and uniform-thickness film is formed on the semiconductor element surface, and resin sealing with improved reliability is achieved. Type semiconductor device.

〔問題点を解決するための手段〕[Means for solving problems]

本発明を概説すれば、本発明は樹脂封止型半導体装置
に関する発明であつて、絶縁性基板の開口部にリード線
を介して接続した半導体素子表面、及びリード線間に、
液状樹脂組成物を塗布し、加熱して被覆した半導体装置
において、該液状樹脂組成物として、比表面積50〜300m
2/gである酸化ケイ素の超微粉末を前記液状樹脂組成物
に対して0.1〜10重量%含むエポキシ樹脂組成物であつ
て、しかも回転粘度計の回転数n1とn2の比n1/n2が0.1の
関係にあり、n1及びn2の回転数で測定した粘度ηとη
の比η1の常用対数logη1の値が、0.11〜
2.9の範囲にある液状組成物を使用したことを特徴とす
る。
Briefly describing the present invention, the present invention is an invention relating to a resin-encapsulated semiconductor device, in which a semiconductor element surface connected to an opening of an insulating substrate via a lead wire, and between the lead wires,
In a semiconductor device coated with a liquid resin composition and heated to cover, as the liquid resin composition, a specific surface area of 50 to 300 m
An epoxy resin composition containing 0.1 to 10% by weight of ultrafine powder of silicon oxide which is 2 / g with respect to the liquid resin composition, and a ratio n 1 of the rotational speeds n 1 and n 2 of a rotational viscometer. / n 2 has a relationship of 0.1, and the viscosities η 1 and η measured at the rotation speeds of n 1 and n 2
The value of the common logarithm log [eta 1 / eta 2 of 2 ratio eta 1 / eta 2 is 0.11
A liquid composition in the range of 2.9 is used.

前記目的は、液状樹脂組成物にチキソトロピー的な性
質を付与することにより達成される。
The above object is achieved by imparting thixotropic properties to the liquid resin composition.

それには、比表面積が50〜300m3/gの超微粉末を、液
状樹脂組成物に対して0.1〜10重量%(固形分に対して
0.3〜10重量%である。ただし、液状樹脂組成物の固形
分濃度は20〜50重量%である)配合することにより、lo
1を、0.1〜3の範囲にすることができ、液状樹
脂組成物にチキソトロピー的な性質を付与することがで
きる。
To this end, ultrafine powder having a specific surface area of 50 to 300 m 3 / g is added to the liquid resin composition in an amount of 0.1 to 10% by weight (based on solid content).
0.3 to 10% by weight. However, the solid content concentration of the liquid resin composition is 20 to 50% by weight).
1 / η 2 can be set in the range of 0.1 to 3, and thixotropic properties can be imparted to the liquid resin composition.

超微粉末としては、酸化チタン、酸化アルミニウム、
ケイ酸ジウコニウム及び酸化ケイ素などの無機質系酸化
物を用いるのが好適である。
Ultrafine powders include titanium oxide, aluminum oxide,
It is preferable to use an inorganic oxide such as diukonium silicate and silicon oxide.

ただし、半導体素子のメモリ素子を誤動作させるα線
を発生する金属を多く含むものは好ましくないから、α
線を発生する金属を含む恐れがなく、しかも超微粉末化
し易い酸化ケイ素の超微粉末を用いるのが最適である。
However, it is not preferable to use a metal containing a large amount of metal that generates α rays that cause the memory element of the semiconductor element to malfunction.
It is optimal to use the ultrafine powder of silicon oxide which is not likely to contain a metal that generates a wire and is easy to be ultrafine powder.

しかして、酸化ケイ素の超微粉末の末端には水酸基が
あるが、この水酸基をメチル基でブロツクしたものは、
少量の添加で液状樹脂組成物に対してチキソトロピー的
な性質を付与することができるので、それを使用するの
が有利である。
Then, although there is a hydroxyl group at the end of the ultrafine powder of silicon oxide, the one obtained by blocking this hydroxyl group with a methyl group is
It is advantageous to use it because it is possible to impart thixotropic properties to the liquid resin composition with a small amount of addition.

液状樹脂組成物に対してチキソトロピー的な性質を適
度に付与することにより、発泡の少ない均一な厚さの被
膜を形成させることができ、半導体素子に高信頼性を付
与することが達成される。
By appropriately imparting the thixotropic property to the liquid resin composition, it is possible to form a film having a uniform thickness with less foaming, and it is possible to provide the semiconductor element with high reliability.

