JPH0558739A - Silicon nitride sintered body and its production - Google Patents

Silicon nitride sintered body and its production

Info

Publication number
JPH0558739A
JPH0558739A JP3131589A JP13158991A JPH0558739A JP H0558739 A JPH0558739 A JP H0558739A JP 3131589 A JP3131589 A JP 3131589A JP 13158991 A JP13158991 A JP 13158991A JP H0558739 A JPH0558739 A JP H0558739A
Authority
JP
Japan
Prior art keywords
sintered body
silicon nitride
sialon
auxiliary agent
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3131589A
Other languages
Japanese (ja)
Inventor
Takao Nishioka
隆夫 西岡
Takehisa Yamamoto
剛久 山本
Kenji Matsunuma
健二 松沼
Masaya Miyake
雅也 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP3131589A priority Critical patent/JPH0558739A/en
Publication of JPH0558739A publication Critical patent/JPH0558739A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To provide a silicon nitride sintered body having excellent mechanical strength especially at room temp. and advatages in productivity and cost. CONSTITUTION:This silicon nitride sintered body has the compsn. of Si3N4-first aid (Y2O3+MgO)-second aid (one or two of Al2O3 and AlN) in the range defined by ABCD in fig. 1. The sintered body has >=98% relative density and contains body of alpha'-sialon (including alpha-Si3N4) and beta'-sialon (beta-Si3N4) in the crystalline phase. The silicon nitride sintered body is produced by subjecting a compacted body of the source material described above to first sintering at 1500-1700 deg.C in N2 gas of <=1.1 atm. to obtain a body having >=96% relative density, and then subjecting it to second sintering at 1500-1700 deg.C in N2 gas of >=10 atm. to obtain the objective body having >=98% relative density.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はとくに常温において優れ
た機械的強度を有し、生産性、コスト面において優れた
窒化ケイ素系焼結体およびその製造法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silicon nitride sintered body which has excellent mechanical strength at room temperature and is excellent in productivity and cost, and a method for producing the same.

【0002】[0002]

【従来の技術】従来、窒化ケイ素系材料の強度向上を目
的として、焼結方法、焼結助剤、含有結晶相の限定など
様々な研究開発が行われてきた。たとえば、焼結法に関
しては、ホットプレス焼結法では、Am.Ceram.
Soc.Bull.,52(1973)pp560で〜
100kg/mm2(曲げ強度)が実現されており、ま
たガラスカプセルによる熱間静水圧プレス法(HIP
法)等も開発されている。こうした手法では焼結体の強
度特性の面では優れた特性が得られているものの、生産
性、コストの面で優れた手法とは言えない。一方、こう
した問題に対して、ガス圧焼結法(例えば、三友、粉体
と工業、12巻、12号、pp27、1989)がある
が、本方法では最終の焼結体の緻密化をβ−Si34
晶の粒成長に伴なうため、粗大結晶粒の析出による強度
劣化をまねく可能性が高いことに加え、一般には、10
気圧以上のN2ガス圧をかけ焼結を実施するため、ホッ
トプレス法やHIP法と同様に焼結設備が大型となり、
特性面、生産面で十分優れた手法とは言えない。他方、
焼結助剤に関しては、主たる助剤としてY23を用いた
Si34−Al23−Y23系の窒化ケイ素系焼結体が
特公昭49−21091号、特公昭48−38448号
に開示されている。これらは、該特許明細書中に示され
ているように、β−Si34結晶粒が焼結体中で繊維状
組織を形成し、これがマトリックス中に分散することか
ら強度、靭性を向上しうるものと考えられている。すな
わちこれは、β−Si34結晶形が六方晶でありC軸方
向に結晶が異方性成長をすることを積極的に利用したも
のであり、とくに特公昭48−38448号や窯業協会
誌、94巻、pp96、1986に示されるように、繊
維状のβ−Si34結晶粒がC軸方向に10数μm以上
に成長している場合がある。しかしながら、本技術にお
いては、やはりこの粒成長が異常成長や気孔の発生をま
ねき、強度劣化をまねく可能性があり、また本方法での
焼結助剤だけを用いた焼結体では、焼結温度を1700
〜1900℃に上昇させなければ、緻密化が十分図れ
ず、大気圧付近のN2ガス圧焼結では、窒化ケイ素の昇
華分解が生じ、安定した焼結体を得られない場合があ
る。このため同じく、焼結体特性と生産性両面で十分優
れているとは言えない。一方、以上で述べてきた手法で
は、いずれも得られる焼結体の強度が、例えばJIS−
R1601に準拠した3点曲げ強度でせいぜい100k
g/mm2前後であり、様々な窒化ケイ素系材料の応用
を考えた場合、必ずしも十分な特性が得られていない。
2. Description of the Related Art Conventionally, various researches and developments such as a sintering method, a sintering aid, and a limitation of contained crystal phases have been carried out for the purpose of improving the strength of silicon nitride materials. For example, regarding the sintering method, in the hot press sintering method, Am. Ceram.
Soc. Bull. , 52 (1973) pp560-
100 kg / mm 2 (bending strength) has been realized, and the hot isostatic pressing method (HIP
Law) is also being developed. Although such a method has obtained excellent characteristics in terms of strength characteristics of the sintered body, it cannot be said to be an excellent method in terms of productivity and cost. On the other hand, there is a gas pressure sintering method (for example, Sanyu, Powder and Kogyo, Vol. 12, No. 12, pp27, 1989) for such a problem, but in this method, the final densification of the sintered body is β since accompanying the grain growth of -Si 3 N 4 crystal, in addition to it is likely to lead to deterioration in strength due to coarse grain precipitation, in general, 10
Since sintering is performed by applying N 2 gas pressure of atmospheric pressure or more, the sintering equipment becomes large like the hot press method and the HIP method,
It cannot be said that it is a sufficiently excellent method in terms of characteristics and production. On the other hand,
For the sintering aid, Si 3 N 4 -Al 2 O 3 -Y 2 O 3 system of silicon nitride sintered body is Japanese Patent Publication No. 49-21091 using Y 2 O 3 as a main aid, JP-B No. 48-38448. As shown in the patent specification, these improve the strength and toughness because β-Si 3 N 4 crystal grains form a fibrous structure in the sintered body and are dispersed in the matrix. It is considered possible. That is, this is a positive use of the fact that the β-Si 3 N 4 crystal form is a hexagonal crystal and the crystal anisotropically grows in the C-axis direction. In particular, Japanese Examined Patent Publication No. 48-38448 and the Ceramic Society of Japan As shown in the magazine, Vol. 94, pp96, 1986, fibrous β-Si 3 N 4 crystal grains may grow to 10 and several μm or more in the C-axis direction. However, in the present technology, this grain growth may lead to abnormal growth and generation of pores, and may lead to strength deterioration, and in the sintered body using only the sintering aid in this method, Temperature 1700
Unless the temperature is raised to ˜1900 ° C., sufficient densification cannot be achieved, and in N 2 gas pressure sintering near atmospheric pressure, sublimation decomposition of silicon nitride may occur and a stable sintered body may not be obtained. Therefore, similarly, it cannot be said that the sintered body is sufficiently excellent in both characteristics and productivity. On the other hand, in the methods described above, the strength of the obtained sintered body is, for example, JIS-
3-point bending strength conforming to R1601 at most 100k
It is around g / mm 2 , and when considering the application of various silicon nitride materials, sufficient characteristics are not always obtained.

