JP2597774B2 - Silicon nitride based sintered body and method for producing the same - Google Patents

Silicon nitride based sintered body and method for producing the same

Info

Publication number
JP2597774B2
JP2597774B2 JP3272937A JP27293791A JP2597774B2 JP 2597774 B2 JP2597774 B2 JP 2597774B2 JP 3272937 A JP3272937 A JP 3272937A JP 27293791 A JP27293791 A JP 27293791A JP 2597774 B2 JP2597774 B2 JP 2597774B2
Authority
JP
Japan
Prior art keywords
sintered body
range
ratio
silicon nitride
aln
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3272937A
Other languages
Japanese (ja)
Other versions
JPH05105517A (en
Inventor
隆夫 西岡
剛久 山本
健二 松沼
晃 山川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP3272937A priority Critical patent/JP2597774B2/en
Publication of JPH05105517A publication Critical patent/JPH05105517A/en
Application granted granted Critical
Publication of JP2597774B2 publication Critical patent/JP2597774B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はとくに常温において優れ
た機械的強度を有し、生産性、コスト面において優れた
窒化ケイ素系焼結体およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silicon nitride sintered body having excellent mechanical strength, especially at room temperature, and excellent in productivity and cost, and a method for producing the same .

【0002】[0002]

【従来の技術】従来、窒化ケイ素系材料の強度向上を目
的として、焼結方法、焼結助剤、含有結晶相の限定など
様々な研究開発が行われてきた。たとえば、焼結法に関
しては、ホットプレス焼結法では、Am.Ceram.
Soc.Bull.,52(1973)pp560で〜
100kg/mm2(曲げ強度)が実現されており、ま
たガラスカプセルによる熱間静水圧プレス法(HIP
法)等も開発されている。こうした手法では焼結体の強
度特性の面では優れた特性が得られているものの、生産
性、コストの面で優れた手法とは言えない。一方、こう
した問題に対して、ガス圧焼結法(例えば、三友、粉体
と工業、12巻、12号、pp27、1989)がある
が、本方法では最終の焼結体の緻密化をβ−Si34
晶の粒成長に伴なうため、粗大結晶粒の析出による強度
劣化をまねく可能性が高いことに加え、一般には、10
気圧以上のN2ガス圧をかけ焼結を実施するため、ホッ
トプレス法やHIP法と同様に焼結設備が大型となり、
特性面、生産面で十分優れた手法とは言えない。他方、
焼結助剤に関しては、主たる助剤としてY23を用いた
Si34−Al23−Y23系の窒化ケイ素系焼結体が
特公昭49−21091号、特公昭48−38448号
に開示されている。これらは、該特許明細書中に示され
ているように、β−Si34結晶粒が焼結体中で繊維状
組織を形成し、これがマトリックス中に分散することか
ら強度、靭性を向上しうるものと考えられている。すな
わちこれは、β−Si34結晶形が六方晶でありC軸方
向に結晶が異方性成長をすることを積極的に利用したも
のであり、とくに特公昭48−38448号や窯業協会
誌、94巻、pp96、1986に示されるように、繊
維状のβ−Si34結晶粒がC軸方向に10数μm以上
に成長している場合がある。しかしながら、本技術にお
いては、やはりこの粒成長が異常成長や気孔の発生をま
ねき、強度劣化をまねく可能性があり、また本方法での
焼結助剤だけを用いた焼結体では、焼結温度を1700
〜1900℃に上昇させなければ、緻密化が十分図れ
ず、大気圧付近のN2ガス圧焼結では、窒化ケイ素の昇
華分解が生じ、安定した焼結体を得られない場合があ
る。このため同じく、焼結体特性と生産性両面で十分優
れているとは言えない。一方、以上で述べてきた手法で
は、いずれも得られる焼結体の強度が、例えばJIS−
R1601に準拠した3点曲げ強度でせいぜい100k
g/mm2前後であり、様々な窒化ケイ素系材料の応用
を考えた場合、必ずしも十分な特性が得られていない。
更に名古屋工業技術試験所報告、第40巻、第1号(1
991年)、PP45には、Si34−Y23−Al2
3−MgO系焼結体において、α−Si34およびβ
−Si34の複合結晶相をもつ焼結体が開示されている
が、焼結温度が1700℃以上であり、十分微細な複合
組織が達成されていないと考えられること、さらにホッ
トプレス焼結法によっても曲げ強度で100kg/mm
2以上を安定して維持するに至っていない。
2. Description of the Related Art Conventionally, various researches and developments have been carried out for the purpose of improving the strength of silicon nitride-based materials, such as sintering methods, sintering aids, and limiting the contained crystal phases. For example, regarding the sintering method, in the hot press sintering method, Am. Ceram.
Soc. Bull. , 52 (1973) pp560
100 kg / mm 2 (flexural strength) is realized, and hot isostatic pressing (HIP)
Law) has also been developed. Although such a technique provides excellent strength characteristics of the sintered body, it cannot be said to be an excellent technique in terms of productivity and cost. On the other hand, for such a problem, there is a gas pressure sintering method (for example, Sanyu, Powder and Industry, Vol. 12, No. 12, pp. 27, 1989). -Si 3 N 4 is accompanied by grain growth, so that in addition to the possibility that the strength is deteriorated due to precipitation of coarse crystal grains,
Since sintering is performed by applying N 2 gas pressure higher than atmospheric pressure, the sintering equipment becomes large as in the case of the hot press method or the HIP method.
It cannot be said that this method is excellent in characteristics and production. On the other hand,
Regarding the sintering aid, Si 3 N 4 —Al 2 O 3 —Y 2 O 3 based silicon nitride based sintered body using Y 2 O 3 as a main aid is disclosed in Japanese Patent Publication No. 49-21091 and Japanese Patent Publication No. No. 48-38448. These, as shown in the patent specification, improve the strength and toughness because β-Si 3 N 4 crystal grains form a fibrous structure in a sintered body and this is dispersed in a matrix. It is considered possible. In other words, this is an active use of the fact that the β-Si 3 N 4 crystal form is hexagonal and the crystal grows anisotropically in the C-axis direction. Journal, Vol. 94, pp. 96, 1986, fibrous β-Si 3 N 4 crystal grains may grow to more than 10 μm or more in the C-axis direction. However, in the present technology, the grain growth also leads to abnormal growth and generation of pores, which may lead to deterioration in strength.In the case of a sintered body using only the sintering aid in the present method, sintering is not possible. Temperature 1700
Unless the temperature is increased to about 1900 ° C., densification cannot be sufficiently achieved, and in N 2 gas pressure sintering near atmospheric pressure, sublimation decomposition of silicon nitride occurs and a stable sintered body may not be obtained. For this reason, similarly, it cannot be said that both the properties of the sintered body and the productivity are sufficiently excellent. On the other hand, in the methods described above, the strength of the obtained sintered body is, for example, JIS-
At most 100k with 3-point bending strength according to R1601
g / mm 2 , which means that sufficient characteristics are not necessarily obtained when various silicon nitride-based materials are applied.
In addition, Nagoya Industrial Technology Laboratory Report, Vol. 40, No. 1 (1
991), PP45 includes Si 3 N 4 —Y 2 O 3 —Al 2
In an O 3 —MgO-based sintered body, α-Si 3 N 4 and β
Although a sintered body having a composite crystal phase of —Si 3 N 4 is disclosed, it is considered that the sintering temperature is 1700 ° C. or higher, a sufficiently fine composite structure is not achieved, 100 kg / mm in bending strength depending on the knotting method
2 or more have not been stably maintained.

