JP2540766B2 - Semiconductor container - Google Patents

Semiconductor container

Info

Publication number
JP2540766B2
JP2540766B2 JP5293252A JP29325293A JP2540766B2 JP 2540766 B2 JP2540766 B2 JP 2540766B2 JP 5293252 A JP5293252 A JP 5293252A JP 29325293 A JP29325293 A JP 29325293A JP 2540766 B2 JP2540766 B2 JP 2540766B2
Authority
JP
Japan
Prior art keywords
heat sink
metal plate
substrate
fet
semiconductor container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5293252A
Other languages
Japanese (ja)
Other versions
JPH07147350A (en
Inventor
文章 江森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP5293252A priority Critical patent/JP2540766B2/en
Publication of JPH07147350A publication Critical patent/JPH07147350A/en
Application granted granted Critical
Publication of JP2540766B2 publication Critical patent/JP2540766B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1517Multilayer substrate
    • H01L2924/15172Fan-out arrangement of the internal vias
    • H01L2924/15174Fan-out arrangement of the internal vias in different layers of the multilayer substrate

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体容器に関し、特
に高周波用混成集積回路用の半導体容器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor container, and more particularly to a semiconductor container for high frequency hybrid integrated circuits.

【0002】[0002]

【従来の技術】従来の放熱を必要とする半導体容器例に
ついて図面を参照して説明する。図3は、従来の900
MHz帯携帯電話送信用増幅器の混成集積回路例であ
る。
2. Description of the Related Art An example of a conventional semiconductor container requiring heat dissipation will be described with reference to the drawings. FIG. 3 shows a conventional 900
It is an example of a hybrid integrated circuit of an amplifier for transmitting a MHz band mobile phone.

【0003】中央部が両端より0.5mmもち上がった
凸状の厚さ0.5mmのCuNi合金によるヒートシン
ク1上に、厚さ0.8mmのAl2 3 からなる基板2
が半田付けされていた。凸状ヒートシンク1は、基板の
応力クラックを逃がす為に必要な構造である。基板2に
は、表面に銅による高周波の膜回路と、基板の穴部にF
ET3が形成され、5.8V400mAの電力により高
周波出力1.6Wを得ていた。
A substrate 2 made of Al 2 O 3 having a thickness of 0.8 mm is provided on a heat sink 1 made of a CuNi alloy having a thickness of 0.5 mm and having a central portion raised from both ends by 0.5 mm.
Was soldered. The convex heat sink 1 is a structure necessary for escaping stress cracks in the substrate. The substrate 2 has a high-frequency copper film circuit on the surface and an F-hole on the substrate.
ET3 was formed, and a high frequency output of 1.6 W was obtained with a power of 5.8 V 400 mA.

【0004】基板2には、外部回路との直流、高周波的
接続の為にピン4が半田付けされていた。FET3と基
板2上の膜回路とはFET3のリード5により半田接続
されていた。
Pins 4 were soldered to the substrate 2 for direct current and high frequency connection with an external circuit. The FET 3 and the film circuit on the substrate 2 were soldered by the lead 5 of the FET 3.

【0005】混合集積回路は、凸状ヒートシンク1の両
端が、例えばプリント板の実装面6に半田7により接続
され、電気的接地と放熱を確保していた。
In the mixed integrated circuit, both ends of the convex heat sink 1 are connected to the mounting surface 6 of the printed board, for example, by solder 7 to secure electrical grounding and heat dissipation.