チキソトロピー的な性質を付与した液状樹脂組成物
は、静止に近いときの粘度が高いので、すき間から漏れ
ることが少なく、素子の裏面にまわり込むことを防止す
る。しかし、チキソトロピー的な性質を高くすると、す
なわち、logη1が3を越えると、液状組成物が素
子の表面に均一に拡がらなかつたり、加熱時に発泡する
などの問題が発生する。したがつて、チキソトロピー的
な性質を表現するlogη1は、0.11〜2.9の範囲にす
るのがよく、0.2〜2.5が最も好ましい。なお、回転粘度
計の回転数は通常0.5〜100(回/分)でありn1とn2とし
て、それぞれ1と10、2と20、5と50、10と100(回/
分)などを組合せることができる。本実施例では5と50
(回/分)の組合せを用いた。
The liquid resin composition having a thixotropic property has a high viscosity when it is almost stationary, so that it hardly leaks from the gap and prevents it from wrapping around around the back surface of the device. However, if the thixotropic property is improved, that is, if log η 1 / η 2 exceeds 3, problems occur such that the liquid composition does not spread evenly on the surface of the element, or foams when heated. Therefore, logη 1 / η 2 expressing the thixotropic property is preferably in the range of 0.11 to 2.9, and most preferably 0.2 to 2.5. The rotational speed of the rotational viscometer is usually 0.5 to 100 (times / minute), and n 1 and n 2 are 1 and 10, 2 , 20 , 5, 50, 10 and 100 (times / minute), respectively.
Minutes) etc. can be combined. In this embodiment, 5 and 50
A combination of (times / minute) was used.

一般的には、チキソトロピーとはゾル・ゲル変換の現
象をさすが、本発明では回転粘度計の回転数によつて粘
度が異なり、その粘度変化が、ゾル・ゲル変換に類似し
ているので、チキソトロピー的な性質と呼称して、用い
ている。
Generally, thixotropy refers to a phenomenon of sol-gel conversion, but in the present invention, the viscosity is different depending on the number of rotations of a rotary viscometer, and the change in viscosity is similar to sol-gel conversion. I use it by calling it a natural property.

〔実施例〕〔Example〕

以下、本発明を実施例、及び対照例により更に具体的
に説明するが本発明はこれら実施例に限定されない。
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.

なお第1図は、液状樹脂組成物の25℃における粘度
(cP、縦軸)と粘度計の回転数(rpm、横軸)との関係
を示したグラフ、第2図は、本発明の半導体素子の1例
の断面図、第3図及び第4図は、対照例の液状樹脂組成
物を用いた半導体素子の1例の断面図である。なお第2
図〜第4図において、符号7は半導体素子、8はリード
線、9はポリイミドのフイルム、10は素子とリード線を
接続している突起物であり、11は素子を保護している被
膜を意味する。
1 is a graph showing the relationship between the viscosity of the liquid resin composition at 25 ° C. (cP, vertical axis) and the rotational speed of the viscometer (rpm, horizontal axis), and FIG. 2 is the semiconductor of the present invention. A cross-sectional view of an example of an element, FIG. 3 and FIG. 4 are cross-sectional views of an example of a semiconductor element using a liquid resin composition of a comparative example. The second
In FIGS. 4 to 4, reference numeral 7 is a semiconductor element, 8 is a lead wire, 9 is a polyimide film, 10 is a protrusion connecting the element and the lead wire, and 11 is a film for protecting the element. means.

例1(対照例) フエノールノボラツク硬化型エポキシ樹脂35重量部に
メチルエチルケトン20重量部、ジオキサン20重量部及び
エチルセロソルブ20重量部及び硬化促進触媒(イミダゾ
ールのカリボール塩)を1重量部加えて、液状樹脂組成
物(1)を作製した。この液状樹脂組成物(1)の粘度
の回転数依存性を第1図の1に示す。logη1は0
である。すなわち、回転数依存性はない。
Example 1 (Comparative Example) To 35 parts by weight of a phenol novolak curable epoxy resin, 20 parts by weight of methyl ethyl ketone, 20 parts by weight of dioxane, 20 parts by weight of ethyl cellosolve, and 1 part by weight of a curing accelerator (carbazole salt of imidazole) were added to prepare a liquid form. A resin composition (1) was produced. The rotation speed dependence of the viscosity of the liquid resin composition (1) is shown in 1 of FIG. logη 1 / η 2 is 0
Is. That is, there is no rotation speed dependency.