【0003】[0003]

【発明が解決しようとする課題】こうした従来技術にお
ける生産性と焼結体の機械的特性の両立を満足させる手
法を提供するのが本発明の課題である。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a method which satisfies both the productivity and the mechanical properties of a sintered body in the prior art.

【0004】[0004]

【課題を解決するための手段】本発明は、Si34−第
1助剤−第2助剤の3元組成図において、第1助剤がY
23及びMgOの2種よりなる組合せからなり、一方第
2助剤がAl23及びAlNの2種よりなる組合せより
なり、その組成の範囲が図1に示される範囲、すなわち
Si34と第1助剤の添加組成比がモル%で85:15
から95:5の範囲であり、かつSi34と第2助剤の
添加組成比がモル%で90:10から98:2の範囲で
示される図1中の点A、B、C、Dで囲まれる範囲にあ
り、なおかつ第2助剤のAl 2 3 とAlNの添加比率
が、モル比{AlN/(Al 2 3 +AlN)}で25〜
75%の範囲にあって、得られた焼結体中の結晶相にα
−Si34とβ´−サイアロンの双方を含み、その焼結
体の相対密度が98%以上であり焼結体が、JISR−
1601に準拠した3点曲げ強度が容易に100kg/
mm2以上の特性を有することを特徴とする窒化ケイ素
系焼結体である。
According to the present invention, there is provided a ternary composition diagram of Si 3 N 4 -first auxiliary agent-second auxiliary agent, wherein the first auxiliary agent is Y
2 O 3 and made of a combination consisting of two MgO, whereas it consists combinations second aid consisting of two Al 2 O 3 and AlN, range range of the composition is shown in Figure 1, i.e. Si 3 The additive composition ratio of N 4 and the first auxiliary agent is 85:15 in mol%.
1 to 95: 5, and points A, B, C, and C in FIG. 1 in which the additive composition ratio of Si 3 N 4 and the second auxiliary is in the range of 90:10 to 98: 2 in mol%. D and the addition ratio of Al 2 O 3 and AlN as the second auxiliary agent
But 25 to a molar ratio {AlN / (Al 2 O 3 + AlN)}
In the range of 75%, and the crystal phase in the obtained sintered body is α
-Containing both Si 3 N 4 and β'-sialon, the relative density of the sintered body is 98% or more, and the sintered body is JISR-
The three-point bending strength according to 1601 is easily 100 kg /
A silicon nitride-based sintered body having characteristics of not less than mm 2 .

【0005】また本発明では焼結体の焼結温度および雰
囲気に関する条件を1500〜1700℃、1.1気圧
以下のN2ガス雰囲気中で焼結体相対密度が96%以上
になるよう1次焼結をおこなった後、1500〜170
0℃、10気圧以上のN2ガス雰囲気中で焼結体相対密
度が99%以上になるよう2次焼結をおこなうことを特
徴とするため、生産性にも十分優れた焼結体を得る手法
であると同時に、その焼結温度が低いため異常粒成長に
伴う焼結体の特性劣化を生じることもない。
In the present invention, the sintering temperature and atmosphere conditions of the sintered body are adjusted so that the relative density of the sintered body becomes 96% or more in an N 2 gas atmosphere at 1500 to 1700 ° C. and 1.1 atm or less. After sintering, 1500-170
Since the secondary sintering is performed so that the relative density of the sintered body becomes 99% or more in an N 2 gas atmosphere at 0 ° C. and 10 atm or more, a sintered body excellent in productivity is obtained. At the same time, since the sintering temperature is low, the characteristics of the sintered body do not deteriorate due to abnormal grain growth.