【0003】[0003]

【発明が解決しようとする課題】こうした従来技術にお
ける生産性と焼結体の機械的特性の両立を満足させる手
法を提供するのが本発明の課題である。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a method of satisfying both the productivity and the mechanical properties of the sintered body in the prior art.

【0004】[0004]

【課題を解決するための手段】本発明は、Si34−第
1助剤−第2助剤の3元組成図において、第1助剤がY
23及びMgOの2種よりなる組合せからなり、一方第
2助剤がAlNの1種または2種より選ばれた組合せよ
りなり、その組成の範囲が図1に示される範囲、すなわ
ちSi34と第1助剤の添加組成比がモル%で85:1
5から95:5の範囲であり、かつSi34と第2助剤
の添加組成比がモル%で90:10から98:2の範囲
で示される図1中の点A、B、C、Dで囲まれる範囲に
あり、得られた焼結体中の結晶相にα´−サイアロン
(α−Si34を含む)とβ´−サイアロン(β−Si
34を含む)の双方を含み、その焼結体の相対密度が9
8%以上であることを特徴とする窒化ケイ素系焼結体で
ある。
According to the present invention, in the ternary composition diagram of Si 3 N 4 -first auxiliary agent-second auxiliary agent, the first auxiliary agent is Y.
2 O 3 and MgO, and the second auxiliary agent is a combination selected from one or two of AlN, and the composition range thereof is the range shown in FIG. 1, that is, Si 3 The composition ratio of N 4 and the first auxiliary added is 85: 1 in mol%.
5 to 95: 5 and the addition composition ratio of Si 3 N 4 and the second auxiliary agent is in the range of 90:10 to 98: 2 in mol%, and points A, B and C in FIG. , D, and the crystal phase in the obtained sintered body has α′-sialon (including α-Si 3 N 4 ) and β′-sialon (β-Si).
( Including 3 N 4 ) and the relative density of the sintered body is 9
It is a silicon nitride-based sintered body characterized by being 8% or more.

【0005】本発明では、かかる焼結体が、JISR−
1601に準拠した3点曲げ強度が容易に100kg/
mm2以上の特性を有する知見を得たものである。
In the present invention, such a sintered body is a JISR-
3-point bending strength according to 1601 is easily 100 kg /
The knowledge obtained has characteristics of mm 2 or more.

