JPH05170541A - Silicon nitride sintered product - Google Patents

Silicon nitride sintered product

Info

Publication number
JPH05170541A
JPH05170541A JP3346721A JP34672191A JPH05170541A JP H05170541 A JPH05170541 A JP H05170541A JP 3346721 A JP3346721 A JP 3346721A JP 34672191 A JP34672191 A JP 34672191A JP H05170541 A JPH05170541 A JP H05170541A
Authority
JP
Japan
Prior art keywords
silicon nitride
sintered body
sialon
strength
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3346721A
Other languages
Japanese (ja)
Inventor
Takehisa Yamamoto
剛久 山本
Takao Nishioka
隆夫 西岡
Kenji Matsunuma
健二 松沼
Akira Yamakawa
晃 山川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Publication of JPH05170541A publication Critical patent/JPH05170541A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a silicon nitride sintered product having an excellent mechanical strength, etc., specially at the ordinary temperature and excellent on the aspects of productivity and cost. CONSTITUTION:A silicon nitride sintered product comprising alpha-silicon nitride and beta'-sialon is characterized in that the average crystal particle diameter of the alpha-silicon nitride is <=0.5mum and that the average crystal particle diameters of the beta'-sialon in the long and short axial directions are <=5mum and <=0.5mum, respectively. The crystal phases of the alpha-silicon nitride and the beta'-sialon have peak strength ratios represented by 0% < alpha-silicon nitride <=50% and 50% <=beta'-sialon <100% by an X-ray diffraction method.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はとくに常温において優れ
た機械的強度を有し、生産性、コスト面において優れた
窒化ケイ素系焼結体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silicon nitride-based sintered body having excellent mechanical strength at room temperature, and excellent productivity and cost.

【0002】[0002]