【0006】本発明の焼結体が優れた強度特性を得る効
果は、微粒で等軸晶のα−Si34と柱状化したβ´−
サイアロンの両方の結晶相を複合させることにより、従
来の柱状化したβ´−サイアロン結晶相のみで構成され
た焼結体に比較し、ヤング率、硬度が向上する。これは
材料の変形抵抗を示す物性値でありセラミック材料のよ
うな脆性材料では、この値を向上させることが広義では
材料の強度向上につながるためである。さらに脆性材料
の破壊の基本概念であるGriffithの理論に従え
ば、焼結体の破壊強度σfは次式で与えられる。
[0006] The effect of the sintered body of the present invention to obtain excellent strength characteristics is that fine particles of equiaxed α-Si 3 N 4 and β′-
By combining both crystal phases of sialon, the Young's modulus and hardness are improved as compared with a conventional sintered body composed of only a columnarized β'-sialon crystal phase. This is a physical property value indicating the deformation resistance of the material, and in a brittle material such as a ceramic material, improving this value leads to an improvement in the strength of the material in a broad sense. Further, according to Griffith's theory, which is a basic concept of fracture of a brittle material, the fracture strength σf of a sintered body is given by the following equation.

【0007】σf=E・γs/4a、 E;ヤング率、γs;破壊の表面エネルギ―、a;先在
亀裂長さ ここでγsは粒界相の組成と厚みに依存すると考えられ
るため、とくに厚みの点で結晶粒の存在密度を向上させ
る結晶相の複合化は有利である。また本式に従えば、破
壊強度を向上させるためにはEの増大とaの減少が重要
である。aの値は工程上不可避な欠陥寸法を排除すれ
ば、結晶粒径に依存するため、微細結晶粒で充填性を向
上させた本発明はE、γsの点で強度向上に有効であ
る。こうしたα−Si34と柱状化したβ’−Si34
の両方の結晶相を複合させる考え方は、上記の報告以外
に例えば特開昭61−91065号や特開平2−440
66号に開示されているが、いずれも組成的にはSi3
4−AlN−MO(M;MgO、Y23、CaO等)
の3成分系が主であり、その範囲もAlNとMOの添加
比がモル%で1:9の限定された範囲で、強度等の機械
的特性の向上を示したものであり、またその実施例でも
明らかなように各焼結体の強度特性が曲げ強度で100
kg/mm2を安定して越える焼結体製法はいずれもホ
ットプレス法によるものであり、工業的に安定して高い
強度特性を得るまでに至っていない。また、これらの焼
結体はα’−サイアロンとβ’−サイアロンの間の熱膨
張係数の差が大きく、これが原因となり焼結体中に引張
の残留応力を発生させ、強度劣化を招く可能性がある。
本発明はこうした条件の限定がなく工業的に安定して高
強度な焼結体を提供することにある。
Σf = E · γs / 4a, E: Young's modulus, γs: Surface energy of fracture, a: Preexisting crack length Here, γs is considered to depend on the composition and thickness of the grain boundary phase. It is advantageous to combine crystal phases to increase the density of crystal grains in terms of thickness. Further, according to this formula, it is important to increase E and decrease a in order to improve the breaking strength. Since the value of a depends on the crystal grain size if the defect size inevitable in the process is excluded, the present invention in which the filling property is improved by fine crystal grains is effective for improving the strength in terms of E and γs. Such α-Si 3 N 4 and β′-Si 3 N 4 columnarized
The idea of compounding both crystal phases is described in, for example, JP-A-61-91065 and JP-A-2-440.
No. 66, all of which are composed of Si 3
N 4 -AlN-MO (M; MgO, Y 2 O 3, CaO , etc.)
The three-component system is mainly used, and the range of the addition ratio of AlN and MO is limited to 1: 9 in terms of mol%, showing improvement of mechanical properties such as strength. As is clear from the examples, the strength characteristics of each sintered body are 100% in bending strength.
Any method for producing a sintered body stably exceeding kg / mm 2 is based on a hot press method, and has not yet achieved industrially stable high strength characteristics. In addition, these sintered bodies have a large difference in coefficient of thermal expansion between α'-sialon and β'-sialon, which may cause tensile residual stress in the sintered body, which may lead to deterioration in strength. There is.
An object of the present invention is to provide a high-strength sintered body that is industrially stable without being limited to such conditions.

【0008】本発明の詳細な作用の説明をすると、組成
の範囲が図1に示される範囲、すなわちSi34と第1
助剤の添加組成比がモル%で85:15から95:5の
範囲であり、かつSi34と第2助剤の添加組成比がモ
ル%で90:10から98:2の範囲で示される図1中
の点A、B、C、Dで囲まれる範囲とし、なおかつ第2
助剤であるAl 2 3 とAlNの添加比率が、モル比{A
lN/(Al 2 3 +AlN)}で25〜75%となる範
囲内のものとする。
To explain the detailed operation of the present invention, the composition range is as shown in FIG. 1, that is, Si 3 N 4 and the first
When the additive composition ratio of the auxiliaries is in the range of 85:15 to 95: 5 in mol%, and the additive composition ratio of Si 3 N 4 and the second auxiliaries is in the range of 90:10 to 98: 2 in mol%. 1 is a range surrounded by points A, B, C, and D in FIG .
The addition ratio of the assistants Al 2 O 3 and AlN is the molar ratio ΔA
1N / (Al 2 O 3 + AlN)} is 25 to 75%.
It shall be within the box .