【0006】又、本発明はα率93%以上、平均粒径が
0.7μm以下の窒化ケイ素原料粉末を用い、これに図
1に示される組成範囲となる助剤を混合してなる混合粉
末より圧粉体を形成し、これを1500〜1700℃、
1.1気圧以下のN2ガス雰囲気中で焼結体相対密度が
96%以上になるよう1次焼結をおこなった後、150
0〜1700℃、10気圧以上のN2ガス雰囲気中で焼
結体相対密度が99%以上になるよう2次焼結をおこな
うことを特徴とする窒化ケイ素系焼結体の製造法であ
る。この製造法は、生産性にも十分優れた焼結体を得る
手法であると同時に、その焼結温度が低いため異常粒成
長に伴う焼結体の特性劣化を生じることもない。本発明
の焼結体が優れた強度特性を得る効果は、微粒で等軸晶
のα´−サイアロン(α−Si34を含む)と柱状化し
たβ´−サイアロン(β−Si34を含む)の両方の結
晶相を複合させることにより、従来の柱状化したβ´−
サイアロン(β−Si34を含む)結晶相のみで構成さ
れた焼結体に比較し、ヤング率、硬度が向上する。これ
は材料の変形抵抗を示す物性値でありセラミック材料の
ような脆性材料では、この値を向上させることが広義で
は材料の強度向上につながるためである。さらにの脆性
材料の破壊の基本概念であるGriffithの理論に
従えば、焼結体の破壊強度σfは次式で与えられる。
The present invention uses a raw material powder of silicon nitride having an α ratio of 93% or more and an average particle size of 0.7 μm or less, and a mixed powder prepared by mixing an auxiliary agent having a composition range shown in FIG. A green compact is formed, which is 1500 to 1700 ° C.
After performing primary sintering in a N 2 gas atmosphere of 1.1 atm or less so that the relative density of the sintered body is 96% or more, 150
This is a method for producing a silicon nitride-based sintered body, which comprises performing secondary sintering so that the relative density of the sintered body becomes 99% or more in an N 2 gas atmosphere of 0 to 1700 ° C. and 10 atm or more. This manufacturing method is a method for obtaining a sintered body having excellent productivity, and at the same time, since the sintering temperature is low, the characteristics of the sintered body are not deteriorated due to abnormal grain growth. The effect of the sintered body of the present invention to obtain excellent strength characteristics is that fine particles of equiaxed α′-sialon (including α-Si 3 N 4 ) and columnar β′-sialon (β-Si 3 N) are used. (Including 4 ), the conventional columnarized β'-
The Young's modulus and hardness are improved as compared with the sintered body composed only of the sialon (including β-Si 3 N 4 ) crystal phase. This is because it is a physical property value indicating the deformation resistance of a material, and in the case of a brittle material such as a ceramic material, improving this value leads to an improvement in the strength of the material in a broad sense. Further, according to Griffith's theory, which is the basic concept of fracture of brittle materials, the fracture strength σf of the sintered body is given by the following equation.

【0007】σf=E・γs/4a、E;ヤング率、γ
s;破壊の表面エネルギー、a;先在亀裂長さここでγ
sは粒界相の組成と厚みに依存すると考えられるため、
とくに厚みの点で結晶粒の存在密度を向上させる結晶相
の複合化は有利である。また本式に従えば、破壊強度を
向上させるためにはEの増大とaの減少が重要である。
aの値は工程上不可避な欠陥寸法を排除すれば、結晶粒
径に依存するため、微細結晶粒で充填性を向上させた本
発明はE、γsの点で強度向上に有効である。こうした
α´−サイアロン(α−Si34を含む)と柱状化した
β´−サイアロン(β−Si34を含む)の両方の結晶
相を複合させる考え方は、例えば特開昭61−9106
5号や特開平2−44066号に開示されているが、い
ずれも組成的にはSi34−AlN−MO(M;Mg
O、Y23、CaO等)の3成分系が主であり、その範
囲もAlNとMOの添加比がモル%で1:9の限定され
た範囲で強度等の機械的特性の向上を示したものであ
り、またその実施例でも明らかなように各焼結体の強度
特性が曲げ強度で100kg/mm2を安定して越える
焼結体製法はいずれもホットプレス法によるものであ
り、工業的に安定して高い強度特性を得るまでに至って
いない。本発明はこうした条件の限定がなく工業的に安
定して高強度な焼結体を提供することにある。
Σf = E · γs / 4a, E; Young's modulus, γ
s; surface energy of fracture, a; pre-existing crack length where γ
Since s is considered to depend on the composition and thickness of the grain boundary phase,
In particular, it is advantageous to combine the crystal phases to improve the existing density of crystal grains in terms of thickness. Further, according to this formula, it is important to increase E and decrease a in order to improve the fracture strength.
Since the value of a depends on the crystal grain size if the defect size unavoidable in the process is excluded, the present invention in which the filling property is improved by fine crystal grains is effective in improving the strength in terms of E and γs. The concept of combining both α′-sialon (including α-Si 3 N 4 ) and columnar β′-sialon (including β-Si 3 N 4 ) crystal phases is disclosed in, for example, Japanese Patent Laid-Open No. 61- 9106
No. 5 and JP-A No. 2-44066, both of which are compositionally Si 3 N 4 -AlN-MO (M; Mg).
O, Y 2 O 3 , CaO, etc.) is mainly used as a three-component system, and in that range, the mechanical properties such as strength are improved in a limited range where the addition ratio of AlN and MO is mol% of 1: 9. As is clear from the examples, the sintered body manufacturing method in which the strength characteristics of each sintered body stably exceeds 100 kg / mm 2 in bending strength is based on the hot pressing method. It has not reached the point of obtaining industrially stable and high strength characteristics. The present invention is to provide an industrially stable and high-strength sintered body that is not limited to such conditions.