【従来の技術】従来、窒化ケイ素系材料の強度向上を目
的として、焼結方法、焼結助剤、含有結晶相の限定など
様々な研究開発が行われてきた。たとえば、焼結法に関
しては、ホットプレス焼結法では、Am.Ceram.
Soc.Bull.,52(1973)pp560で〜
100kg/mm2(曲げ強度)が実現されており、ま
たガラスカプセルによる熱間静水圧プレス法(HIP
法)等も開発されている。こうした手法では焼結体の強
度特性の面では優れた特性が得られているものの、生産
性、コストの面で優れた手法とは言えない。一方、こう
した問題に対して、ガス圧焼結法(例えば、三友、粉体
と工業、12巻、12号、pp27、1989)がある
が、本方法では最終の焼結体の緻密化をβ−窒化ケイ素
結晶の粒成長に伴うため、粗大結晶粒の析出による強度
劣化をまねく可能性が高いことに加え、一般には、10
気圧以上のN2ガス圧をかけ焼結を実施するため、ホッ
トプレス法やHIP法と同様に焼結設備が大型となり、
特性面、生産面で十分優れた手法とは言えない。他方、
焼結助剤に関しては、主たる助剤としてY23を用いた
Si34−Al23−Y23系の窒化ケイ素系焼結体が
特公昭49−21091号、特公昭48−38448号
に開示されている。これらは、該特許明細書中に示され
ているように、β型窒化ケイ素の結晶粒が焼結体中で繊
維状組織を形成し、これがマトリックス中に分散するこ
とから強度、靭性を向上しうるものと考えられている。
すなわちこれは、β型窒化ケイ素の結晶形が六方晶であ
りC軸方向に結晶が異方性成長をすることを積極的に利
用したものであり、とくに特公昭48−38448号や
窯業協会誌、94巻、pp96、1986に示されるよ
うに、繊維状のβ−窒化ケイ素結晶粒がC軸方向に10
数μm以上に成長している場合がある。しかしながら、
本技術においては、やはりこの粒成長が異常成長や気孔
の発生をまねき、強度劣化をまねく可能性があり、また
本方法での焼結助剤だけを用いた焼結体では、焼結温度
を1700〜1900℃に上昇させなければ、緻密化が
十分図れず、大気圧付近のN2ガス圧焼結では、窒化ケ
イ素の昇華分解が生じ、安定した焼結体を得られない場
合がある。このため同じく、焼結体特性と生産性両面で
十分優れているとは言えない。一方、以上で述べてきた
手法では、いずれも得られる焼結体の強度が、例えばJ
IS−R1601に準拠した3点曲げ強度でせいぜい1
00kg/mm2前後であり、様々な窒化ケイ素系材料
の応用を考えた場合、必ずしも十分な特性が得られてい
ない。
2. Description of the Related Art Conventionally, various researches and developments such as a sintering method, a sintering aid, and a limitation of contained crystal phases have been carried out for the purpose of improving the strength of silicon nitride materials. For example, regarding the sintering method, in the hot press sintering method, Am. Ceram.
Soc. Bull. , 52 (1973) pp560-
100 kg / mm 2 (bending strength) has been realized, and the hot isostatic pressing method (HIP
Law) is also being developed. Although such a method has obtained excellent characteristics in terms of strength characteristics of the sintered body, it cannot be said to be an excellent method in terms of productivity and cost. On the other hand, there is a gas pressure sintering method (for example, Sanyu, Powder and Kogyo, Vol. 12, No. 12, pp27, 1989) for such a problem, but in this method, the final densification of the sintered body is β -Since it is accompanied by grain growth of silicon nitride crystals, there is a high possibility that strength deterioration due to the precipitation of coarse crystal grains will occur.
Since sintering is performed by applying N 2 gas pressure of atmospheric pressure or more, the sintering equipment becomes large like the hot press method and the HIP method,
It cannot be said that it is a sufficiently excellent method in terms of characteristics and production. On the other hand,
For the sintering aid, Si 3 N 4 -Al 2 O 3 -Y 2 O 3 system of silicon nitride sintered body is Japanese Patent Publication No. 49-21091 using Y 2 O 3 as a main aid, JP-B No. 48-38448. As shown in the patent specification, these improve the strength and toughness because the β-type silicon nitride crystal grains form a fibrous structure in the sintered body and are dispersed in the matrix. It is considered to be profitable.
That is, this is a positive use of the fact that the crystal form of β-type silicon nitride is hexagonal and that the crystal grows anisotropically in the C-axis direction. In particular, Japanese Patent Publication No. 48-38448 and Journal of Ceramic Industry , 94, pp96, 1986, the fibrous β-silicon nitride crystal grains are 10 in the C-axis direction.
It may grow to several μm or more. However,
In the present technology, this grain growth may lead to abnormal growth and generation of pores, and may lead to strength deterioration.In addition, in the sintered body using only the sintering aid in this method, the sintering temperature is Unless the temperature is raised to 1700 to 1900 ° C., sufficient densification cannot be achieved, and in N 2 gas pressure sintering near atmospheric pressure, sublimation decomposition of silicon nitride occurs, and a stable sintered body may not be obtained in some cases. Therefore, similarly, it cannot be said that the sintered body is sufficiently excellent in both characteristics and productivity. On the other hand, in the methods described above, the strength of the obtained sintered body is, for example, J
Three-point bending strength based on IS-R1601 at most 1
It is around 00 kg / mm 2 , and when considering applications of various silicon nitride materials, sufficient characteristics are not always obtained.

【0003】[0003]

【発明が解決しようとする課題】こうした従来技術にお
ける生産性と焼結体の機械的特性の両立を満足させる手
法を提供するのが本発明の課題である。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a method of satisfying both the productivity and the mechanical properties of the sintered body in the prior art.

【0004】[0004]