【0009】本組成範囲とするのはSi34と第1助剤
の添加組成比がモル%で85:15より第1助剤側へず
れるとα−Si34の含有量が高く、焼結体強度の劣化
をまねく原因になるとともに、焼結中の雰囲気の影響を
受け、焼結体表面に強度等の特性を劣化させる表面層を
生成するためである。また同組成比が95:5よりSi
34側へずれると焼結性が低下しホットプレス法等の加
圧焼結法を用いなければ十分緻密な焼結体を得ることが
できないためである。一方Si34と第2助剤の添加組
成比がモル%で90:10を越えて第2助剤側へずれる
とβ´−サイアロンの粗大結晶が選択的に生成するため
強度劣化をまねくとともに、やはり焼結中の雰囲気の影
響を受け、焼結体表面に強度等の特性を劣化させる表面
層を生成するためである。また同組成比が98:2より
Si34側へずれると焼結性が低下しホットプレス法等
の加圧焼結法を用いなければ、十分緻密な焼結体を得る
ことができないためである。このような助剤組成条件に
加えさらに第2助剤のAl 2 3 、およびAlNの添加比
率が本発明の効果を達成するために重要な条件となる。
すなわち、第2助剤のAl 2 3 とAlNの添加比率が、
モル比{AlN/(Al 2 3 +AlN)}で25〜75
%の範囲とする。このモル比が25%未満であるとβ’
−サイアロンの粒成長が顕著に現れ、焼結体の強度劣化
を招き、一方75%を越えると焼結体中のα−Si 3 4
の複合比率が大きくなり、結晶相の複合化の効果が十分
現れず強度向上の効果が十分ではない。さらに本発明の
効果を顕著にするためには、焼結体中のα−Si34
β´−サイアロンの結晶相の析出比がX線回析のピーク
強度比が、0<α−Si3430%、30%≦β’−
サイアロン<100%であることがのぞましい。この析
出比がα−Si34側へずれると結晶相の複合化の効果
が十分現れず強度向上の効果が十分ではない。さらに本
発明では焼結体中のα−Si34、およびβ’−サイア
ロン両結晶相の結晶粒径の効果も大きい。すなわちその
範囲が焼結体中のα−Si34の平均粒径が0.5μm
以下、β’−サイアロンの長軸、短軸方向の平均結晶粒
径がそれぞれ、2.5μm、0.5μm以下であること
が、安定して100kg/mm2以上の曲げ強度を得る
のにのぞましい。またβ’−サイアロンについては焼結
体中のβ’−サイアロン(一般式Si6-ZAlZ
Z8-Z)が0<Z<1.0の範囲にあることがのぞまし
い。Z値が1.0を越えると、結晶相の複合化の効果が
十分現れず強度向上の効果が十分ではない。
The composition range is set such that when the additive composition ratio of Si 3 N 4 to the first auxiliary agent is 85% in mole% and shifts to the first auxiliary agent side, the content of α-Si 3 N 4 becomes higher. This is because it causes deterioration of the strength of the sintered body, and is also affected by the atmosphere during sintering, so that a surface layer is formed on the surface of the sintered body that deteriorates properties such as strength. When the composition ratio is 95: 5, Si
3 N deviates from the sintering property is lowered to 4 side unless a pressure sintering method such as hot press method because it is not possible to obtain a sufficiently dense sintered body. On the other hand, if the additive composition ratio of Si 3 N 4 and the second auxiliary exceeds 90:10 in mol% and shifts to the second auxiliary side, coarse crystals of β′-sialon are selectively generated, leading to strength deterioration. At the same time, a surface layer which is also affected by the atmosphere during sintering and deteriorates properties such as strength on the surface of the sintered body is generated. If the composition ratio is shifted from 98: 2 to the Si 3 N 4 side, the sinterability deteriorates, and a sufficiently dense sintered body cannot be obtained unless a pressure sintering method such as a hot press method is used. It is. Under such auxiliary composition conditions
In addition, the addition ratio of Al 2 O 3 and AlN of the second auxiliary agent
The rate is an important condition for achieving the effects of the present invention.
That is, the addition ratio of Al 2 O 3 and AlN of the second auxiliary is
Molar ratio {AlN / (Al 2 O 3 + AlN)} 25~75
% Range. If this molar ratio is less than 25%, β ′
-Grain growth of sialon is remarkable, and the strength of the sintered body is deteriorated.
On the other hand, if it exceeds 75%, α-Si 3 N 4
Compound ratio increases, and the effect of compounding the crystal phase is sufficient
It does not appear and the effect of improving strength is not sufficient. In order to make the effect of the present invention more remarkable, the precipitation ratio of the crystal phases of α-Si 3 N 4 and β′-sialon in the sintered body should be such that the peak intensity ratio of X-ray diffraction is 0 <α− Si 3 N 430 %, 30 % ≦ β′−
It is desirable that Sialon <100%. If this precipitation ratio shifts to the α-Si 3 N 4 side, the effect of compounding the crystal phase does not sufficiently appear, and the effect of improving the strength is not sufficient. Further, in the present invention, the effect of the crystal grain size of both α-Si 3 N 4 and β′-sialon crystal phases in the sintered body is great. That is, the average particle size of α-Si 3 N 4 in the sintered body is 0.5 μm.
Hereinafter, it is preferable that the average crystal grain size in the major axis and minor axis directions of β′-sialon be 2.5 μm and 0.5 μm, respectively, in order to stably obtain a bending strength of 100 kg / mm 2 or more. . As for β'-sialon, β'-sialon in the sintered body (general formula Si 6-Z Al Z O
Z N 8-Z ) is preferably in the range of 0 <Z <1.0. When the Z value exceeds 1.0, the effect of compounding the crystal phase does not sufficiently appear, and the effect of improving the strength is not sufficient.