【0008】本発明の詳細な作用の説明をすると、組成
の範囲が図1に示される範囲、すなわちSi34と第1
助剤の添加組成比がモル%で85:15から95:5の
範囲であり、かつSi34と第2助剤の添加組成比がモ
ル%で90:10から98:2の範囲で示される図1中
の点A、B、C、Dで囲まれる範囲とするのは、Si3
4と第1助剤の添加組成比がモル%で85:15より
第1助剤側へずれるとα´−サイアロン(α−Si34
を含む)の含有量が高く、焼結体強度の劣化をまねく原
因になるとともに、焼結中の雰囲気の影響を受け、焼結
体表面に強度等の特性を劣化させる表面層を生成するた
めである。また同組成比が95:5よりSi34側へず
れると焼結性が低下しホットプレス法等の加圧焼結法を
用いなければ十分緻密な焼結体を得ることができないた
めである。一方Si34と第2助剤の添加組成比がモル
%で90:10を越えて第2助剤側へずれるとβ´−サ
イアロン(β−Si34を含む)の粗大結晶が選択的に
生成するため強度劣化をまねくとともに、やはり焼結中
の雰囲気の影響を受け、焼結体表面に強度等の特性を劣
化させる表面層を生成するためである。また同組成比が
98:2よりSi34側へずれると焼結性が低下しホッ
トプレス法等の加圧焼結法を用いなければ、十分緻密な
焼結体を得ることができないためである。さらに本発明
の効果を顕著にするためには、焼結体中のα´−サイア
ロン(α−Si34を含む)とβ´−サイアロン(β−
Si34を含む)の結晶相の析出比がX線回折のピーク
強度比で、5:95から30:70の範囲に析出させる
ことが好ましい。この析出比が5:95を越えて低α´
−サイアロン(α−Si34を含む)側へずれると結晶
相の複合化の効果が十分現れず強度向上の効果が十分で
はない。また析出比が30:70を越えて高α´−サイ
アロン(α−Si34を含む)側へずれるとβ´−サイ
アロン(β−Si34を含む)の柱状晶組織の効果が減
少しやはり結晶相の複合化の効果が十分現れず強度向上
の効果が十分ではない。
Explaining the detailed operation of the present invention, the composition range is as shown in FIG. 1, that is, Si 3 N 4 and the first range.
When the additive composition ratio of the auxiliary agent is in the range of 85:15 to 95: 5 in mol%, and the additive composition ratio of Si 3 N 4 and the second auxiliary agent is in the range of 90:10 to 98: 2 in the case of mol%. The range surrounded by points A, B, C and D in FIG. 1 is Si 3
If the additive composition ratio of N 4 and the first auxiliary is mol% and shifts from 85:15 to the first auxiliary side, α′-sialon (α-Si 3 N 4
Content is high, which causes deterioration of the strength of the sintered body, and produces a surface layer that deteriorates the properties such as strength on the surface of the sintered body under the influence of the atmosphere during sintering. Is. Further, if the composition ratio deviates from 95: 5 to the Si 3 N 4 side, the sinterability deteriorates, and a sufficiently dense sintered body cannot be obtained unless a pressure sintering method such as a hot pressing method is used. is there. On the other hand, when the additive composition ratio of Si 3 N 4 and the second auxiliary exceeds 90:10 in mol% and shifts toward the second auxiliary, coarse crystals of β′-sialon (including β-Si 3 N 4 ) are formed. This is because the strength is deteriorated because it is selectively generated, and the surface layer that deteriorates characteristics such as strength is also generated on the surface of the sintered body due to the influence of the atmosphere during sintering. Further, if the composition ratio deviates from 98: 2 to the Si 3 N 4 side, the sinterability deteriorates and a sufficiently dense sintered body cannot be obtained unless a pressure sintering method such as a hot pressing method is used. Is. Further, in order to make the effect of the present invention remarkable, α'-sialon (including α-Si 3 N 4 ) and β'-sialon (β- in the sintered body.
The precipitation ratio of the crystal phase of (including Si 3 N 4 ) is preferably in the range of 5:95 to 30:70 as the peak intensity ratio of X-ray diffraction. This precipitation ratio exceeds 5:95 and low α '
-If it shifts to the sialon (including α-Si 3 N 4 ) side, the effect of compounding the crystal phase does not sufficiently appear and the effect of improving the strength is not sufficient. If the precipitation ratio exceeds 30:70 and shifts to the high α'-sialon (including α-Si 3 N 4 ) side, the effect of the columnar crystal structure of β'-sialon (including β-Si 3 N 4 ) is obtained. As a result, the effect of compounding the crystal phase is not sufficiently exhibited and the effect of improving the strength is not sufficient.