【課題を解決するための手段】本発明は、α−窒化ケイ
素とβ´−サイアロンからなり、α−窒化ケイ素の平均
結晶粒径が0.5μm以下、β´−サイアロンの長軸、
短軸方向の平均結晶粒径がそれぞれ5μm以下、0.5
μm以下であることを特徴とする窒化ケイ素焼結体が、
JISR−1601に準拠した3点曲げ強度が容易に1
30kg/mm2以上の特性を有する知見を得たもので
ある。本発明の焼結体が優れた強度特性を得る効果は、
微粒で等軸晶のα−窒化ケイ素と微粒で柱状化したβ´
−サイアロンの両方の結晶相を複合させることにより、
従来の柱状化したβ´−サイアロン(β−窒化ケイ素を
含む)結晶相のみで構成された焼結体に比較し、ヤング
率、硬度が向上する。これは材料の変形抵抗を示す物性
値でありセラミック材料のような脆性材料では、この値
を向上させることが広義では材料の強度向上につながる
ためである。さらに脆性材料の破壊の基本概念であるG
riffithの理論に従えば、焼結体の破壊強度σf
は次式で与えられる。
The present invention comprises α-silicon nitride and β'-sialon, the average crystal grain size of α-silicon nitride is 0.5 μm or less, the major axis of β'-sialon,
The average crystal grain sizes in the minor axis direction are 5 μm or less and 0.5, respectively.
A silicon nitride sintered body characterized in that
3 point bending strength based on JIS R-1601 is easily 1
The knowledge obtained has characteristics of 30 kg / mm 2 or more. The effect of the sintered body of the present invention to obtain excellent strength characteristics is
Fine-grained equiaxed α-silicon nitride and fine-grained columnar β '
-By combining both crystalline phases of Sialon,
The Young's modulus and hardness are improved as compared with the conventional sintered body composed only of the columnar β′-sialon (including β-silicon nitride) crystal phase. This is because it is a physical property value indicating the deformation resistance of a material, and in the case of a brittle material such as a ceramic material, improving this value leads to an improvement in the strength of the material in a broad sense. G, which is the basic concept of fracture of brittle materials
According to the riffith theory, the fracture strength σ f of the sintered body
Is given by

【0005】σf=E・γs/4a、E;ヤング率、γ
s;破壊の表面エネルギー、a;先在亀裂長さ ここでγsは粒界相の組成と厚みに依存すると考えられ
るため、とくに厚みの点で結晶粒の存在密度を向上させ
る結晶粒の微粒化と結晶相の複合化は有利である。また
本式に従えば、破壊強度を向上させるためにはEの増大
とaの減少が重要である。aの値は工程上不可避な欠陥
寸法を排除すれば、結晶粒径に依存するため、微細結晶
粒で充填性を向上させた本発明はE、γsの点で強度向
上に有効である。
Σ f = E · γs / 4a, E; Young's modulus, γ
s: surface energy of fracture, a: pre-existing crack length Since γs is considered to depend on the composition and thickness of the grain boundary phase, grain refinement that improves the existing density of crystal grains particularly in terms of thickness. It is advantageous to combine the crystalline phase with. According to this formula, it is important to increase E and decrease a in order to improve the fracture strength. Since the value of a depends on the crystal grain size if the defect size unavoidable in the process is excluded, the present invention in which the filling property is improved by fine crystal grains is effective in improving the strength in terms of E and γs.

【0006】こうしたα型窒化珪素と柱状化したβ型窒
化珪素の両方の結晶相を複合させる考え方は、例えば特
開昭61−91065号や特開平2−44066号に開
示されているが、いずれもα´−サイアロン(一般式M
X(Si,Al)12(O,N)16、M:Mg,Ca,L
i、YおよびCe、Laを除くランタニドの金属元素)
とβ´−サイアロン(β型窒化ケイ素を含む)との結晶
相の組合せであり、組成的にはSi34−AlN−MO
(M;MgO、Y23、CaO等)の3成分系が主であ
り、その範囲もAlNとMOの添加比がモル%で1:9
の限定された範囲で、α´−サイアロンとβ´−サイア
ロン(β−窒化ケイ素を含む)の複合した結晶相を生成
させることにより強度等の機械的特性の向上を示したも
のであり、またその実施例でも明らかなように各焼結体
の強度特性が曲げ強度で100kg/mm2を安定して
越える焼結体製法はいずれもホットプレス法によるもの
であり、工業的に安定して高い強度特性を得るまでに至
っていない。本発明はこうした条件の限定がなく工業的
に安定して高強度な焼結体を提供することにある。本発
明の焼結体を得るためには、焼結助剤は窒化珪素表面に
存在するSiO2とできるだけ低温で液相を生成する助
剤、例えばMgO、CeO2、CaO、La23、Mg
Al24等の酸化物あるいはMg、Ce、Ca、La、
Alの元素からなる酸化物あるいはそれらの組合せを用
い焼結温度を1650℃以下で焼結することが望まし
い。この低温焼結のため異常粒成長に伴う焼結体の特性
劣化を阻止できる。さらには、窒化ケイ素は大気圧のN
2雰囲気下では1700℃以上の温度域で昇華分解する
ため、加圧N2雰囲気下で焼結する必要があり、設備面
でバッチ式焼結炉を用いていた。しかし、この様な低温
での焼結が可能となると焼結方法はプッシャー式あるい
はベルト式等の開放型連続焼結炉により、同時に生産性
の優れた焼結が可能となる。この詳細な説明を加える
と、一般に強度特性に優れた窒化ケイ素系材料の焼結法
としては、いわゆるバッチ式焼結炉によるガス圧焼結が
主であるが、この方式では炉内の温度分布のばらつきや
ロット間の条件ばらつき等が必ず生じるために、量産部
品等の用途のセラミック材料を安定して供給する製法と
しては十分とは言えない。この点からも本発明はその生
産性を同時に向上させた点で工業的に重要である。
The concept of compounding both the crystal phases of α-type silicon nitride and columnar β-type silicon nitride is disclosed in, for example, JP-A-61-191065 and JP-A-2-44066. Also α'-sialon (general formula M
X (Si, Al) 12 (O, N) 16 , M: Mg, Ca, L
i, Y and lanthanide metal elements other than Ce and La)
And β'-sialon (including β-type silicon nitride) in a crystalline phase, and compositionally, Si 3 N 4 -AlN-MO.
(M; MgO, Y 2 O 3 , CaO, etc.) is mainly used as a three-component system, and the range thereof is 1: 9 when the addition ratio of AlN and MO is mol%.
In a limited range of, by forming a composite crystal phase of α'-sialon and β'-sialon (including β-silicon nitride), it is shown that the mechanical properties such as strength are improved. As is clear from the examples, the method for producing a sintered body in which the strength characteristics of each sintered body stably exceeds 100 kg / mm 2 in bending strength is all by the hot pressing method, which is industrially stable and high. It has not yet reached the strength characteristics. The present invention is to provide an industrially stable and high-strength sintered body that is not limited to such conditions. In order to obtain the sintered body of the present invention, the sintering aid is SiO 2 existing on the surface of silicon nitride and an aid that forms a liquid phase at a temperature as low as possible, such as MgO, CeO 2 , CaO, La 2 O 3 , Mg
Oxides such as Al 2 O 4 or Mg, Ce, Ca, La,
It is desirable to sinter at a sintering temperature of 1650 ° C. or lower using an oxide composed of Al element or a combination thereof. This low-temperature sintering can prevent deterioration of the characteristics of the sintered body due to abnormal grain growth. Furthermore, silicon nitride is N at atmospheric pressure.
Since it decomposes by sublimation in a temperature range of 1700 ° C. or higher under 2 atmospheres, it is necessary to sinter under a pressurized N 2 atmosphere, and a batch-type sintering furnace was used in terms of equipment. However, if it becomes possible to sinter at such a low temperature, it becomes possible at the same time to perform sintering with excellent productivity by using an open continuous sintering furnace such as a pusher type or a belt type. Adding this detailed description, gas pressure sintering in a so-called batch-type sintering furnace is generally the main sintering method for silicon nitride-based materials with excellent strength characteristics. It is not sufficient as a manufacturing method for stably supplying a ceramic material for use in mass-produced parts or the like, because variations in manufacturing conditions, variations in conditions between lots, and the like will always occur. From this point as well, the present invention is industrially important in that the productivity is improved at the same time.

【0007】さらに本発明の効果を顕著にするために
は、焼結体中のα−窒化ケイ素とβ’−サイアロン結晶
相の析出比がX線回析によるピーク強度比で、0%<α
−窒化ケイ素≦50%、50%≦β´−窒化ケイ素<1
00%であることが好ましい。このα−窒化ケイ素の析
出比が50%を越えて高α−Si34側へずれるとβ´
−サイアロン柱状晶組織の効果が減少し、結晶相の複合
化の効果が十分現れずβ’−サイアロンのみでは本発明
の結晶粒子間を充填する複合効果が現れない上、β’−
サイアロンが粒成長を起こすため、強度向上の効果が十
分ではない。
In order to make the effect of the present invention more remarkable, the precipitation ratio of α-silicon nitride and β'-sialon crystal phase in the sintered body is 0% <α as a peak intensity ratio by X-ray diffraction.
-Silicon nitride ≤ 50%, 50% ≤ β'-Silicon nitride <1
It is preferably 00%. If the deposition ratio of α-silicon nitride exceeds 50% and shifts to the high α-Si 3 N 4 side, β '
-The effect of the sialon columnar structure is reduced, the effect of compounding the crystal phase does not sufficiently appear, and β'-only the sialon does not exhibit the compound effect of filling between the crystal grains of the present invention, and β'-
Since sialon causes grain growth, the effect of improving strength is not sufficient.

【0008】一方、本焼結体を得るための予備成形体の
製法は公知の技術、例えば粉末プレス法、射出成形法、
スリップキャスティング法などいずれの技術を用いるこ
とも可能であるが、成形体密度が相対密度50%以上の
高密度体が得られる成形法が望ましい。
On the other hand, a method for producing a preform for obtaining the present sintered body is a known technique such as a powder pressing method, an injection molding method,
Although any technique such as a slip casting method can be used, a molding method by which a high density body having a relative density of 50% or more can be obtained is desirable.

【0009】また、この組成範囲で焼結体中のβ´−サ
イアロン(一般式 Si6-ZAlZZ8-Z)のZ値を0
<Z<1.0の範囲にして粒界相を制御すると高強度が
安定する。
In this composition range, the Z value of β'-sialon (general formula: Si 6 -Z Al Z O Z N 8-Z ) in the sintered body is 0.
If the grain boundary phase is controlled within the range of <Z <1.0, high strength is stabilized.

【0010】[0010]

【実施例】平均粒径0.4μm、α結晶化率96%、酸
素量1.4重量%の窒化ケイ素原料粉末および、平均粒
径0.8μm、0.4μm、0.5μm、0.5μmの
23、Al23、AlN、MgOの各粉末を6mm×
8mm×60mmに成形し、この成形体をN2ガス1気
圧中で〜1650℃で5〜10時間1次焼結した。得ら
れた焼結体を〜1650℃、1000気圧N2ガス雰囲
気中で1時間、2次焼結した。この焼結体よりJISR
1601に準拠した3mm×4mm×40mm相当の抗
折試験片を切り出し、#800ダイアモンド砥石により
研削加工仕上げした後、引張面については#3000の
ダイアモンドペーストによりラッピング仕上げ加工した
後、JISR1601に準拠して3点曲げ強度を15本
ずつ実施した。表1中には平均結晶粒径、結晶相の比
率、及び曲げ強度を示した。
EXAMPLE A silicon nitride raw material powder having an average particle size of 0.4 μm, an α crystallization rate of 96% and an oxygen content of 1.4% by weight, and an average particle size of 0.8 μm, 0.4 μm, 0.5 μm, 0.5 μm. Powder of Y 2 O 3 , Al 2 O 3 , AlN, and MgO of 6 mm ×
It was molded into 8 mm × 60 mm, and this molded body was subjected to primary sintering in N 2 gas at 1 atm at ˜1650 ° C. for 5 to 10 hours. The obtained sintered body was subjected to secondary sintering for 1 hour at ˜1650 ° C. and 1000 atmospheric pressure N 2 gas atmosphere. JISR from this sintered body
A bending test piece equivalent to 3 mm x 4 mm x 40 mm according to 1601 is cut out and ground by a # 800 diamond grindstone, and then a tensile surface is lapped by a # 3000 diamond paste, and then according to JISR1601. Three-point bending strength was carried out for each of 15 pieces. Table 1 shows the average crystal grain size, the ratio of crystal phases, and the bending strength.

【0011】尚、結晶相の比率に関しては図1、図2に
示すX線回折法により求めた各結晶相のピーク高さ比よ
り算出した。
The crystal phase ratio was calculated from the peak height ratio of each crystal phase obtained by the X-ray diffraction method shown in FIGS.

【0012】[0012]

【表1】 [Table 1]

【0013】[0013]

【発明の効果】本発明によれば、特に常温において優れ
た機械的強度を有し、しかも、生産性とコスト面におい
て優れた窒化ケイ素系焼結体を得ることができる。
According to the present invention, it is possible to obtain a silicon nitride-based sintered body which has excellent mechanical strength especially at room temperature and is excellent in productivity and cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例8における焼結体のX線回折図である。FIG. 1 is an X-ray diffraction diagram of a sintered body of Example 8.