【0010】また本発明はその焼結体の製法条件も重要
である。すなわちα率93%以上、平均粒径が0.7μ
m以下の窒化ケイ素原料粉末を用い、これに図1に示さ
れる組成範囲かつ前記Al 2 3 、AlNの組成比率を満
たす助剤粉末を混合し、その混合粉末よりなる圧粉体を
1500〜1700℃、1.1気圧以下のN2ガス雰囲
気中で焼結体相対密度が96%以上になるよう1次焼結
をおこなった後、1500〜1700℃、10気圧以上
のN2ガス雰囲気中で焼結体相対密度が99%以上にな
るよう2次焼結をおこなう。ここで窒化ケイ素原料とし
てα率93%以上、平均粒径が0.7μm以下の窒化ケ
イ素原料粉末を必要とする理由は低温域での焼結性を向
上させるためである。また本発明の組成の範囲を選択す
ることにより、焼結条件は1次焼結が1500〜170
0℃、1.1気圧以下のN2ガス雰囲気中の低温域で可
能となった。このため結晶粒の複合化がより微細な結晶
粒により構成され、その効果を顕著にするとともに、1
次焼結がプッシャー式あるいはベルト式等の開放型連続
焼結炉により、同時に生産性の優れた焼結が可能とな
る。この詳細な説明を加えると、一般に強度特性に優れ
た窒化ケイ素系材料の焼結法としては、いわゆるバッチ
式焼結炉によるガス圧焼結が主であるが、この方式では
炉内の温度分布のばらつきやロット間の条件ばらつき等
が必ず生じるために、量産部品等の用途のセラミック材
料を安定して供給する製法としては十分とは言えない。
また窒化ケイ素は大気圧のN2雰囲気下では1700℃
以上の温度域で昇華分解するため、加圧N2雰囲気下で
焼結する必要があり、設備面でバッチ式焼結炉を用いて
いた。このように本発明はその生産性を同時に向上させ
た点で工業的に重要である。ここで焼結温度を1500
〜1700℃としたのは、上述した理由の他に1500
℃未満では焼結体の緻密化が十分図れず、1700℃を
超えると、結晶粒の粗大化が顕著になり強度特性の劣化
やばらつきの原因となる。また1次焼結体の相対密度を
96%以上に焼結するのは、2次焼結において焼結体の
緻密化を十分達成するためである。一方2次焼結条件の
焼結温度を1500〜1700℃としたのは、やはり1
500℃未満では焼結体の緻密化が十分図れず、170
0℃を超えると、結晶粒の粗大化が顕著になり強度特性
の劣化やばらつきの原因となるためである。また、2次
焼結を10気圧未満のN2雰囲気下で行うと最終の焼結
体が十分に緻密化しないため10気圧以上とする。一方
得られた焼結体の相対密度が99%未満であると、強度
特性にばらつきが生じるためである。また上述した条件
は、窒化ケイ素原料粉末の製法がイミド分解法によるも
のであると、さらに焼結体の強度特性を向上させるのに
好ましい。イミド分解法により得られた窒化ケイ素原料
粉末はα率が高く、結晶粒径の粒度分布も狭いため、本
発明の組成、焼結法の組合せにより、結晶相の複合化の
効果が顕著に現れる。すなわちα−Si34結晶粒の平
均粒径が0.5μm以下及び、β’−サイアロン結晶粒
の長軸、および短軸の平均粒径が各々2.5m、0.5
μm以下と非常に微細な形態で両結晶相が複合されるた
めである。この範囲で結晶粒が複合された焼結体の強度
は、その曲げ強度が100kg/mm2を容易に越える
ばかりでなく、そのばらつきもきわめて少ない。以上に
より本発明の焼結体が強度特性、及び生産性、コストに
優れたものであることが明らかとなった。
In the present invention, the conditions for producing the sintered body are also important. That is, the α ratio is 93% or more and the average particle size is 0.7 μm.
m or less, and satisfying the composition range shown in FIG. 1 and the composition ratio of Al 2 O 3 and AlN described above.
The auxiliary powder is mixed, and the green compact made of the mixed powder is subjected to primary firing in an N 2 gas atmosphere at 1500 to 1700 ° C. and 1.1 atm or less so that the relative density of the sintered body becomes 96% or more. After sintering, secondary sintering is performed in an N 2 gas atmosphere at 1500 to 1700 ° C. and 10 atm or more so that the relative density of the sintered body becomes 99% or more. Here, the reason that the silicon nitride raw material powder is required to have an α ratio of 93% or more and an average particle size of 0.7 μm or less is to improve the sinterability in a low temperature range. Further, by selecting the range of the composition of the present invention, the sintering conditions are as follows.
This is possible in a low temperature range in an N 2 gas atmosphere of 0 ° C. and 1.1 atm or less. For this reason, the composite of crystal grains is constituted by finer crystal grains, and the effect is remarkable.
An open type continuous sintering furnace such as a pusher type or a belt type for the next sintering enables sintering with excellent productivity at the same time. In addition to this detailed description, gas pressure sintering using a so-called batch type sintering furnace is mainly used as a method for sintering silicon nitride-based materials generally having excellent strength characteristics. Therefore, it is not sufficient as a manufacturing method for stably supplying ceramic materials for use in mass-produced parts and the like because variations in conditions and variations in conditions between lots always occur.
Silicon nitride is 1700 ° C. in an N 2 atmosphere at atmospheric pressure.
In order to perform sublimation decomposition in the above temperature range, it is necessary to perform sintering under a pressurized N 2 atmosphere, and a batch type sintering furnace is used in terms of equipment. Thus, the present invention is industrially important in that its productivity has been improved at the same time. Here, the sintering temperature is 1500
The reason why the temperature is set to 11700 ° C. is that it is 1500
If the temperature is lower than 0 ° C., the sintered body cannot be sufficiently densified. If the temperature exceeds 1700 ° C., the crystal grains become remarkably coarse, which causes deterioration and variation in the strength characteristics. The reason why the relative density of the primary sintered body is sintered to 96% or more is to sufficiently achieve the densification of the sintered body in the secondary sintering. On the other hand, the reason why the sintering temperature under the secondary sintering condition is 1500 to 1700 ° C.
If the temperature is lower than 500 ° C., the sintered body cannot be sufficiently densified.
If the temperature exceeds 0 ° C., the crystal grains become remarkably coarse, which causes deterioration or variation in strength characteristics. When the secondary sintering is performed in an N 2 atmosphere of less than 10 atm, the final sintered body is not sufficiently densified, so that the pressure is set to 10 atm or more. On the other hand, when the relative density of the sintered body obtained is less than 99%, because the variation in the strength characteristics. Further, the above-mentioned conditions are preferable when the method for producing the silicon nitride raw material powder is based on the imide decomposition method for further improving the strength characteristics of the sintered body. Since the silicon nitride raw material powder obtained by the imide decomposition method has a high α ratio and a narrow particle size distribution of the crystal grain size, the combination of the composition and the sintering method of the present invention makes the effect of compounding the crystal phase remarkable. . That is, the average particle diameter of the α-Si 3 N 4 crystal grains is 0.5 μm or less, and the average particle diameters of the long axis and the short axis of the β′-sialon crystal grains are 2.5 m and 0.5 μm, respectively.
This is because both crystal phases are combined in a very fine form of not more than μm. The strength of the sintered body in which the crystal grains are compounded in this range not only easily exceeds 100 kg / mm 2 in bending strength, but also has very little variation. From the above, it became clear that the sintered body of the present invention was excellent in strength characteristics, productivity, and cost.

【0011】[0011]

【実施例】【Example】

実施例1 平均粒径0.4μm、α結晶化率96%、酸素量1.4
重量%のイミド分解法を製法とする窒化ケイ素原料粉末
および、平均粒径0.8μm、0.4μm、0.5μ
m、0.5μmのY23、Al23、AlN、MgOの
各粉末を表1に示す組成で、エタノール中、100時
間、ナイロン製ボールミルにて湿式混合したのち、乾燥
して得られた混合粉末を3000kg/cm2でCIP
成形し、この成形体をN2ガス1気圧中で1450℃で
6時間、1550℃で3時間1次焼結した。得られた焼
結体を1600℃、1000気圧N2ガス雰囲気中で1
時間、2次焼結した。この焼結体よりJISR1601
に準拠した3mm×4mm×40mm相当の抗折試験片
を切り出し、#800ダイヤモンド砥石により切削加工
仕上げした後、引張面については#3000のダイヤモ
ンドペーストによりラッピング仕上げ加工した後、JI
SR1601に準拠して3点曲げ強度を15本ずつ実施
した。表2中には1次焼結体の相対密度、2次焼結体の
相対密度、結晶相の比率と曲げ強度及びワイブル係数を
示した。なお、結晶相の比率に関してはX線回折法によ
り求めた各結晶相のピーク高さ比より算出した。
Example 1 Average particle size 0.4 μm, α crystallization ratio 96%, oxygen content 1.4
Wt% silicon nitride raw material powder produced by an imide decomposition method, and an average particle diameter of 0.8 μm, 0.4 μm, 0.5 μm
m, 0.5 μm of each powder of Y 2 O 3 , Al 2 O 3 , AlN, and MgO were wet-mixed with ethanol in a nylon ball mill for 100 hours in ethanol with the composition shown in Table 1, and then dried. CIP at 3000 kg / cm 2
The molded body was subjected to primary sintering at 1450 ° C. for 6 hours and 1550 ° C. for 3 hours in 1 atmosphere of N 2 gas. The resulting sintered body 1600 ° C., 1 in 1000 atm N 2 gas atmosphere
Time, secondary sintering. JISR1601 from this sintered body
A 3 mm x 4 mm x 40 mm equivalent bending test piece was cut out and polished with a # 800 diamond grindstone. The tensile surface was wrapped with a # 3000 diamond paste, and then subjected to JI.
Fifteen three-point bending strengths were performed in accordance with SR1601. Table 2 shows the relative density of the primary sintered body, the relative density of the secondary sintered body, the ratio of the crystal phase, the bending strength, and the Weibull coefficient. The ratio of the crystal phases was calculated from the peak height ratio of each crystal phase obtained by the X-ray diffraction method.

【0012】[0012]

【表1】 [Table 1]

【0013】[0013]

【表2】 [Table 2]

【0014】実施例2 市販の直接窒化法により得られた窒化ケイ素原料粉末
(平均粒径=0.7μm、α結晶化率=93%、酸素量
=1.5重量%)に実施例1と同様の助剤粉末を実施例
1の組成1〜5になるよう、実施例1と同様の手法で混
合、乾燥し成形した。この成形体をN2ガス1気圧中で
1480℃で5時間、1600℃で2時間1次焼結した
後、1600℃、1000気圧N2ガス雰囲気中で1時
間、2次焼結した。この焼結体より実施例1と同様の手
法によりJISR1601に準拠した抗折試験片を加工
し、同様の評価に供した。この結果を表3に示す。
Example 2 Example 1 was applied to a commercially available silicon nitride raw material powder (average particle size = 0.7 μm, α crystallization ratio = 93%, oxygen content = 1.5% by weight) obtained by a commercial direct nitriding method. The same auxiliary powder was mixed, dried and molded in the same manner as in Example 1 so as to obtain compositions 1 to 5 of Example 1. 5 hours at 1480 ° C. The molded body in a N 2 gas 1 atm, after 2 hours primary sintering at 1600 ° C., 1600 ° C., 1 hour at 1000 atm N 2 gas atmosphere and secondary sintering. A bending test piece based on JISR1601 was processed from this sintered body in the same manner as in Example 1 and subjected to the same evaluation. Table 3 shows the results.

【0015】[0015]

【表3】 [Table 3]

【0016】実施例3 実施例1と同様の原料粉末を、実施例1で示した組成1
〜5について同様の手法で混合、乾燥、成形した。得ら
れた成形体をN2ガス1気圧中で1450℃で6時間、
1550℃で3時間1次焼結した後、連続して1600
℃、80気圧N2ガス雰囲気中で2時間、2次焼結し
た。得られた焼結体より、実施例1と同様の手法でJI
SR1601に準拠した抗折試験片を切り出し、実施例
1と同様の手法で評価した。この結果を表4に示す。
Example 3 The same raw material powder as in Example 1 was prepared by using the composition 1 shown in Example 1
-5 were mixed, dried and molded in the same manner. The obtained molded body was placed at 1450 ° C. for 6 hours under one atmosphere of N 2 gas,
After primary sintering at 1550 ° C. for 3 hours, 1600
Secondary sintering was performed in a N 2 gas atmosphere at 80 ° C. and 80 atm for 2 hours. JI was obtained from the obtained sintered body in the same manner as in Example 1.
A bending test piece conforming to SR1601 was cut out and evaluated in the same manner as in Example 1. Table 4 shows the results.

【0017】[0017]

【表4】 [Table 4]

【0018】実施例4 実施例2と同様の原料粉末を、実施例1で示した組成
2、4、5、9について、実施例1と同様の手法で混
合、乾燥、成形した。得られた成形体を表5に示す条件
で1次焼結した後、1600℃、50気圧N2ガス雰囲
気中で2時間焼結した。得られた焼結体より、実施例1
と同様の手法でJISR1601に準拠した抗折試験片
を切り出し、実施例1と同様の手法で評価した。また各
焼結体の微細組織をTEM観察により評価し結晶粒径を
求めた結果を表5中に示す。
Example 4 The same raw material powder as in Example 2 was mixed, dried, and molded in the same manner as in Example 1 for the compositions 2, 4, 5, and 9 shown in Example 1. After the obtained compact was primarily sintered under the conditions shown in Table 5, it was sintered at 1600 ° C. in a 50 atm N 2 gas atmosphere for 2 hours. Example 1 was obtained from the obtained sintered body.
A bending test piece in accordance with JISR1601 was cut out in the same manner as described above, and evaluated in the same manner as in Example 1. Table 5 shows the results of evaluating the microstructure of each sintered body by TEM observation and determining the crystal grain size.

【0019】[0019]

【表5】 [Table 5]

【0020】[0020]

【発明の効果】本発明によれば、特に常温において優れ
た機械的強度を有する窒化ケイ素系焼結体を、生産性、
コスト面において有利に提供される。
According to the present invention, a silicon nitride-based sintered body having excellent mechanical strength, particularly at room temperature, can be produced with high productivity,
Advantageously provided in terms of cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明における組成範囲を示す3元組成図であ
る。
FIG. 1 is a ternary composition diagram showing a composition range in the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山川 晃 兵庫県伊丹市昆陽北一丁目1番1号 住 友電気工業株式会社 伊丹製作所内 (56)参考文献 特開 平2−22173(JP,A) 特開 平2−167861(JP,A) 特開 昭57−123865(JP,A) 特開 昭63−218584(JP,A) 特開 昭63−139057(JP,A) 特開 昭63−156070(JP,A) ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Akira Yamakawa 1-1-1, Kunyokita, Itami-shi, Itami-shi, Hyogo Sumitomo Electric Industries, Ltd. Itami Works (56) References JP-A-2-22173 (JP, A JP-A-2-167861 (JP, A) JP-A-57-123865 (JP, A) JP-A-63-218584 (JP, A) JP-A-63-139057 (JP, A) 156070 (JP, A)

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 Si34−第1助剤−第2助剤の3元組
成図において、第1助剤がY23及びMgOの2種より
なる組合わせからなり、一方第2助剤がAl23及びA
lNの2種よりなる組合わせよりなり、その組成の範囲
が図1に示される範囲、すなわちSi34と第1助剤の
添加組成比がモル%で85:15から95:5の範囲で
あり、かつSi34と第2助剤の添加組成比がモル%で
90:10から98:2の範囲で示される図1中の点
A、B、C、Dで囲まれる範囲にあり、なおかつ第2助
剤のAl23とAlNの添加比率が、モル比{AlN/
(Al23+AlN)}で25〜75%の範囲にあり、
得られた焼結体中の結晶相にα−Si34とβ´−サイ
アロンの双方を含み、その焼結体の相対密度が98%以
上であり、その曲げ強度がJISR1601に準拠する
3点曲げ強度の平均値で100kg/mm2以上を有す
ることを特徴とする窒化ケイ素系焼結体。
In the ternary composition diagram of Si 3 N 4 -first auxiliary agent-second auxiliary agent, the first auxiliary agent is composed of a combination of two kinds of Y 2 O 3 and MgO, while the second auxiliary agent is composed of the second auxiliary agent. Aids are Al 2 O 3 and A
consists combination consisting of two l N, the range where the range of compositions is shown in Figure 1, i.e. Si 3 N 4 and the first addition composition ratio of aid to 85:15 in mol% 95: 5 range 1, and the addition composition ratio of Si 3 N 4 and the second auxiliary is in the range of 90:10 to 98: 2 in mol%, and is within the range surrounded by points A, B, C, and D in FIG. And the addition ratio of Al 2 O 3 and AlN of the second auxiliary is molar ratio {AlN /
(Al 2 O 3 + AlN)} in the range of 25 to 75%,
The crystal phase in the obtained sintered body contains both α-Si 3 N 4 and β′-sialon, the relative density of the sintered body is 98% or more, and the bending strength thereof conforms to JISR1601. A silicon nitride-based sintered body having an average point bending strength of 100 kg / mm 2 or more.
【請求項2】 焼結体中のα−Si34とβ’−サイア
ロンの結晶相の析出比がX線回のピ―ク強度比が、0
%<α−Si34≦30%、70%≦β’−サイアロン
<100%であることを特徴とする請求項1記載の窒化
ケイ素系焼結体。
2. A precipitation ratio of α-Si 3 N 4 in the sintered body β'- sialon crystal phase is X-ray diffraction peak - click intensity ratio, 0
2. The silicon nitride-based sintered body according to claim 1, wherein% <α-Si 3 N 4 ≦ 30% and 70% ≦ β′-sialon <100%.
【請求項3】 焼結体中のα−Si34結晶粒の平均粒
径が0.5μm以下、β´−サイアロンの長軸、短軸方
向の平均粒径がそれぞれ2.5μm、0.5μm以下で
あることを特徴とする請求項1記載の窒化ケイ素系焼結
体。
3. The average grain size of α-Si 3 N 4 crystal grains in the sintered body is 0.5 μm or less, and the average grain size of β′-sialon in the major axis and minor axis directions is 2.5 μm and 0 μm, respectively. 2. The silicon nitride-based sintered body according to claim 1, wherein the thickness is 0.5 μm or less.
【請求項4】 焼結体中のβ’−サイアロン(一般式S
6-ZAlZZ8-Z)は0<Z<1.0の範囲にあるこ
とを特徴とする請求項1記載の窒化ケイ素焼結体。
4. A β′-sialon in a sintered body (general formula S
2. The silicon nitride sintered body according to claim 1, wherein i 6-Z Al Z O Z N 8-Z ) is in the range of 0 <Z <1.0.
【請求項5】 α率93%以上、平均粒径が0.7μm
以下の窒化ケイ素原料粉末を用い、図1に示される組成
範囲の助剤とし、なおかつ該助剤のAl23とAlNの
添加比率がモル比{AlN/(Al23+AlN)}で
25〜75%の範囲となる混合粉末より圧粉体を150
0〜1700℃、1.1気圧以下のN2ガス雰囲気中で
焼結体相対密度が96%以上になるよう1次焼結をおこ
なった後、1500〜1700℃、10気圧以上のN2
ガス雰囲気中で焼結体相対密度が99%以上になるよう
2次焼結をおこなうことを特徴とする窒化ケイ素系焼結
体の製造方法。
5. An α ratio of at least 93% and an average particle size of 0.7 μm.
The following silicon nitride raw material powder was used as an auxiliary having the composition range shown in FIG. 1, and the addition ratio of Al 2 O 3 and AlN of the auxiliary was a molar ratio {AlN / (Al 2 O 3 + AlN)}. From the mixed powder having a range of 25 to 75%,
After primary sintering in a N 2 gas atmosphere at 0 to 1700 ° C. and 1.1 atm or less so that the relative density of the sintered body becomes 96% or more, N 2 at 1500 to 1700 ° C. and 10 atm or more is applied.
A method for producing a silicon nitride-based sintered body, comprising performing secondary sintering so that the relative density of the sintered body becomes 99% or more in a gas atmosphere.
JP3272937A 1991-10-21 1991-10-21 Silicon nitride based sintered body and method for producing the same Expired - Lifetime JP2597774B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3272937A JP2597774B2 (en) 1991-10-21 1991-10-21 Silicon nitride based sintered body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3272937A JP2597774B2 (en) 1991-10-21 1991-10-21 Silicon nitride based sintered body and method for producing the same

Publications (2)

Publication Number Publication Date
JPH05105517A JPH05105517A (en) 1993-04-27
JP2597774B2 true JP2597774B2 (en) 1997-04-09

Family

ID=17520846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3272937A Expired - Lifetime JP2597774B2 (en) 1991-10-21 1991-10-21 Silicon nitride based sintered body and method for producing the same

Country Status (1)

Country Link
JP (1) JP2597774B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7829491B2 (en) 2004-11-26 2010-11-09 Kyocera Corporation Silicon nitride sintered body and manufacturing method thereof, member for molten metal, member for hot working, and member for digging

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57123865A (en) * 1981-01-27 1982-08-02 Kobe Steel Ltd Manufacture of high density silicon nitride sintered body
JPS63139057A (en) * 1986-11-28 1988-06-10 住友電気工業株式会社 Manufacture of silicon nitride base ceramics
JP2518630B2 (en) * 1986-12-17 1996-07-24 京セラ株式会社 Silicon nitride sintered body and method for producing the same
JPS63218584A (en) * 1987-03-05 1988-09-12 株式会社東芝 Ceramic sintered body
JPH0625039B2 (en) * 1988-07-08 1994-04-06 日本タングステン株式会社 Silicon nitride sintered body and method for manufacturing the same
JPH02167861A (en) * 1988-12-22 1990-06-28 Tosoh Corp Production of calcined silicon nitride body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7829491B2 (en) 2004-11-26 2010-11-09 Kyocera Corporation Silicon nitride sintered body and manufacturing method thereof, member for molten metal, member for hot working, and member for digging

Also Published As

Publication number Publication date
JPH05105517A (en) 1993-04-27

Similar Documents

Publication Publication Date Title
EP0589411B1 (en) Silicon nitride sintered body and process for producing the same
US5204297A (en) Silicon nitride sintered body and process for producing the same
JPH11314969A (en) High heat conductivity trisilicon tetranitride sintered compact and its production
JP3395247B2 (en) Silicon nitride based sintered body
JP2597774B2 (en) Silicon nitride based sintered body and method for producing the same
JP3143992B2 (en) Silicon nitride based sintered body
JPH09268069A (en) Highly heat conductive material and its production
US5637540A (en) Sintered silicon nitride of high toughness, strength and reliability
JP2773976B2 (en) Super tough monolithic silicon nitride
US5275986A (en) Silicon nitride sintered body
JP2539961B2 (en) Silicon nitride based sintered body and method for producing the same
JP3137405B2 (en) Manufacturing method of silicon nitride based ceramics
JP2539968B2 (en) Silicon nitride-based sintered body
JPH0558739A (en) Silicon nitride sintered body and its production
JPH05148028A (en) Production of sintered silicon nitride
JPH05124867A (en) Silicon nitride-based sintered compact
JPH05155663A (en) Silicon nitride sintered body
JPH05105522A (en) Silicon nitride-based sintered compact
JPH09165264A (en) Silicon nitride sintetred product and its production
JPH05208869A (en) Silicon nitride cutting tool
JPH05170541A (en) Silicon nitride sintered product
JPH0570232A (en) Production of silicon nitride-based sintered body
JPH04270175A (en) Sintered silicon nitride and its production
EP0636112A1 (en) Sintered silicon nitride of high toughness, strength and reliability.
JP2001019550A (en) Crystallite granule silicon carbide sintered compact having superplasticity and its production

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100109

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110109

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110109

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 15

EXPY Cancellation because of completion of term