【0009】また本発明の効果はその焼結体の製法条件
も重要である。すなわちα率93%以上、平均粒径が
0.7μm以下の窒化ケイ素原料粉末を用い、図1に示
される組成範囲の助剤となる混合粉末よりなる圧粉体を
1500〜1700℃、1.1気圧以下のN2ガス雰囲
気中で焼結体相対密度が96%以上になるよう1次焼結
をおこなった後、1500〜1700℃、10気圧以上
のN2ガス雰囲気中で焼結体相対密度が99%以上にな
るよう2次焼結をおこなうことがよい。ここで窒化ケイ
素原料としてα率93%以上、平均粒径が0.7μm以
下の窒化ケイ素原料粉末を必要とする理由は低温域での
焼結性を向上させるためである。また本発明の組成の範
囲を選択することにより、焼結条件は1次焼結が150
0〜1700℃、1.1気圧以下のN2ガス雰囲気中の
低温域で可能となった。このため結晶粒の複合化がより
微細な結晶粒により構成され、その効果を顕著にすると
ともに、1次焼結がプッシャー式あるいはベルト式等の
開放型連続焼結炉により、同時に生産性の優れた焼結が
可能となる。この詳細な説明を加えると、一般に強度特
性に優れた窒化ケイ素系材料の焼結法としては、いわゆ
るバッチ式焼結炉によるガス圧焼結が主であるが、この
方式では炉内の温度分布のばらつきやロット間の条件ば
らつき等が必ず生じるために、量産部品等の用途のセラ
ミック材料を安定して供給する製法としては十分とは言
えない。また窒化ケイ素は大気圧のN2雰囲気下では1
700℃以上の温度域で昇華分解するため、加圧N2
囲気下で焼結する必要があり、設備面でバッチ式焼結炉
を用いていた。この点からも本発明はその生産性を同時
に向上させた点で工業的に重要である。ここで焼結温度
を1500〜1700℃としたのは、上述した理由の他
に1500℃未満では焼結体の緻密化が十分図れず、1
700℃を超えると結晶粒の粗大化が顕著になり強度特
性の劣化やばらつきの原因となる。また1次焼結体の相
対密度を96%以上に焼結するのは、2次焼結において
焼結体の緻密化を十分達成するためである。一方2次焼
結条件の焼結温度を1500〜1700℃としたのは、
やはり1500℃未満では焼結体の緻密化が十分図れ
ず、1700℃を超えると焼結粒の粗大化が顕著になり
強度特性の劣化やばらつきの原因となるためである。と
くに2次焼結温度に関しては、1次焼結温度以下が前述
の点で好ましい。また2次焼結を10気圧未満のN2
囲気下で行うと最終の焼結体が十分に緻密化しないため
10気圧以上が好ましい。一方得られた焼結体の相対密
度が99%未満であると、強度特性にばらつきが生じる
ため好ましくない。また上述した条件は、窒化ケイ素原
料粉末の製法がイミド分解法によるものであり、得られ
た焼結体中のα’−サイアロン(α−Si34を含む)
結晶粒の平均粒径が0.5μm以下及び、β’−サイア
ロン(β−Si34を含む)結晶粒の平均粒径が5μm
以下であると、さらに焼結体の強度特性を向上させるの
に好ましい。イミド分解法により得られた窒化ケイ素原
料粉末はα率が高く、結晶粒径の粒度分布も狭いため、
本発明の組成、焼結法の組合せにより、結晶相の複合化
の効果が顕著に現れる。すなわちα’−サイアロン(α
−Si34を含む)結晶粒の平均粒径が0.5μm以下
及び、β’−サイアロン(β−Si34を含む)結晶粒
の平均粒径が5μm以下と非常に微細な形態で両結晶相
が複合されるためである。この範囲で結晶粒が複合され
た焼結体の強度は、その曲げ強度が100kg/mm2
を容易に越えるばかりでなく、そのばらつきもきわめて
少ないためである。以上により本発明の焼結体が強度特
性、生産性、コストに優れたものであることが明らかと
なった。
Further, the effect of the present invention is also important in the manufacturing conditions of the sintered body. That is, using a silicon nitride raw material powder having an α ratio of 93% or more and an average particle size of 0.7 μm or less, a green compact made of a mixed powder that serves as an auxiliary agent in the composition range shown in FIG. After performing primary sintering in a N 2 gas atmosphere of 1 atm or less so that the relative density of the sintered body becomes 96% or more, 1500 to 1700 ° C., relative to the sintered body in an N 2 gas atmosphere of 10 atm or more Secondary sintering is preferably performed so that the density becomes 99% or more. The reason why the silicon nitride raw material powder having an α ratio of 93% or more and an average particle diameter of 0.7 μm or less is required as the silicon nitride raw material is to improve the sinterability in the low temperature range. Further, by selecting the composition range of the present invention, the sintering conditions are as follows:
It became possible in a low temperature range of 0 to 1700 ° C. and N 2 gas atmosphere of 1.1 atm or less. For this reason, the compounding of crystal grains is made up of finer crystal grains, which makes the effect remarkable, and the primary sintering is performed simultaneously by the open type continuous sintering furnace such as the pusher type or the belt type, which is excellent in productivity. Sintering becomes possible. Adding this detailed description, gas pressure sintering in a so-called batch-type sintering furnace is generally the main sintering method for silicon nitride-based materials with excellent strength characteristics. It is not sufficient as a manufacturing method for stably supplying a ceramic material for use in mass-produced parts or the like, because variations in manufacturing conditions, variations in conditions between lots, and the like will always occur. Also, silicon nitride has a value of 1 in an N 2 atmosphere at atmospheric pressure.
Since it decomposes by sublimation in a temperature range of 700 ° C. or higher, it is necessary to sinter under a pressurized N 2 atmosphere, and a batch-type sintering furnace was used in terms of equipment. From this point as well, the present invention is industrially important in that the productivity is improved at the same time. The reason why the sintering temperature is set to 1500 to 1700 ° C. is that the sintered body cannot be sufficiently densified if the temperature is less than 1500 ° C.
If the temperature exceeds 700 ° C., coarsening of crystal grains becomes remarkable, which causes deterioration or variation in strength characteristics. Further, the reason why the relative density of the primary sintered body is sintered to 96% or more is to achieve sufficient densification of the sintered body in the secondary sintering. On the other hand, the reason why the sintering temperature under the secondary sintering condition is 1500 to 1700 ° C. is that
This is also because if the temperature is lower than 1500 ° C., the sintered body cannot be sufficiently densified, and if the temperature exceeds 1700 ° C., the coarsening of the sintered grains becomes remarkable, which causes deterioration or variation in strength characteristics. Particularly, regarding the secondary sintering temperature, the primary sintering temperature or less is preferable from the above point. If the secondary sintering is carried out in an N 2 atmosphere of less than 10 atm, the final sintered body will not be sufficiently densified, so 10 atm or more is preferable. On the other hand, if the relative density of the obtained sintered body is less than 99%, the strength characteristics vary, which is not preferable. Further, the above-mentioned conditions are that the production method of the silicon nitride raw material powder is an imide decomposition method, and α′-sialon (including α-Si 3 N 4 ) in the obtained sintered body is used.
The average grain size of the crystal grains is 0.5 μm or less, and the average grain size of the β′-sialon (including β-Si 3 N 4 ) crystal grains is 5 μm.
The following is preferable for further improving the strength characteristics of the sintered body. The silicon nitride raw material powder obtained by the imide decomposition method has a high α ratio and a narrow grain size distribution of the crystal grain size.
By the combination of the composition and the sintering method of the present invention, the effect of compounding the crystal phase becomes remarkable. That is, α'-sialon (α
-Si 3 N 4 ) average grain size is 0.5 μm or less, and β′-sialon (including β-Si 3 N 4 ) grain size is 5 μm or less, which is a very fine form. This is because both crystal phases are combined with each other. The strength of the sintered body in which the crystal grains are compounded in this range has a bending strength of 100 kg / mm 2
This is because not only it easily crosses, but also its variation is extremely small. From the above, it became clear that the sintered body of the present invention is excellent in strength characteristics, productivity and cost.