【0006】[0006]

【発明が解決しようとする課題】上述した従来の半導体
容器は、発熱体であるFET3の直下は、実装面6とヒ
ートシンク1が接続されていない事から、例えばFET
3での消費電力1.7Wの熱が、ヒートシンク1を5m
m伝導し実装面6に逃げる為に熱抵抗が24℃/Wあ
り、温度上昇41℃(ΔT≒24℃/W×1.7W)と
なることから、実装面温度Tc=80℃の時にFET3
の接合温度Ti=121℃となる。温度上昇と製品の寿
命とは相反する為に、従来の半導体容器ではFET3に
大きなFETが用いることができず、大電力用の混成集
積回路には限界があった。
In the conventional semiconductor container described above, the mounting surface 6 and the heat sink 1 are not connected directly below the FET 3 which is a heating element.
Heat of 1.7W power consumption in 3 is 5m in heat sink 1
The thermal resistance is 24 ° C./W in order to conduct to the mounting surface 6 and escapes to the mounting surface 6, resulting in a temperature increase of 41 ° C. (ΔT≈24 ° C./W×1.7 W).
The joining temperature Ti is 121 ° C. Since the rise in temperature and the life of the product are contradictory, a large FET cannot be used as the FET 3 in the conventional semiconductor container, and there is a limit to the hybrid integrated circuit for high power.

【0007】また、既に公知の放熱技術では、この種の
高周波用混成集積回路は適用できなかった。
In addition, this kind of high frequency hybrid integrated circuit cannot be applied to the already known heat dissipation technology.

【0008】図4(a)は、FETチップ8をヒートシ
ンク1に取りつけ、ボンディングワイヤ9で外部回路基
板10と接続し、熱は受けつめ11を介し図4(b)に
示すようにフィンを有した第2のヒートシンク12にて
放散させる技術(特開昭58−73141)では、高周
波用のFET3の場合、チップサイズが例えば0.8×
1.3mmと小さく、第2のヒートシンク12の大きさ
が取れず有効でなかった。また、第2のヒートシンクの
高さが例えば10mm必要で、混成集積回路としての製
品高さが高いという欠点があった。
In FIG. 4 (a), the FET chip 8 is attached to the heat sink 1 and is connected to the external circuit board 10 by the bonding wire 9, and heat is provided through the catch 11 to have fins as shown in FIG. 4 (b). In the technique of dissipating by the second heat sink 12 (Japanese Patent Laid-Open No. 58-73141), in the case of the high frequency FET 3, the chip size is 0.8 ×, for example.
The size was as small as 1.3 mm, and the size of the second heat sink 12 was not obtained, which was not effective. Further, there is a drawback that the height of the second heat sink is, for example, 10 mm, and the height of the product as a hybrid integrated circuit is high.

【0009】また、図5はヒートシンクに熱伝導率の高
い例えばAlN基板13にFETチップ8をAuSnソ
ルダー14で実装した技術である(特開平2−1773
48)。FETチップ8は、結晶化ガラス15ではさま
れたAg−5Pd配線導体16、Mo導体層17を介
し、リード5と接続される。この技術は、FETチップ
8単体の放熱に優れるが、前述のような高周波用混成集
積回路としての対実装面6に対するFET3からの熱抵
抗を低減するものではないという問題があった。
FIG. 5 shows a technique in which a FET chip 8 is mounted on an AlN substrate 13 having a high thermal conductivity on a heat sink with an AuSn solder 14 (Japanese Patent Laid-Open No. 2-1773).
48). The FET chip 8 is connected to the lead 5 via the Ag-5Pd wiring conductor 16 and the Mo conductor layer 17 which are sandwiched by the crystallized glass 15. This technique is excellent in heat dissipation of the FET chip 8 alone, but has a problem that it does not reduce the thermal resistance from the FET 3 to the mounting surface 6 as the high frequency hybrid integrated circuit as described above.

【0010】[0010]

【課題を解決するための手段】本発明の半導体容器は、
チップ搭載基板底面に凸状金属板を有し、かつクランプ
状金属板をチップとほぼ対応する位置に配置したもので
ある。一具体例としては、ガリウムひ素FETチップを
収納した裏面が金属より成るセラミック半導体容器と表
面に高周波膜回路を有した誘電体基板が、核基板の貫通
穴部に前記FETが位置して金属平板表面上に半田付け
されている構造を有し、核金属平板が折り曲げ凸形状を
有し、前記FETが核金属平板表面凸状頂部に位置し、
核頂部裏面にクランク状の爪を有し、前記凸状金属平板
端部とクランク状爪端部が同一面を成し、核クランク状
爪が水平面に対し角度0<θ≦45°方向を成している
構造を備えている。
The semiconductor container of the present invention comprises:
The bottom surface of the chip mounting substrate has a convex metal plate, and the clamp metal plate is arranged at a position substantially corresponding to the chip. As one specific example, a ceramic semiconductor container in which a gallium arsenide FET chip is housed is made of a metal, and a dielectric substrate having a high-frequency film circuit on the surface thereof is used. Has a structure soldered on the surface, the nuclear metal plate has a bent convex shape, the FET is located on the convex top of the nuclear metal plate surface,
A crank-shaped pawl is provided on the back surface of the nucleus top, and the end of the convex metal flat plate and the end of the crank-shaped pawl are flush with each other, and the nuclear crank-shaped pawl forms an angle of 0 <θ ≦ 45 ° with respect to the horizontal plane. It has the structure that

【0011】[0011]

【実施例】次に本発明の実施例について図面を参照して
説明する。
Next, an embodiment of the present invention will be described with reference to the drawings.

【0012】図1(a)は本発明の第1の実施例の混成
集積回路の平面図、図1(b)は図1(a)のA−A′
断面図、図1(c)は図1(a)の側面図、図1(d)
は図1(a)の裏面図である。
FIG. 1A is a plan view of a hybrid integrated circuit according to a first embodiment of the present invention, and FIG. 1B is a sectional view taken along the line AA 'in FIG. 1A.
Sectional view, FIG. 1 (c) is a side view of FIG. 1 (a), FIG. 1 (d)
FIG. 3 is a back view of FIG.

【0013】凸状の例えば厚さ0.5mmのCuNi合
金によるヒートシンク1上に、厚さ0.8mmのAl2
3 からなる基板2と基板2の穴に入ったFET3が半
田付けされている。ヒートシンク1は例えば20×11
mmで、FET3の直下には幅2mm、厚さ0.5mm
の銅からなるクランク状のヒートシンク爪18がヒート
シンク1に溶接されている。基板2には、外部回路との
直流、高周波的接続の為にピン4がかみ込み及び半田付
けにより取りつけられ、基板2上の膜回路、FET3の
リード5を介し混成集積回路を成している。ヒートシン
ク1とヒートシンク爪18とは実装面6に対し同一平面
にあり且つ実装面6に対しヒートシンク爪18は角度例
えば5°を有し接している。ピン4は、実装面6に対し
例えばガラスエポキシからなる外部基板厚0.6mm分
高い所に位置している。実装面6とヒートシンク爪18
との角度θは、ヒートシンク爪18の持つバネ性を利用
して実装面6との接続を確実による為、0<θ<45°
を成す。またこのヒートシンク爪18は、半田リフロー
によりヒートシンク1と共に実装面6と接続される。
On a heat sink 1 made of a CuNi alloy having a thickness of 0.5 mm and having a convex shape, Al 2 having a thickness of 0.8 mm is formed.
The substrate 2 made of O 3 and the FET 3 in the hole of the substrate 2 are soldered. The heat sink 1 is, for example, 20 × 11
mm, 2 mm width and 0.5 mm thickness directly under the FET3
Crank-shaped heat sink claws 18 made of copper are welded to the heat sink 1. Pins 4 are mounted on the substrate 2 by biting and soldering for direct current and high frequency connection with an external circuit, forming a hybrid integrated circuit through the film circuit on the substrate 2 and the leads 5 of the FET 3. . The heat sink 1 and the heat sink claw 18 are flush with the mounting surface 6, and the heat sink claw 18 is in contact with the mounting surface 6 at an angle of, for example, 5 °. The pin 4 is located at a position higher than the mounting surface 6 by an external substrate thickness of 0.6 mm made of, for example, glass epoxy. Mounting surface 6 and heat sink claw 18
The angle θ with is 0 <θ <45 ° because the connection with the mounting surface 6 is ensured by utilizing the spring property of the heat sink claw 18.
To make. Further, the heat sink claw 18 is connected to the mounting surface 6 together with the heat sink 1 by solder reflow.

【0014】図2(a)は本発明の第2の実施例の混成
集積回路の平面図、図2(b)はB−B′面の断面図で
ある。
FIG. 2A is a plan view of the hybrid integrated circuit of the second embodiment of the present invention, and FIG. 2B is a sectional view taken along the line BB '.

【0015】実施例1と同じく凸状ヒートシンク1上に
例えば厚さ0.8mmのAl2 3からなる基板2と基
板2の穴に入ったFET3が半田付けされている。ヒー
トシンク1は例えば20×11mmで、FET3の直下
により1mm横の部分が長さ2mm、幅1mmにわたっ
て実装面6方向にクランク状に折り曲げられたヒートシ
ンク爪18構造を有している。ヒートシンク爪18は角
度θ例えば5°を有し実装面6と接している。
Similar to the first embodiment, a substrate 2 made of, for example, Al 2 O 3 having a thickness of 0.8 mm and a FET 3 in a hole of the substrate 2 are soldered on the convex heat sink 1. The heat sink 1 is, for example, 20 × 11 mm, and has a heat sink claw 18 structure in which a portion 1 mm laterally below the FET 3 has a length of 2 mm and a width of 1 mm and is bent like a crank in the mounting surface 6 direction. The heat sink claw 18 has an angle θ of, for example, 5 ° and is in contact with the mounting surface 6.

【0016】図6は、FET3を熱源19とした熱抵抗
説明図である。FET3での発熱は、ヒートシンクを伝
わり実装面6へ伝わる。等価的には、FET3から図6
左右方向に各々距離をL1 ,L2 とするとRth=Rt
1 //Rth2 ,Rth1=(L1 /L2 )Rth2
で例えばRth1 =60℃/W、L1 =12mm,L2
=8mmとすると全体の熱抵抗Rth=24℃/W、更
に本発明のヒートシンク爪18によりRth3 =160
℃/Wにより全体の熱抵抗Rth≒19℃/Wとなって
いる。
FIG. 6 is an explanatory diagram of thermal resistance using the FET 3 as the heat source 19. The heat generated in the FET 3 is transmitted to the mounting surface 6 through the heat sink. Equivalently, from FET3 to FIG.
If the distances are L 1 and L 2 in the left and right directions, Rth = Rt
h 1 // Rth 2 , Rth 1 = (L 1 / L 2 ) Rth 2
For example, Rth 1 = 60 ° C./W, L 1 = 12 mm, L 2
= 8 mm, the total thermal resistance Rth = 24 ° C./W, and the heat sink claws 18 of the present invention make Rth 3 = 160.
The total thermal resistance Rth≈19 ° C./W is obtained by ° C / W.

【0017】[0017]

【発明の効果】以上説明したように、本発明はヒートシ
ンク爪18を備えた事によりFET3から実装面6まで
の距離の間にヒートシンク爪18が入る事により熱伝導
経路が短絡されることで、例えば幅1mmのヒートシン
ク爪18に於いてFET3から実装面6に対する熱抵抗
が20℃/Wから16℃/Wに低減するという効果と、
FET3のソース接地インダクタンスが例えば2.0n
Hから1.6nHに低減することからS帯〜C帯の周波
数域でのSパラメータの回わりを抑えることになり、混
成集積回路としての安定係数K<1領域が広く、安定動
作できるという効果がある。
As described above, according to the present invention, since the heat sink claw 18 is provided, the heat conduction claw 18 is inserted between the FET 3 and the mounting surface 6 so that the heat conduction path is short-circuited. For example, in the heat sink claw 18 having a width of 1 mm, the effect of reducing the thermal resistance from the FET 3 to the mounting surface 6 from 20 ° C./W to 16 ° C./W,
The grounded source inductance of the FET3 is, for example, 2.0n
Since it is reduced from H to 1.6 nH, it is possible to suppress the rotation of the S parameter in the frequency band of the S band to the C band, and the effect that the stability coefficient K <1 region as the hybrid integrated circuit is wide and stable operation is possible. There is.

【0018】ヒートシンク爪18は、例えば幅1mmと
細いので、ヒートシンク1の凸状にして基板2に対する
応力低減を防げることはない。
Since the heat sink claw 18 is thin, for example, having a width of 1 mm, it is not possible to prevent the stress on the substrate 2 from being reduced by making the heat sink 1 convex.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)は本発明の第1の実施例の平面図、
(b)は図1(a)のA−A′部の断面図、(c)は図
1(a)の側面図、(d)は図1(a)の裏面図。
FIG. 1A is a plan view of a first embodiment of the present invention,
1B is a cross-sectional view taken along the line AA 'in FIG. 1A, FIG. 1C is a side view of FIG. 1A, and FIG. 1D is a rear view of FIG.

【図2】(a)は本発明の第2の実施例の平面図、
(b)は図2(a)のB−B′面断面図。
FIG. 2A is a plan view of a second embodiment of the present invention,
2B is a sectional view taken along the line BB ′ of FIG.

【図3】(a)は従来の混成集積回路例を示す平面図、
(b)は図1(a)の側面図。
FIG. 3A is a plan view showing an example of a conventional hybrid integrated circuit;
FIG. 1B is a side view of FIG.

【図4】(a)は従来のチップ放熱技術例の斜視図、
(b)は図4(a)に第2ヒートシンクを付けた斜視
図。
FIG. 4A is a perspective view of a conventional chip heat dissipation technology example,
FIG. 4B is a perspective view in which the second heat sink is attached to FIG.

【図5】AlNによる従来のチップ放熱技術例の断面
図。
FIG. 5 is a cross-sectional view of a conventional chip heat dissipation technology example using AlN.

【図6】(a)は熱抵抗を説明するため側面図、(b)
は図6(a)の等価回路図。
FIG. 6A is a side view for explaining the thermal resistance, and FIG.
Is an equivalent circuit diagram of FIG.

【符号の説明】[Explanation of symbols]

1 第1のヒートシンク 2 基板 3 FET 4 ピン 5 リード 6 実装面 7 半田 8 FETチップ 9 ボンディングワイヤ 10 外部回路基板 11 受けつめ 12 第2ヒートシンク 13 AlN基板 14 AuSnソルダー 15 結晶化ガラス 16 Ag−5Pd配線導体 17 Mo導体層 18 ヒートシンク爪 19 熱源 1 1st heat sink 2 board 3 FET 4 pin 5 lead 6 mounting surface 7 solder 8 FET chip 9 bonding wire 10 external circuit board 11 receiving 12 second heat sink 13 AlN board 14 AuSn solder 15 crystallized glass 16 Ag-5Pd wiring Conductor 17 Mo Conductor Layer 18 Heat Sink Claw 19 Heat Source

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 半導体チップを搭載した基板の裏面に凸
形状に折り曲げられた第1の金属板の表面が接続された
半導体容器において、クランク状に折り曲げ加工された
第2の金属板が前記第1の金属板裏面に設けられ、前記
第1の金属板の端部と前記第2の金属板の端部が同一面
を形成していることを特徴とする半導体容器。
In a semiconductor container, a front surface of a first metal plate bent in a convex shape is connected to a back surface of a substrate on which a semiconductor chip is mounted, and a second metal bent in a crank shape in a semiconductor container. A plate is provided on the back surface of the first metal plate, and
The end of the first metal plate and the end of the second metal plate are flush with each other.
Forming a semiconductor container.
【請求項2】 半導体チップを搭載した基板の裏面に凸
形状に折り曲げられた第1の金属板を有する半導体容器
において、クランク状に折り曲げられた第2の金属板が
前記チップにほぼ対応する位置に設けられ、前記第1の
金属板の端部と前記第2の金属板の端部が同一面を成
し、かつ前記第2の金属板の端部が水平面に対し角度0
<θ≦45°方向を成している構造を特徴とする半導体
容器。
2. A convex on the back surface of a substrate on which a semiconductor chip is mounted.
Semiconductor container having a first metal plate bent into a shape
In, the second metal plate bent in the crank shape
It is provided at a position substantially corresponding to the chip, the end of the first metal plate and the end of the second metal plate are flush with each other, and the end of the second metal plate is horizontal. Angle 0
A semiconductor container characterized by a structure having <θ ≦ 45 ° directions.
【請求項3】 前記半導体チップが前記基板に設けられ
た貫通孔内に位置して前記第2の金属板と直接接触して
いることを特徴とする請求項1記載の半導体容器。
3. The semiconductor container according to claim 1, wherein the semiconductor chip is located in a through hole provided in the substrate and is in direct contact with the second metal plate.
JP5293252A 1993-11-24 1993-11-24 Semiconductor container Expired - Fee Related JP2540766B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5293252A JP2540766B2 (en) 1993-11-24 1993-11-24 Semiconductor container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5293252A JP2540766B2 (en) 1993-11-24 1993-11-24 Semiconductor container

Publications (2)

Publication Number Publication Date
JPH07147350A JPH07147350A (en) 1995-06-06
JP2540766B2 true JP2540766B2 (en) 1996-10-09

Family

ID=17792421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5293252A Expired - Fee Related JP2540766B2 (en) 1993-11-24 1993-11-24 Semiconductor container

Country Status (1)

Country Link
JP (1) JP2540766B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5715449A (en) * 1980-07-02 1982-01-26 Mitsubishi Electric Corp Cooler for electronic circuit components
US4479140A (en) * 1982-06-28 1984-10-23 International Business Machines Corporation Thermal conduction element for conducting heat from semiconductor devices to a cold plate

Also Published As

Publication number Publication date
JPH07147350A (en) 1995-06-06

Similar Documents

Publication Publication Date Title
US5075759A (en) Surface mounting semiconductor device and method
JP3235452B2 (en) High frequency integrated circuit device
JP2004071977A (en) Semiconductor device
JP3816821B2 (en) High frequency power module substrate and manufacturing method thereof
JP2000058741A (en) Hybrid module
JP4608409B2 (en) High heat dissipation type electronic component storage package
JP2540766B2 (en) Semiconductor container
JPH1050926A (en) Hybrid module
US20040173898A1 (en) Semiconductor apparatus having system-in-package arrangement with improved heat dissipation
JPS6367792A (en) Package structure of photoelectronic component
JP3715120B2 (en) Hybrid module
JP2526515B2 (en) Semiconductor device
JPH09213847A (en) Semiconductor integrated circuit device, manufacture thereof, and electronic device equipped therewith
JP2789563B2 (en) Integrated circuit device
JP2001257415A (en) Optical semiconductor device
JP2000124578A (en) Hybrid module and manufacture thereof
JP4360577B2 (en) Semiconductor device
JP2000138340A (en) Hybrid module
JP3450465B2 (en) High frequency power module
JP2758273B2 (en) Mounting structure of high-frequency planar circuit module
JP2798464B2 (en) Power amplification module structure
JPH11220226A (en) Hybrid module
JP2000269405A (en) Hybrid module
JP2812107B2 (en) Semiconductor device
JP3510813B2 (en) Hybrid module

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960521

LAPS Cancellation because of no payment of annual fees