【図2】比較例No.14における焼結体のX線回折図で
ある。
FIG. 2 is an X-ray diffraction diagram of a sintered body of Comparative Example No. 14.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山川 晃 兵庫県伊丹市昆陽北一丁目1番1号 住友 電気工業株式会社伊丹製作所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Akira Yamakawa 1-1-1 Kunyo Kita, Itami City, Hyogo Prefecture Sumitomo Electric Industries, Ltd. Itami Works

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 α−窒化ケイ素とβ´−サイアロンから
なる窒化ケイ素焼結体であって、α−窒化ケイ素の平均
結晶粒径が0.5μm以下、β´−サイアロンの長軸、
短軸方向の平均結晶粒径がそれぞれ5μm以下および
0.5μm以下であることを特徴とする窒化ケイ素系焼
結体。
1. A silicon nitride sintered body composed of α-silicon nitride and β′-sialon, wherein α-silicon nitride has an average crystal grain size of 0.5 μm or less, and a long axis of β′-sialon,
A silicon nitride-based sintered body, characterized in that the average crystal grain size in the minor axis direction is 5 μm or less and 0.5 μm or less, respectively.
【請求項2】 焼結体中のα−窒化ケイ素とβ´−サイ
アロンの結晶相はX線回折によるピーク強度比が0%<
α−窒化ケイ素≦50%、50%≦β´−サイアロン<
100%である請求項1記載の窒化ケイ素系焼結体。
2. The crystal phase of α-silicon nitride and β′-sialon in the sintered body has a peak intensity ratio by X-ray diffraction of 0% <.
α-silicon nitride ≦ 50%, 50% ≦ β′-sialon <
The silicon nitride-based sintered body according to claim 1, which is 100%.
【請求項3】 焼結体中のβ´−サイアロン(一般式
Si6-ZAlZZ8-Z)は0<Z<1.0の範囲にある
請求項1記載の窒化ケイ素系焼結体。
3. A β'-sialon (general formula:
The silicon nitride-based sintered body according to claim 1, wherein Si 6-Z Al Z O Z N 8-Z ) is in the range of 0 <Z <1.0.
【請求項4】 焼結体中のα−窒化ケイ素は実質的にJ
CPDS(09−0250)のα−窒化ケイ素と同定さ
れることを特徴とする請求項1記載の窒化ケイ素焼結
体。
4. The α-silicon nitride in the sintered body is substantially J
The silicon nitride sintered body according to claim 1, which is identified as α-silicon nitride of CPDS (09-0250).
JP3346721A 1991-10-21 1991-12-27 Silicon nitride sintered product Pending JPH05170541A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP3-272633 1991-10-21
JP27263391 1991-10-21

Publications (1)

Publication Number Publication Date
JPH05170541A true JPH05170541A (en) 1993-07-09

Family

ID=17516650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3346721A Pending JPH05170541A (en) 1991-10-21 1991-12-27 Silicon nitride sintered product

Country Status (1)

Country Link
JP (1) JPH05170541A (en)

Similar Documents

Publication Publication Date Title
KR0177893B1 (en) Sintered silicon nitride-based body and process for producing the same
US5275772A (en) Silicon nitride sintered body and process for producing the same
JPH05148026A (en) Sintered silicon nitride
JP2539968B2 (en) Silicon nitride-based sintered body
JPH05170541A (en) Silicon nitride sintered product
JP2539961B2 (en) Silicon nitride based sintered body and method for producing the same
JPH05124867A (en) Silicon nitride-based sintered compact
JP2597774B2 (en) Silicon nitride based sintered body and method for producing the same
JP3034100B2 (en) Silicon nitride sintered body and method for producing the same
JPH05105522A (en) Silicon nitride-based sintered compact
JP3124863B2 (en) Silicon nitride sintered body and method for producing the same
JP3124865B2 (en) Silicon nitride sintered body and method for producing the same
JPH09165264A (en) Silicon nitride sintetred product and its production
JPH05155663A (en) Silicon nitride sintered body
JP3143992B2 (en) Silicon nitride based sintered body
JP3124862B2 (en) Method for producing silicon nitride based sintered body
JPH0558739A (en) Silicon nitride sintered body and its production
JP2652936B2 (en) Silicon nitride sintered body and method for producing the same
JPH05148028A (en) Production of sintered silicon nitride
JPH05208869A (en) Silicon nitride cutting tool
JP3124864B2 (en) Silicon nitride sintered body and method for producing the same
JPH06316465A (en) Silicon nitride-based sintered compact and production thereof
JPH02233560A (en) High-strength calcined sialon-based compact
JP2801447B2 (en) Method for producing silicon nitride based sintered body
JP2783711B2 (en) Silicon nitride sintered body