例2〜8 液状樹脂組成物(1)に、比表面積が80m2/gの酸化ケ
イ素の超微粉末(粉末表面の水酸基をメチル基でブロツ
クしている)を固形分に対して2、3、5、7、8、
9、10重量%になるように配合した液状樹脂組成物(2
〜8)を作製した。これら組成物(2〜6)の粘度の回
転数依存性を第1図2〜6に示す。これら組成物(2〜
6)のlogη1は0.1〜1の範囲にある。
Examples 2 to 8 Liquid silicon composition (1) was added with ultrafine powder of silicon oxide having a specific surface area of 80 m 2 / g (the hydroxyl groups on the powder surface were blocked with methyl groups) based on the solid content. 5, 7, 8,
Liquid resin composition (2
~ 8) were produced. The rotation speed dependence of the viscosity of these compositions (2 to 6) is shown in FIGS. These compositions (2-
6) log η 1 / η 2 is in the range of 0.1 to 1.

厚さ50μmのポリイミドテープ(幅35mm)の中央部に
6.6mm角の穴があり、この穴の周辺(4辺)にリード線
が等間隔に100本固定されており、このリード線に6mm角
の半導体素子をバンプを介して熱圧着した。この素子の
表面に、1〜8の液状樹脂組成物を塗布した後に加熱
(125℃、4時間)した。被覆した素子の断面を第2図
〜第4図に示す。
In the center of a 50 μm thick polyimide tape (width 35 mm)
A 6.6 mm square hole was provided, and 100 lead wires were fixed around this hole (4 sides) at equal intervals, and a 6 mm square semiconductor element was thermocompression bonded to the lead wire via bumps. The surface of this device was coated with 1 to 8 of the liquid resin composition and then heated (125 ° C., 4 hours). Sections of the coated element are shown in FIGS.

液状樹脂組成物(1及び2)を被覆した素子の断面は
第3図に示したように、素子の裏面に液状樹脂組成物が
まわり込み、素子表面の被膜が極端に薄くなつている。
そのため、85℃、85%RHの高温高湿度雰囲気下に、20個
の実装品を放置したところ、240時間後に2個の不良が
発生した。液状樹脂組成物(1及び2)の粘度の比log
η1はそれぞれ0、0.1であつた。このことから0.1
以下では、よい塗膜性が得られないと言える。(対照
例) 液状樹脂組成物(3〜7)を被覆した素子の断面は第
2図に示したように、素子及びリード線の周囲に均一な
膜で付着しており、85℃、85%RH下に240時間放置して
も不良は発生しなかつた。
As shown in FIG. 3, the cross section of the device coated with the liquid resin compositions (1 and 2) has the liquid resin composition wrapping around the back surface of the device, and the coating on the device surface is extremely thin.
Therefore, when 20 mounted products were left in a high temperature and high humidity atmosphere of 85 ° C. and 85% RH, two defects occurred after 240 hours. Liquid resin composition (1 and 2) viscosity ratio log
η 1 / η 2 was 0 and 0.1, respectively. From this 0.1
In the following, it can be said that good coatability cannot be obtained. (Comparative Example) The cross section of the device coated with the liquid resin composition (3 to 7) is adhered as a uniform film around the device and the lead wire as shown in FIG. No defects occurred even if left under RH for 240 hours.

これらの液状樹脂組成物(3〜6)のlogη1
0.2〜1の範囲であつた。液状樹脂組成物(7)のlogη
1は2.5であつた。このことから、0.2〜2.5の範囲
にあれば、均一な厚さの塗膜を形成できることが明らか
である。(実施例) 液状樹脂組成物(8)を被覆した素子の断面は第4図
に示したように、発泡の跡が見られた。この組成物のlo
1は3であつた。85℃、85%RHでの試験では240
時間後に20個中3個の不良が発生した。(対照例) これらの検討結果から、logη1が0.2〜2.5の範
囲にあれば、均一な厚さの膜を形成でき、素子の信頼性
を保持できることが明らかである。これは、3〜9重量
%の超微粉末を添加すればよいことを意味している。
The log η 1 / η 2 of these liquid resin compositions (3 to 6) is
It was in the range of 0.2 to 1. Logη of liquid resin composition (7)
1 / η 2 was 2.5. From this, it is clear that a coating film having a uniform thickness can be formed in the range of 0.2 to 2.5. (Example) As shown in FIG. 4, a cross-section of the element coated with the liquid resin composition (8) showed traces of foaming. This composition lo
1 / η 2 was 3. 240 in the test at 85 ℃ and 85% RH
After time, 3 out of 20 defects occurred. (Comparative Example) From these examination results, it is clear that if log η 1 / η 2 is in the range of 0.2 to 2.5, a film having a uniform thickness can be formed and the reliability of the device can be maintained. This means that 3 to 9% by weight of ultrafine powder may be added.

例9〜16 例1〜8で用いた比表面積80m2/gの超微粉末の代りに
比表面積200m2/gの超微粉末(酸化ケイ素、粉末の表面
は水酸基になつている)を用いた以外は、例1〜8と同
じ操作を行い、0、2、3、5、7、8、9、10重量%
の超微粉末を配合した液状樹脂組成物(9〜16)を得
た。これらの液状樹脂組成物のlogη1は、それぞ
れ0、0.05、0.1、0.2、0.3、0.6、1.0、2.3であつた。
したがつて、固形分に対して5〜10重量%配合するとlo
1は0.2〜2.3の範囲に入ることになる。液状樹
脂組成物(12〜16)を被覆した素子を85℃、85%RH下に
240時間放置したが不良は発生しなかつた。(実施例)
しかし、液状樹脂組成物(9〜11)を被覆した素子で
は、20個中3個の不良が発生した。(対照例) 〔発明の効果〕 本発明によれば、絶縁性基板の開口部にリード線を介
して接続した半導体素子の表面、及びリード線間に均一
な厚さの膜を被覆することができるので、高温高湿試験
に長時間放置しても不良品が発生しないなど、信頼性を
向上することができる効果がある。
Examples 9 to 16 Instead of the ultrafine powder having a specific surface area of 80 m 2 / g used in Examples 1 to 8, an ultrafine powder having a specific surface area of 200 m 2 / g (silicon oxide, the surface of which is a hydroxyl group) is used. The same operations as in Examples 1 to 8 were carried out except that 0, 2, 3, 5, 7, 8, 9, 10% by weight was used.
A liquid resin composition (9 to 16) containing the above ultrafine powder was obtained. The log η 1 / η 2 of these liquid resin compositions were 0, 0.05, 0.1, 0.2, 0.3, 0.6, 1.0 and 2.3, respectively.
Therefore, if 5 to 10% by weight is added to the solid content, lo
1 / η 2 will be in the range of 0.2 to 2.3. Apply the element coated with the liquid resin composition (12-16) at 85 ℃ and 85% RH.
It was left for 240 hours, but no defects occurred. (Example)
However, in the device coated with the liquid resin composition (9 to 11), 3 out of 20 defects occurred. (Comparative Example) [Effect of the Invention] According to the present invention, a film having a uniform thickness can be coated on the surface of a semiconductor element connected to an opening of an insulating substrate through a lead wire and between the lead wires. Therefore, there is an effect that the reliability can be improved such that no defective product is generated even after being left for a long time in the high temperature and high humidity test.

【図面の簡単な説明】[Brief description of drawings]

第1図は液状樹脂組成物の25℃における粘度と粘度計の
回転数との関係を示したグラフ、第2図は本発明の半導
体素子の1例の断面図、第3図及び第4図は対照の液状
樹脂組成物を用いた半導体素子の1例の断面図である。 7:半導体素子、8:リード線、9:ポリイミドのフイルム、
10:素子とリード線を接続している突起物、11:素子を保
護している被膜
FIG. 1 is a graph showing the relationship between the viscosity of a liquid resin composition at 25 ° C. and the rotational speed of a viscometer, and FIG. 2 is a cross-sectional view of an example of a semiconductor device of the present invention, FIGS. 3 and 4. FIG. 3 is a cross-sectional view of an example of a semiconductor device using a control liquid resin composition. 7: semiconductor element, 8: lead wire, 9: polyimide film,
10: Projection that connects the element and the lead wire, 11: Film that protects the element

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】絶縁性基板の開口部にリード線を介して接
続した半導体素子表面、及びリード線間に、液状樹脂組
成物を塗布し、加熱して被覆した半導体装置において、
該液状樹脂組成物として、比表面積50〜300m2/gである
酸化ケイ素の超微粉末を前記液状樹脂組成物に対して0.
1〜10重量%含むエポキシ樹脂組成物であつて、しかも
回転粘度計の回転数n1とn2の比n1/n2が0.1の関係にあ
り、n1及びn2の回転数で測定した粘度ηとηの比η
1の常用対数logη1の値が、0.11〜2.9の範囲
にある液状組成物を使用したことを特徴とする樹脂封止
型半導体装置。
1. A semiconductor device in which a liquid resin composition is applied to a surface of a semiconductor element connected to an opening of an insulating substrate via a lead wire and between the lead wires and heated to cover the same.
As the liquid resin composition, an ultrafine powder of silicon oxide having a specific surface area of 50 to 300 m 2 / g is 0.
It is an epoxy resin composition containing 1 to 10% by weight, and the ratio n 1 / n 2 of the rotational speeds n 1 and n 2 of the rotational viscometer is 0.1, and it is measured at the rotational speeds of n 1 and n 2. Ratio η of viscosity η 1 and η 2
1 / eta 2 logarithm value of log [eta 1 / eta 2 is a resin-encapsulated semiconductor device characterized by using a liquid composition in the range of 0.11 to 2.9.
【請求項2】該常用対数の値が、0.2〜2.5の範囲にある
特許請求の範囲第1項記載の樹脂封止型半導体装置。
2. The resin-sealed semiconductor device according to claim 1, wherein the value of the common logarithm is in the range of 0.2 to 2.5.
JP61269752A 1986-11-14 1986-11-14 Resin-sealed semiconductor device Expired - Fee Related JP2543686B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61269752A JP2543686B2 (en) 1986-11-14 1986-11-14 Resin-sealed semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61269752A JP2543686B2 (en) 1986-11-14 1986-11-14 Resin-sealed semiconductor device

Publications (2)

Publication Number Publication Date
JPS63125563A JPS63125563A (en) 1988-05-28
JP2543686B2 true JP2543686B2 (en) 1996-10-16

Family

ID=17476660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61269752A Expired - Fee Related JP2543686B2 (en) 1986-11-14 1986-11-14 Resin-sealed semiconductor device

Country Status (1)

Country Link
JP (1) JP2543686B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5230184A (en) * 1975-09-02 1977-03-07 Sharp Corp Semiconductor device
JPS5561042A (en) * 1978-10-31 1980-05-08 Fujitsu Ltd Electron element packaging resin material
JPS5950548A (en) * 1982-09-16 1984-03-23 Mitsubishi Electric Corp Resin sealed structure of electronic component
JPS59161053A (en) * 1983-03-03 1984-09-11 Matsushita Electric Ind Co Ltd Mounting substrate
US4518631A (en) * 1983-11-14 1985-05-21 Dow Corning Corporation Thixotropic curable coating compositions
JPS635644U (en) * 1986-06-26 1988-01-14

Also Published As

Publication number Publication date
JPS63125563A (en) 1988-05-28

Similar Documents

Publication Publication Date Title
US4803543A (en) Semiconductor device and process for producing the same
US5051275A (en) Silicone resin electronic device encapsulant
JP2864584B2 (en) Epoxy resin composition for semiconductor and method for manufacturing semiconductor device
US5215801A (en) Silicone resin electronic device encapsulant
US4017495A (en) Encapsulation of integrated circuits
US5275841A (en) Method for encapsulating integrated circuit
CN113292957B (en) Underfill adhesive for chip packaging and chip packaging structure
EP0124624A1 (en) Semiconductor device
JP2543686B2 (en) Resin-sealed semiconductor device
US4926239A (en) Plastic encapsulant for semiconductor
SE9704602L (en) Semiconductor Capsule, Semiconductor Enclosure Procedure and Enclosure for Use in Semiconductor Enclosure
JPS59204259A (en) Method for sealing semiconductor device
JPH0136984B2 (en)
JPS58202556A (en) Semiconductor device
JP3443196B2 (en) Semiconductor device and manufacturing method thereof
JPS6080258A (en) Manufacture of resin-sealed type semiconductor device
JPH0589721A (en) Conductive adheive and bonded body using the same
JPH04198252A (en) Epoxy resin composition for semiconductor
JPS6077447A (en) Semiconductor device
JPS62108554A (en) Hybrid integrated circuit device and manufacture thereof
JPS63293960A (en) Resin-sealed semiconductor device
JPS6159758A (en) Resin sealed type semiconductor device
JPH0713170B2 (en) Liquid resin composition for semiconductor encapsulation
JPS6390845A (en) Semiconductor device
JPS61222239A (en) Resin sealed body

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees