JP2539968B2 - Silicon nitride-based sintered body - Google Patents

Silicon nitride-based sintered body

Info

Publication number
JP2539968B2
JP2539968B2 JP3221603A JP22160391A JP2539968B2 JP 2539968 B2 JP2539968 B2 JP 2539968B2 JP 3221603 A JP3221603 A JP 3221603A JP 22160391 A JP22160391 A JP 22160391A JP 2539968 B2 JP2539968 B2 JP 2539968B2
Authority
JP
Japan
Prior art keywords
silicon nitride
sintered body
sialon
strength
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3221603A
Other languages
Japanese (ja)
Other versions
JPH0558737A (en
Inventor
剛久 山本
隆夫 西岡
健二 松沼
晃 山川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP3221603A priority Critical patent/JP2539968B2/en
Priority to US07/825,989 priority patent/US5204297A/en
Priority to CA002060241A priority patent/CA2060241C/en
Priority to DE69201910T priority patent/DE69201910T2/en
Priority to EP92101525A priority patent/EP0514622B1/en
Priority to US07/957,506 priority patent/US5275772A/en
Publication of JPH0558737A publication Critical patent/JPH0558737A/en
Application granted granted Critical
Publication of JP2539968B2 publication Critical patent/JP2539968B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はとくに常温において優れ
た機械的強度を有し、生産性、コスト面において優れた
窒化ケイ素系焼結体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silicon nitride-based sintered body which has excellent mechanical strength at room temperature and is excellent in productivity and cost.

【0002】[0002]

【従来の技術】従来、窒化ケイ素系材料の強度向上を目
的として、焼結方法、焼結助剤、含有結晶相の限定など
様々な研究開発が行われてきた。たとえば、焼結法に関
しては、ホットプレス焼結法では、Am.Ceram.
Soc.Bull.,52(1973)pp560で〜
100kg/mm2(曲げ強度)が実現されており、ま
たガラスカプセルによる熱間静水圧プレス法(HIP
法)等も開発されている。こうした手法では焼結体の強
度特性の面では優れた特性が得られているものの、生産
性、コストの面で優れた手法とは言えない。一方、こう
した問題に対して、ガス圧焼結法(例えば、三友、粉体
と工業、12巻、12号、pp27、1989)がある
が、本方法では最終の焼結体の緻密化をβ−窒化ケイ素
結晶の粒成長に伴うため、粗大結晶粒の析出による強度
劣化をまねく可能性が高いことに加え、一般には、10
気圧以上のN2ガス圧をかけ焼結を実施するため、ホッ
トプレス法やHIP法と同様に焼結設備が大型となり、
特性面、生産面で十分優れた手法とは言えない。他方、
焼結助剤に関しては、主たる助剤としてY23を用いた
Si34−Al23−Y23系の窒化ケイ素系焼結体が
特公昭49−21091号、特公昭48−38448号
に開示されている。これらは、該特許明細書中に示され
ているように、β型窒化ケイ素の結晶粒が焼結体中で繊
維状組織を形成し、これがマトリックス中に分散するこ
とから強度、靭性を向上しうるものと考えられている。
すなわちこれは、β型窒化ケイ素の結晶形が六方晶であ
りC軸方向に結晶が異方性成長をすることを積極的に利
用したものであり、とくに特公昭48−38448号や
窯業協会誌、94巻、pp96、1986に示されるよ
うに、繊維状のβ−窒化ケイ素結晶粒がC軸方向に10
数μm以上に成長している場合がある。しかしながら、
本技術においては、やはりこの粒成長が異常成長や気孔
の発生をまねき、強度劣化をまねく可能性があり、また
本方法での焼結助剤だけを用いた焼結体では、焼結温度
を1700〜1900℃に上昇させなければ、緻密化が
十分図れず、大気圧付近のN2ガス圧焼結では、窒化ケ
イ素の昇華分解が生じ、安定した焼結体を得られない場
合がある。このため同じく、焼結体特性と生産性両面で
十分優れているとは言えない。一方、以上で述べてきた
手法では、いずれも得られる焼結体の強度が、例えばJ
IS−R1601に準拠した3点曲げ強度でせいぜい1
00kg/mm2前後であり、様々な窒化ケイ素系材料
の応用を考えた場合、必ずしも十分な特性が得られてい
ない。
2. Description of the Related Art Conventionally, various researches and developments have been carried out for the purpose of improving the strength of silicon nitride-based materials, such as sintering methods, sintering aids, and limiting the contained crystal phases. For example, regarding the sintering method, in the hot press sintering method, Am. Ceram.
Soc. Bull. , 52 (1973) pp560
100 kg / mm 2 (flexural strength) has been achieved, and the hot isostatic pressing method (HIP
Law) has also been developed. Although such a technique provides excellent strength characteristics of the sintered body, it cannot be said to be an excellent technique in terms of productivity and cost. On the other hand, there is a gas pressure sintering method (for example, Sanyu, Powder and Kogyo, Vol. 12, No. 12, pp27, 1989) for such a problem. However, in this method, the final densification of the sintered body is β -Since it is accompanied by the grain growth of silicon nitride crystals, there is a high possibility that it may cause strength deterioration due to the precipitation of coarse crystal grains.
Since N 2 gas pressure above atmospheric pressure is applied to carry out sintering, the size of the sintering equipment becomes large as in the hot press method and HIP method.
It cannot be said that this method is excellent in characteristics and production. On the other hand,
For the sintering aid, Si 3 N 4 -Al 2 O 3 -Y 2 O 3 system of silicon nitride sintered body is Japanese Patent Publication No. 49-21091 using Y 2 O 3 as a main aid, JP-B No. 48-38448. As described in the patent specification, these improve the strength and toughness because the β-type silicon nitride crystal grains form a fibrous structure in the sintered body and are dispersed in the matrix. It is considered to be profitable.
That is, this is a positive use of the fact that the crystal form of β-type silicon nitride is a hexagonal crystal and that the crystal grows anisotropically in the C-axis direction. In particular, Japanese Patent Publication No. 48-38448 and Journal of the Ceramic Society of Japan. , 94, pp96, 1986, the fibrous β-silicon nitride crystal grains are 10 in the C-axis direction.
It may grow to several μm or more. However,
In the present technology, this grain growth may lead to abnormal growth and generation of pores, and may lead to strength deterioration.In the sintered body using only the sintering aid in this method, the sintering temperature is If the temperature is not raised to 1700 to 1900 ° C., sufficient densification cannot be achieved, and in N 2 gas pressure sintering near atmospheric pressure, sublimation decomposition of silicon nitride may occur and a stable sintered body may not be obtained. For this reason, similarly, it cannot be said that both the properties of the sintered body and the productivity are sufficiently excellent. On the other hand, in the methods described above, the strength of the obtained sintered body is, for example, J
Three-point bending strength based on IS-R1601 at most 1
It is around 00 kg / mm 2 , and when considering the application of various silicon nitride-based materials, sufficient characteristics are not always obtained.

【0003】[0003]

【発明が解決しようとする課題】こうした従来技術にお
ける生産性と焼結体の機械的特性の両立を満足させる手
法を提供するのが本発明の課題である。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a method of satisfying both the productivity and the mechanical properties of a sintered body in the prior art.

【0004】[0004]

【課題を解決するための手段】本発明は、α−窒化ケイ
素とβ´−サイアロンからなり、α−窒化ケイ素の平均
結晶粒径が0.5μm以下、β´−サイアロンの長軸、
短軸方向の平均結晶粒径がそれぞれ2.5μm以下、
0.5μm以下であることを特徴とする窒化ケイ素焼結
体が、JISR−1601に準拠した3点曲げ強度が容
易に130kg/mm2以上の特性を有する知見を得た
ものである。本発明の焼結体が優れた強度特性を得る効
果は、微粒で等軸晶のα−窒化ケイ素と微粒で柱状化し
たβ´−サイアロンの両方の結晶相を複合させることに
より、従来の柱状化したβ´−サイアロン(β−窒化ケ
イ素を含む)結晶相のみで構成された焼結体に比較し、
ヤング率、硬度が向上する。これは材料の変形抵抗を示
す物性値でありセラミック材料のような脆性材料では、
この値を向上させることが広義では材料の強度向上につ
ながるためである。さらに脆性材料の破壊の基本概念で
あるGriffithの理論に従えば、焼結体の破壊強
度σfは次式で与えられる。
The present invention comprises α-silicon nitride and β'-sialon, the average crystal grain size of α-silicon nitride is 0.5 μm or less, the long axis of β'-sialon,
The average crystal grain size in the minor axis direction is 2.5 μm or less,
It was found that a silicon nitride sintered body characterized by having a thickness of 0.5 μm or less easily has a three-point bending strength of 130 kg / mm 2 or more according to JISR-1601. The effect of the sintered body of the present invention to obtain excellent strength characteristics is that by combining both crystalline phases of α-silicon nitride of fine grains and equiaxed crystal and β′-sialon columnarized with fine grains, conventional columnar In comparison with a sintered body composed only of a crystallized β'-sialon (including β-silicon nitride) crystal phase,
Young's modulus and hardness are improved. This is a physical property value that indicates the deformation resistance of the material.In brittle materials such as ceramic materials,
This is because improving this value leads to an increase in the strength of the material in a broad sense. Further, according to Griffith's theory, which is the basic concept of fracture of brittle materials, the fracture strength σ f of the sintered body is given by the following equation.

【0005】σf=E・γs/4a、E;ヤング率、γ
s;破壊の表面エネルギー、a;先在亀裂長さ ここでγsは粒界相の組成と厚みに依存すると考えられ
るため、とくに厚みの点で結晶粒の存在密度を向上させ
る結晶粒の微粒化と結晶相の複合化は有利である。また
本式に従えば、破壊強度を向上させるためにはEの増大
とaの減少が重要である。aの値は工程上不可避な欠陥
寸法を排除すれば、結晶粒径に依存するため、微細結晶
粒で充填性を向上させた本発明はE、γsの点で強度向
上に有効である。
Σ f = E · γs / 4a, E; Young's modulus, γ
s: surface energy of fracture, a: pre-existing crack length Since γs is considered to depend on the composition and thickness of the grain boundary phase, grain refinement that improves the existing density of crystal grains particularly in terms of thickness. It is advantageous to combine the crystalline phase with Further, according to this formula, it is important to increase E and decrease a in order to improve the fracture strength. Since the value of a depends on the crystal grain size if the defect size inevitable in the process is excluded, the present invention in which the filling property is improved by fine crystal grains is effective for improving the strength in terms of E and γs.

【0006】こうしたα型窒化珪素と柱状化したβ型窒
化珪素の両方の結晶相を複合させる考え方は、例えば特
開昭61−91065号や特開平2−44066号に開
示されているが、いずれもα´−サイアロン(一般式M
X(Si,Al)12(O,N)16、M:Mg,Ca,L
i及び希土類元素)とβ´−サイアロン(β型窒化ケイ
素を含む)との結晶相の組合せであり、組成的にはSi
34−AlN−MO(M;MgO、Y23、CaO等)
の3成分系が主であり、その範囲もAlNとMOの添加
比がモル%で1:9の限定された範囲で、α´−サイア
ロンとβ´−サイアロン(β−窒化ケイ素を含む)の複
合した結晶相を生成させることにより強度等の機械的特
性の向上を示したものであり、またその実施例でも明ら
かなように各焼結体の強度特性が曲げ強度で100kg
/mm2を安定して越える焼結体製法はいずれもホット
プレス法によるものであり、工業的に安定して高い強度
特性を得るまでに至っていない。また、これらの焼結体
はα´−サイアロンとβ´−サイアロン(β−窒化ケイ
素を含む)の間の熱膨張係数の差が大きく、これが原因
となり焼結体中に引張の残留応力を発生させ、強度劣化
を招く可能性がある。本発明はこうした条件の限定がな
く工業的に安定して高強度な焼結体を提供することにあ
る。
The concept of combining both α-type silicon nitride and columnar β-type silicon nitride crystal phases is disclosed in, for example, JP-A-61-191065 and JP-A-2-44066. Also α'-sialon (general formula M
X (Si, Al) 12 (O, N) 16 , M: Mg, Ca, L
i and rare earth elements) and β′-sialon (including β-type silicon nitride) in the combination of crystalline phases, and compositionally Si
3 N 4 -AlN-MO (M; MgO, Y 2 O 3 , CaO, etc.)
The three-component system is mainly used, and the range of the addition ratio of AlN and MO is a limited range of 1: 9 in mol%, and α′-sialon and β′-sialon (including β-silicon nitride) are included. This shows that the mechanical properties such as strength were improved by producing a composite crystal phase, and as is clear from the examples, the strength properties of each sintered body were 100 kg in terms of bending strength.
All of the methods for producing a sintered body that stably exceed / mm 2 are based on the hot pressing method, and industrially stable and high strength properties have not yet been achieved. In addition, these sintered bodies have a large difference in thermal expansion coefficient between α'-sialon and β'-sialon (including β-silicon nitride), which causes tensile residual stress in the sintered body. May cause deterioration of strength. An object of the present invention is to provide a high-strength sintered body that is industrially stable without being limited to such conditions.

【0007】本発明の焼結体を得るためには、焼結助剤
は窒化珪素表面に存在するSiO2とできるだけ低温で
液相を生成する助剤、例えばMgO、CeO2、Ca
O、La23を用い焼結温度を1650℃以下で焼結す
ることが望ましい。この低温焼結のため異常粒成長に伴
う焼結体の特性劣化を阻止できる。さらには、窒化ケイ
素は大気圧のN2雰囲気下では1700℃以上の温度域
で昇華分解するため、加圧N2雰囲気下で焼結する必要
があり、設備面でバッチ式焼結炉を用いていた。しか
し、この様な低温での焼結が可能となると焼結方法はプ
ッシャー式あるいはベルト式等の開放型連続焼結炉によ
り、同時に生産性の優れた焼結が可能となる。この詳細
な説明を加えると、一般に強度特性に優れた窒化ケイ素
系材料の焼結法としては、いわゆるバッチ式焼結炉によ
るガス圧焼結が主であるが、この方式では炉内の温度分
布のばらつきやロット間の条件ばらつき等が必ず生じる
ために、量産部品等の用途のセラミック材料を安定して
供給する製法としては十分とは言えない。この点からも
本発明はその生産性を同時に向上させた点で工業的に重
要である。
In order to obtain the sintered body of the present invention, the sintering aid is SiO 2 present on the surface of silicon nitride and an aid which forms a liquid phase at a temperature as low as possible, such as MgO, CeO 2 , Ca.
It is desirable to sinter at a sintering temperature of 1650 ° C. or lower using O and La 2 O 3 . This low-temperature sintering can prevent deterioration of the characteristics of the sintered body due to abnormal grain growth. Further, since silicon nitride is sublimated decomposed at a temperature range of not lower than 1700 ° C. under N 2 atmosphere at atmospheric pressure, must be sintered under pressure N 2 atmosphere, using a batch-type sintering furnace in terms of facilities Was there. However, if it becomes possible to sinter at such a low temperature, an open continuous sintering furnace such as a pusher type or a belt type can be used as a sintering method, and at the same time, it becomes possible to perform high productivity sintering. In addition to this detailed description, gas pressure sintering using a so-called batch type sintering furnace is mainly used as a method for sintering silicon nitride-based materials generally having excellent strength characteristics. Therefore, it is not sufficient as a manufacturing method for stably supplying ceramic materials for use in mass-produced parts and the like because variations in conditions and variations in conditions between lots always occur. From this point as well, the present invention is industrially important in that its productivity is improved at the same time.

【0008】さらに本発明の効果を顕著にするために
は、焼結体中のα−窒化ケイ素とβ´−サイアロンの結
晶相の析出比がX線回析によるピーク強度比で、0%<
α−窒化ケイ素≦30%、70%≦β´−窒化ケイ素<
100%であることが好ましい。このα−窒化ケイ素の
析出比が30%を越えて高α−Si34側へずれるとβ
´−サイアロン柱状晶組織の効果が減少し、結晶相の複
合化の効果が十分現れず強度向上の効果が十分ではな
い。
In order to make the effect of the present invention more remarkable, the precipitation ratio of the crystal phases of α-silicon nitride and β'-sialon in the sintered body is 0% <, which is the peak intensity ratio by X-ray diffraction.
α-silicon nitride ≦ 30%, 70% ≦ β′-silicon nitride <
It is preferably 100%. If the precipitation ratio of α-silicon nitride exceeds 30% and shifts to the high α-Si 3 N 4 side, β
The effect of the ???-sialon columnar crystal structure is reduced, the effect of compounding the crystal phase is not sufficiently exhibited, and the effect of improving the strength is not sufficient.

【0009】また、この組成範囲で焼結体中のβ´−サ
イアロン(一般式 Si6-ZAlZZ8-Z)のZ値を0
<Z<1.0の範囲にして粒界相を制御すると高強度が
安定する。
Further, in this composition range, the Z value of β'-sialon (general formula: Si 6 -Z Al Z O Z N 8-Z ) in the sintered body is 0.
When the grain boundary phase is controlled within the range of <Z <1.0, high strength is stabilized.

【0010】[0010]

【実施例】平均粒径0.4μm、α結晶化率96%、酸
素量1.4重量%の窒化ケイ素原料粉末および、平均粒
径0.8μm、0.4μm、0.5μm、0.5μmの
23、Al23、AlN、MgOの各粉末をエタノー
ル中、100時間、ナイロン製ボールミルにて湿式混合
したのち、乾燥して得られた混合粉末を3000kg/
cm2でCIP成形し、この成形体をN2ガス1気圧中で
〜1650℃で5〜10時間1次焼結した。得られた焼
結体を〜1650℃、100気圧N2ガス雰囲気中で1
時間、2次焼結した。この焼結体よりJISR1601
に準拠した3mm×4mm×40mm相当の抗折試験片
を切り出し、#800ダイアモンド砥石により研削加工
仕上げした後、引張面については#3000のダイアモ
ンドペーストによりラッピング仕上げ加工した後、JI
SR1601に準拠して3点曲げ強度を15本ずつ実施
した。表1中には平均結晶粒径、結晶相の比率、及び曲
げ強度を示した。なお、平均結晶粒径の測定について
は、得られた焼結体の任意の2次元断面を面粗度を十点
平均粗さ(RZ)で0.1μm以下に鏡面仕上げした
後、さらにArイオンにより粒界相をエッチングし、こ
の面を走査型電子顕微鏡(SEM)で5,000倍の倍
率で観察した写真の任意の30μm×30μmの視野よ
り粒状に観察されるα−Si34結晶粒および六角状又
は柱状に観察されるβ’−サイアロン結晶粒を任意で1
0〜20個ずつサンプリングし、平均結晶径を算出し
た。なお、α−Si34の粒径およびβ’−サイアロン
の短軸および長軸径は、図3に示した焼結体組織のモデ
ル図における拡大図イ,ロ,ハに示すように定義するも
のとする。
EXAMPLE A silicon nitride raw material powder having an average particle size of 0.4 μm, an α crystallization rate of 96% and an oxygen content of 1.4% by weight, and an average particle size of 0.8 μm, 0.4 μm, 0.5 μm, 0.5 μm. Each powder of Y 2 O 3 , Al 2 O 3 , AlN, and MgO in ethanol was wet-mixed for 100 hours in a nylon ball mill, and then dried to obtain a mixed powder of 3000 kg /
CIP molding was carried out at a pressure of 2 cm 2 , and this molded body was subjected to primary sintering at ˜1650 ° C. for 5 to 10 hours in 1 atm of N 2 gas. The obtained sintered body was subjected to 1 at 1650 ° C. and 100 atm N 2 gas atmosphere.
Time, secondary sintering. JISR1601 from this sintered body
After cutting a bending test piece corresponding to 3 mm x 4 mm x 40 mm in conformity with JIS, it was ground and finished with a # 800 diamond grindstone, and then the tensile surface was lapped with a diamond paste of # 3000 and then JI.
Fifteen three-point bending strengths were performed in accordance with SR1601. Table 1 shows the average crystal grain size, the ratio of crystal phases, and the bending strength. For the measurement of the average crystal grain size, an arbitrary two-dimensional cross section of the obtained sintered body was mirror-finished to have a surface roughness of 0.1 μm or less with a ten-point average roughness (R Z ), and then Ar The grain boundary phase was etched by ions, and this surface was observed in a scanning electron microscope (SEM) at a magnification of 5,000 times, and α-Si 3 N 4 was observed in a granular form from an arbitrary visual field of 30 μm × 30 μm. The crystal grains and β′-sialon crystal grains observed in a hexagonal shape or a columnar shape may be arbitrarily selected as 1
The average crystal diameter was calculated by sampling 0 to 20 pieces each. The grain size of α-Si 3 N 4 and the minor axis and major axis diameters of β′-sialon are defined as shown in enlarged views I, B, and C in the model diagram of the sintered body structure shown in FIG. It shall be.

【0011】尚、結晶相の比率に関しては図1、図2に
示すX線回折法により求めた各結晶相のピーク高さ比よ
り算出した。
The ratio of crystal phases was calculated from the peak height ratio of each crystal phase obtained by the X-ray diffraction method shown in FIGS.

【0012】[0012]

【表1】 [Table 1]

【0013】[0013]

【発明の効果】本発明によれば、特に常温において優れ
た機械的強度を有し、しかも、生産性とコスト面におい
て優れた窒化ケイ素系焼結体を得ることができる。
According to the present invention, it is possible to obtain a silicon nitride-based sintered body which has excellent mechanical strength especially at room temperature and is excellent in productivity and cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例7における焼結体のX線回折図である。FIG. 1 is an X-ray diffraction diagram of a sintered body of Example 7.

【図2】比較例No.16における焼結体のX線回折図で
ある。
FIG. 2 is an X-ray diffraction diagram of a sintered body of Comparative Example No. 16.

【図3】焼結体組織のモデル図における粒径、短軸およ
び長軸径の定義の説明図である。
FIG. 3 is an explanatory diagram of definitions of particle diameter, minor axis and major axis diameter in a model diagram of a sintered body structure.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山川 晃 兵庫県伊丹市昆陽北一丁目1番1号 住 友電気工業株式会社 伊丹製作所内 (56)参考文献 特開 平3−141163(JP,A) 特開 平2−55263(JP,A) 特開 平2−22173(JP,A) 特開 平4−202060(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Akira Yamakawa 1-1-1 Kunyo Kita, Itami City, Hyogo Prefecture Sumitomo Electric Industries, Ltd. Itami Works (56) Reference JP-A-3-141163 (JP, A) ) JP-A-2-55263 (JP, A) JP-A-2-22173 (JP, A) JP-A-4-202060 (JP, A)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 α−窒化ケイ素とβ´−サイアロンから
なる窒化ケイ素焼結体であって、α−窒化ケイ素の平均
結晶粒径が0.5μm以下、β´−サイアロンの長軸、
短軸方向の平均結晶粒径がそれぞれ2.5μm以下、
0.5μm以下であることを特徴とする窒化ケイ素系焼
結体。
1. A silicon nitride sintered body composed of α-silicon nitride and β′-sialon, wherein α-silicon nitride has an average crystal grain size of 0.5 μm or less, and a long axis of β′-sialon,
The average crystal grain size in the minor axis direction is 2.5 μm or less,
A silicon nitride-based sintered body characterized by being 0.5 μm or less.
【請求項2】 焼結体中のα−窒化ケイ素とβ´−サイ
アロンの結晶相はX線回折によるピーク強度比が0%<
α−窒化ケイ素≦30%、70%≦β´−サイアロン<
100%である請求項1記載の窒化ケイ素系焼結体。
2. The crystal phase of α-silicon nitride and β′-sialon in the sintered body has a peak intensity ratio by X-ray diffraction of 0% <.
α-silicon nitride ≦ 30%, 70% ≦ β′-sialon <
The silicon nitride-based sintered body according to claim 1, which is 100%.
【請求項3】 焼結体中のβ´−サイアロン(一般式
Si6-ZAlZZ8-Z)は0<Z<1.0の範囲にある
請求項1記載の窒化ケイ素系焼結体。
3. A β'-sialon (general formula:
The silicon nitride sintered body according to claim 1, wherein Si 6-Z Al Z O Z N 8-Z ) is in the range of 0 <Z <1.0.
JP3221603A 1991-05-22 1991-09-02 Silicon nitride-based sintered body Expired - Lifetime JP2539968B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP3221603A JP2539968B2 (en) 1991-09-02 1991-09-02 Silicon nitride-based sintered body
US07/825,989 US5204297A (en) 1991-05-22 1992-01-27 Silicon nitride sintered body and process for producing the same
CA002060241A CA2060241C (en) 1991-05-22 1992-01-29 Silicon nitride sintered body and process for producing the same
DE69201910T DE69201910T2 (en) 1991-05-22 1992-01-30 Silicon nitride sintered body and process for its production.
EP92101525A EP0514622B1 (en) 1991-05-22 1992-01-30 Silicon nitride sintered body and process for producing the same
US07/957,506 US5275772A (en) 1991-05-22 1992-10-05 Silicon nitride sintered body and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3221603A JP2539968B2 (en) 1991-09-02 1991-09-02 Silicon nitride-based sintered body

Publications (2)

Publication Number Publication Date
JPH0558737A JPH0558737A (en) 1993-03-09
JP2539968B2 true JP2539968B2 (en) 1996-10-02

Family

ID=16769350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3221603A Expired - Lifetime JP2539968B2 (en) 1991-05-22 1991-09-02 Silicon nitride-based sintered body

Country Status (1)

Country Link
JP (1) JP2539968B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI543956B (en) * 2010-10-25 2016-08-01 Ngk Insulators Ltd A ceramic material, a laminated body, a member for a semiconductor manufacturing apparatus, and a sputtering ring target member

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0625039B2 (en) * 1988-07-08 1994-04-06 日本タングステン株式会社 Silicon nitride sintered body and method for manufacturing the same
JP2524201B2 (en) * 1988-08-22 1996-08-14 日本特殊陶業株式会社 Silicon nitride sintered body and method for manufacturing the same
JPH03141163A (en) * 1989-10-27 1991-06-17 Toyota Central Res & Dev Lab Inc Production of sintered silicon nitride

Also Published As

Publication number Publication date
JPH0558737A (en) 1993-03-09

Similar Documents

Publication Publication Date Title
EP0589411B1 (en) Silicon nitride sintered body and process for producing the same
JP2615437B2 (en) High strength and high toughness silicon nitride sintered body and method for producing the same
US5204297A (en) Silicon nitride sintered body and process for producing the same
JPH11314969A (en) High heat conductivity trisilicon tetranitride sintered compact and its production
JP2518630B2 (en) Silicon nitride sintered body and method for producing the same
JP2539968B2 (en) Silicon nitride-based sintered body
JPH05148026A (en) Sintered silicon nitride
JPH09268069A (en) Highly heat conductive material and its production
JP2539961B2 (en) Silicon nitride based sintered body and method for producing the same
JP2597774B2 (en) Silicon nitride based sintered body and method for producing the same
JPH05124867A (en) Silicon nitride-based sintered compact
Chen et al. Microstructure of (Y+ Sm)–α-sialon with a-sialon seeds
JPH05105522A (en) Silicon nitride-based sintered compact
JP3143992B2 (en) Silicon nitride based sintered body
JPH05170541A (en) Silicon nitride sintered product
JP3271123B2 (en) Method for producing composite of silicon nitride and boron nitride
JPH0558739A (en) Silicon nitride sintered body and its production
JP3328280B2 (en) Sintered silicon nitride with high toughness, strength and reliability
JPH11322438A (en) High thermal conductive silicon nitride sintered compact and its production
JPH05155663A (en) Silicon nitride sintered body
JPH05208869A (en) Silicon nitride cutting tool
JPH11130543A (en) Beta-type silicon nitride crystal and its production and production of silicon nitride-based sintered compact
JPH0559073B2 (en)
JPH05148028A (en) Production of sintered silicon nitride
JPH06287065A (en) Silicon nitride sintered compact and its production

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080708

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080708

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090708

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090708

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100708

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110708

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110708

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120708

Year of fee payment: 16

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120708

Year of fee payment: 16