【0010】[0010]

【実施例】【Example】

実施例1 平均粒径0.4μm、α結晶化率96%、酸素量1.4
重量%のイミド分解法を製法とする窒化ケイ素原料粉末
および、平均粒径0.8μm、0.4μm、0.5μm
のY23、Al23、AlN、MgOの各粉末を表1に
示す組成で、エタノール中、100時間、ナイロン製ボ
ールミルにて湿式混合したのち、乾燥して得られた混合
粉末を3000kg/cm2でCIP成形し、この成形
体をN2ガス1気圧中で1500℃で6時間、1650
℃で3時間1次焼結した。得られた焼結体を1600
℃、1000気圧N2ガス雰囲気中で1時間、2次焼結
した。この焼結体よりJISR1601に準拠した3m
m×4mm×40mm相当の抗折試験片を切り出し、#
800ダイヤモンド砥石により切削加工仕上げした後、
引張面については#3000のダイヤモンドペーストに
よりラッピング仕上げ加工した後、JISR1601に
準拠して3点曲げ強度を15本ずつ実施した。表2中に
は1次焼結体の相対密度、2次焼結体の相対密度、結晶
相の比率と曲げ強度及びワイブル係数を示した。なお、
結晶相の比率に関してはX線回折法により求めた各結晶
相のピーク高さ比より算出した。
Example 1 Average particle size 0.4 μm, α crystallization rate 96%, oxygen amount 1.4
Raw material powder of silicon nitride produced by the imide decomposition method with weight% and average particle diameters of 0.8 μm, 0.4 μm and 0.5 μm
Y 2 O 3 , Al 2 O 3 , AlN, and MgO powders having the composition shown in Table 1 were wet-mixed in ethanol for 100 hours in a nylon ball mill, and then dried to obtain a mixed powder. CIP molding was performed at 3000 kg / cm 2 , and this molded body was subjected to 1650 at 1500 ° C. for 6 hours in 1 atmosphere of N 2 gas.
Primary sintering was performed at ℃ for 3 hours. The obtained sintered body is 1600
Secondary sintering was carried out in an atmosphere of N 2 gas at 1000 ° C. for 1 hour. 3m from this sintered body according to JISR1601
Cut a bending test piece equivalent to mx 4 mm x 40 mm,
After cutting and finishing with 800 diamond grindstone,
The tensile surface was lapped with # 3000 diamond paste, and then subjected to 15-point three-point bending strength according to JIS R1601. Table 2 shows the relative density of the primary sintered body, the relative density of the secondary sintered body, the ratio of the crystal phases, the bending strength, and the Weibull coefficient. In addition,
The crystal phase ratio was calculated from the peak height ratio of each crystal phase obtained by the X-ray diffraction method.

【0011】[0011]

【表1】 [Table 1]

【0012】[0012]

【表2】 [Table 2]

【0013】実施例2 市販の直接窒化法により得られた窒化ケイ素原料粉末
(平均粒径=0.7μm、α結晶化率=93%、酸素量
=1.5重量%)に実施例1と同様の助剤粉末を実施例
1の組成1〜5になるよう、実施例1と同様の手法で混
合、乾燥し成形した。この成形体をN2ガス1気圧中で
1550℃で5時間、1650℃で2時間1次焼結した
後、1600℃、1000気圧N2ガス雰囲気中で1時
間、2次焼結した。この焼結体より実施例1と同様の手
法によりJISR1601に準拠した抗折試験片を加工
し、同様の評価に供試した。この結果を表3に示す。
Example 2 A silicon nitride raw material powder (average particle size = 0.7 μm, α crystallization rate = 93%, oxygen amount = 1.5% by weight) obtained by a commercially available direct nitriding method was used. The same auxiliary agent powders were mixed, dried and molded in the same manner as in Example 1 so as to have the compositions 1 to 5 of Example 1. 5 hours at 1550 ° C. The molded body in a N 2 gas 1 atm, after 2 hours primary sintering at 1650 ° C., 1600 ° C., 1 hour at 1000 atm N 2 gas atmosphere and secondary sintering. A bending test piece according to JIS R1601 was processed from this sintered body by the same method as in Example 1, and subjected to the same evaluation. The results are shown in Table 3.

【0014】[0014]

【表3】 [Table 3]

【0015】実施例3 実施例1と同様の原料粉末を、実施例1で示した組成1
〜5について同様の手法で混合、乾燥、成形した。得ら
れた成形体をN2ガス1気圧中で1500℃で6時間、
1650℃で3時間1次焼結した後、連続して1600
℃、80気圧N 2ガス雰囲気中で2時間、2次焼結し
た。得られた焼結体より、実施例1と同様の手法でJI
SR1601に準拠した抗折試験片を切り出し、実施例
1と同様の手法で評価した。この結果を表4に示す。
Example 3 A raw material powder similar to that of Example 1 was used as the composition 1 shown in Example 1.
About 5 to 5 were mixed, dried and molded by the same method. Got
The molded body26 hours at 1500 ℃ in 1 atmosphere of gas,
After primary sintering at 1650 ° C for 3 hours, continuous 1600
℃, 80 bar N 2Secondary sintering for 2 hours in gas atmosphere
It was From the obtained sintered body, a JI was prepared in the same manner as in Example 1.
A bending test piece conforming to SR1601 was cut out and used as an example.
Evaluation was performed in the same manner as in 1. The results are shown in Table 4.

【0016】[0016]

【表4】 [Table 4]

【0017】[0017]

【発明の効果】本発明によれば、特に常温において優れ
た機械的強度を有する窒化ケイ素系焼結体を、生産性、
コスト面において有利に提供される。
According to the present invention, a silicon nitride-based sintered body having excellent mechanical strength, particularly at room temperature, can be produced
It is advantageously provided in terms of cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明における組成範囲を示す3元組成図であ
る。
FIG. 1 is a ternary composition diagram showing a composition range in the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 三宅 雅也 兵庫県伊丹市昆陽北一丁目1番1号 住友 電気工業株式会社伊丹製作所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masaya Miyake 1-1-1 Kunyo Kita, Itami City, Hyogo Prefecture Sumitomo Electric Industries, Ltd. Itami Works

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 Si34−第1助剤−第2助剤の3元組
成図において、第1助剤がY23及びMgOの2種より
なる組合わせからなり、一方第2助剤がAl23及びA
lNの1種または2種より選ばれた組合わせよりなり、
その組成の範囲が図1に示される範囲、すなわちSi3
4と第1助剤の添加組成比がモル%で85:15から
95:5の範囲であり、かつSi34と第2助剤の添加
組成比がモル%で90:10から98:2の範囲で示さ
れる図1中の点A、B、C、Dで囲まれる範囲にあり、
得られた焼結体中の結晶相にα´−サイアロン(α−S
34を含む)とβ´−サイアロン(β−Si34を含
む)の双方を含み、その焼結体の相対密度が98%以上
であることを特徴とする窒化ケイ素系焼結体。
1. In a ternary composition diagram of Si 3 N 4 -first auxiliary agent-second auxiliary agent, the first auxiliary agent is a combination of two kinds of Y 2 O 3 and MgO, while the second auxiliary agent is the second auxiliary agent. Auxiliary agents are Al 2 O 3 and A
1N or a combination selected from 2 types,
The composition range is shown in FIG. 1, that is, Si 3
The additive composition ratio of N 4 and the first auxiliary agent is in the range of 85:15 to 95: 5 in mol%, and the additive composition ratio of Si 3 N 4 and the second auxiliary agent is in the range of 90:10 to 98% in mol%. : In a range surrounded by points A, B, C, and D in FIG.
Α′-sialon (α-S) was added to the crystal phase in the obtained sintered body.
i 3 N 4 ) and β′-sialon (including β-Si 3 N 4 ), and the relative density of the sintered body is 98% or more. body.
【請求項2】 焼結体中のα´−サイアロン(α−Si
34を含む)とβ’−サイアロン(β−Si34を含
む)の結晶相の析出比がX線回折のピーク強度比で、
5:95から30:70の範囲にあることを特徴とする
請求項1記載の窒化ケイ素系焼結体。
2. An α'-sialon (α-Si in a sintered body.
3 N 4 included) and β′-sialon (including β-Si 3 N 4 ) crystal phase precipitation ratio is a peak intensity ratio of X-ray diffraction,
The silicon nitride-based sintered body according to claim 1, which is in the range of 5:95 to 30:70.
【請求項3】 焼結体中のα´−サイアロン(α−Si
34を含む)結晶粒の平均粒径が0.5μm以下及び、
β´−サイアロン(β−Si34を含む)結晶粒の平均
粒径が5μm以下であることを特徴とする請求項1又は
2記載の窒化ケイ素系焼結体。
3. An α'-sialon (α-Si in a sintered body.
( Including 3 N 4 ) the average grain size of the crystal grains is 0.5 μm or less, and
The average particle diameter of β'-sialon (including β-Si 3 N 4 ) crystal grains is 5 μm or less, and the silicon nitride based sintered body according to claim 1 or 2.
【請求項4】 α率93%以上、平均粒径が0.7μm
以下の窒化ケイ素原料粉末を用い、これに図1に示され
る組成範囲となる助剤を混合してなる混合粉末より圧粉
体を形成し、これを1500〜1700℃、1.1気圧
以下のN2ガス雰囲気中で焼結体相対密度が96%以上
になるよう1次焼結をおこなった後、1500〜170
0℃、10気圧以上のN2ガス雰囲気中で焼結体相対密
度が99%以上になるよう2次焼結をおこなうことを特
徴とする窒化ケイ素系焼結体の製造法。
4. The α ratio is 93% or more, and the average particle size is 0.7 μm.
The following silicon nitride raw material powder was used, and a powder compact was formed from a mixed powder obtained by mixing an auxiliary agent having a composition range shown in FIG. 1 with the powder at 1500 to 1700 ° C. and 1.1 atm or less. After performing primary sintering in a N 2 gas atmosphere so that the relative density of the sintered body is 96% or more, 1500 to 170
A method for producing a silicon nitride-based sintered body, which comprises performing secondary sintering so that the relative density of the sintered body becomes 99% or more in an N 2 gas atmosphere at 0 ° C. and 10 atm or more.
【請求項5】窒化ケイ素原料粉末がイミド分解法により
得られるものである請求項4記載の窒化ケイ素系焼結体
の製造法。
5. The method for producing a silicon nitride-based sintered body according to claim 4, wherein the silicon nitride raw material powder is obtained by an imide decomposition method.
JP3131589A 1991-05-08 1991-05-08 Silicon nitride sintered body and its production Pending JPH0558739A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3131589A JPH0558739A (en) 1991-05-08 1991-05-08 Silicon nitride sintered body and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3131589A JPH0558739A (en) 1991-05-08 1991-05-08 Silicon nitride sintered body and its production

Publications (1)

Publication Number Publication Date
JPH0558739A true JPH0558739A (en) 1993-03-09

Family

ID=15061589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3131589A Pending JPH0558739A (en) 1991-05-08 1991-05-08 Silicon nitride sintered body and its production

Country Status (1)

Country Link
JP (1) JPH0558739A (en)

Similar Documents

Publication Publication Date Title
EP0589411B1 (en) Silicon nitride sintered body and process for producing the same
US5204297A (en) Silicon nitride sintered body and process for producing the same
JPH11314969A (en) High heat conductivity trisilicon tetranitride sintered compact and its production
JP3395247B2 (en) Silicon nitride based sintered body
JPH09268069A (en) Highly heat conductive material and its production
JP2539961B2 (en) Silicon nitride based sintered body and method for producing the same
JP2597774B2 (en) Silicon nitride based sintered body and method for producing the same
JPH05148026A (en) Sintered silicon nitride
JP3143992B2 (en) Silicon nitride based sintered body
JPH0558739A (en) Silicon nitride sintered body and its production
JP2539968B2 (en) Silicon nitride-based sintered body
JP3137405B2 (en) Manufacturing method of silicon nitride based ceramics
JPH05148028A (en) Production of sintered silicon nitride
JPH09165264A (en) Silicon nitride sintetred product and its production
JPH0570232A (en) Production of silicon nitride-based sintered body
JPH05124867A (en) Silicon nitride-based sintered compact
JPH05155663A (en) Silicon nitride sintered body
JPH11322438A (en) High thermal conductive silicon nitride sintered compact and its production
JP2004091243A (en) Method for manufacturing sintered compact of silicon nitride, and sintered compact of silicon nitride
JPH05170541A (en) Silicon nitride sintered product
JPH05208869A (en) Silicon nitride cutting tool
JPH11130543A (en) Beta-type silicon nitride crystal and its production and production of silicon nitride-based sintered compact
JPH05105522A (en) Silicon nitride-based sintered compact
JPH1129361A (en) Silicon nitride sintered product and its production
JPH07101777A (en) Silicon nitride sintered compact and its production

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees