JP2533190B2 - Automatic ultrasonic flaw detection method for solid insulators - Google Patents

Automatic ultrasonic flaw detection method for solid insulators

Info

Publication number
JP2533190B2
JP2533190B2 JP1123075A JP12307589A JP2533190B2 JP 2533190 B2 JP2533190 B2 JP 2533190B2 JP 1123075 A JP1123075 A JP 1123075A JP 12307589 A JP12307589 A JP 12307589A JP 2533190 B2 JP2533190 B2 JP 2533190B2
Authority
JP
Japan
Prior art keywords
solid
flaw detection
insulator
ultrasonic flaw
probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1123075A
Other languages
Japanese (ja)
Other versions
JPH02302662A (en
Inventor
純一 松尾
正一 坂本
松雄 冨永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP1123075A priority Critical patent/JP2533190B2/en
Publication of JPH02302662A publication Critical patent/JPH02302662A/en
Application granted granted Critical
Publication of JP2533190B2 publication Critical patent/JP2533190B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/269Various geometry objects
    • G01N2291/2697Wafer or (micro)electronic parts

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は中実碍子、長幹碍子のような中実の磁器本体
の周囲に多数の笠を備えた物体(以下、中実碍子類とい
う)の内部の探傷を行うために用いられる中実碍子類の
自動超音波探傷方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention relates to a solid porcelain body such as a solid porcelain insulator and a long porcelain insulator, which is provided with a plurality of shades (hereinafter referred to as solid porcelain) ) Relates to an automatic ultrasonic flaw detection method for solid insulators used for flaw detection inside.

(従来の技術) 一般に中実碍子類の磁器本体の両端は、焼成後に不要
部分の切断と研摩とが行われ、平滑な端面とされてい
る。そこで中実碍子類の磁器内部の欠陥の有無を検査す
るために、これらの研摩された両端面に超音波探傷器の
探触子を接触させ、超音波探傷試験が行われている。
(Prior Art) In general, both ends of a solid porcelain porcelain body are cut and polished to remove unnecessary portions after firing, thereby forming smooth end faces. Therefore, in order to inspect the presence or absence of defects inside the porcelain of the solid insulators, the ultrasonic flaw detector test is conducted by bringing the probe of the ultrasonic flaw detector into contact with these polished both end surfaces.

このような探触子の指向角は、一般に次式によって求
めることができる。
The directivity angle of such a probe can be generally obtained by the following equation.

θ≒70×λ/2a(度) ここでθは探触子の指向角、aは探触子の半径、λ
は超音波の波長を示す。実測データによれば中実碍子類
の内部の音速は5900m/secであり、使用される探触子の
半径は10mm、振動周波数は2.0MHzが普通であるので、こ
れらの値を上式に代入すると探触子の指向角θは約10
度となり、これを図示すると第4図のようになる。中実
碍子類の最大径は225mm、全長1218mmであるが、この最
大サイズの製品における音の拡がりは第4図のように端
面から638mmの距離で胴径と等しい225mmの直径の円とな
る。従って上下の端面から探傷すれば、ほぼ磁器本体全
体を欠陥検出範囲とすることができるので、探触子は碍
子端面の中心に置けばよいことが分かる。そこで従来は
このような方法により中実碍子類の内部の欠陥の有無を
検査していた。
θ 0 ≈ 70 × λ / 2a (degrees) where θ 0 is the directivity angle of the probe, a is the radius of the probe, and λ
Indicates the wavelength of ultrasonic waves. According to the measured data, the sound velocity inside the solid insulators is 5900 m / sec, the radius of the probe used is 10 mm, and the vibration frequency is 2.0 MHz, so substitute these values into the above formula. Then, the directivity angle θ 0 of the probe is about 10
This is shown in FIG. 4. The maximum diameter of solid insulators is 225 mm, and the total length is 1218 mm, but the spread of sound in products of this maximum size is a circle with a diameter of 225 mm equal to the body diameter at a distance of 638 mm from the end face as shown in FIG. Therefore, if flaw detection is performed from the upper and lower end faces, the entire porcelain body can be set as the defect detection range, and it is understood that the probe can be placed at the center of the insulator end face. Therefore, conventionally, the presence or absence of defects inside solid insulators has been inspected by such a method.

ところが中実碍子類には胴部に多数の笠があるため、
内部に欠陥がない場合にも上記の探傷法による探傷波形
は第1図のような林状エコーのある特殊な波形となる。
これは各笠からのエコーが相互に干渉しあうためである
と考えられる。また内部に欠陥が存在する場合には第2
図に示すように林状エコー中に欠陥エコーF1、F2、F3
発生するので、これらの欠陥エコーを自動的に検出して
不良と判定しているのであるが、欠陥エコーの高さが林
状エコーを越えるものしか検出することができず、林状
エコーの高さが増大すると欠陥エコーが隠されてしまう
ため、内部欠陥の検出精度が低いという問題があった。
However, since solid insulators have many shades in the body,
Even if there is no defect inside, the flaw detection waveform by the flaw detection method described above is a special waveform with a forest echo as shown in FIG.
It is considered that this is because the echoes from each shade interfere with each other. If there is a defect inside, the second
As shown in the figure, defect echoes F 1 , F 2 , and F 3 are generated in the forest echo, so these defect echoes are automatically detected and judged as defective. However, since the defect echo is hidden when the height of the forest echo increases, there is a problem that the internal defect detection accuracy is low.

(発明が解決しようとする課題) 本発明の目的は、上記した従来の問題を解決して、中
実碍子類において不可避的に発生する林状エコーの高さ
を低く抑えることにより、内部欠陥の検出精度を大幅に
向上させた中実碍子類の自動超音波探傷方法を提供する
ことにある。
(Problems to be solved by the invention) An object of the present invention is to solve the above-mentioned conventional problems and to suppress the height of forest echoes that are unavoidably generated in solid insulators to reduce internal defects. An object of the present invention is to provide an automatic ultrasonic flaw detection method for solid insulators whose detection accuracy is significantly improved.

(課題を解決するための手段) 本発明者は上記の課題を解決するために、中実碍子類
における林状エコーの発生状況について試験を重ねた結
果、探触子の接触位置を従来の常識に反して碍子中心軸
から外れた偏心位置とすることにより、林状エコーの高
さを減少できることを見出した。
(Means for Solving the Problem) In order to solve the above-mentioned problems, the present inventor repeatedly tested the occurrence status of the forest echo in solid insulators, and found that the contact position of the probe is a conventional common sense. On the contrary, it was found that the height of the forest echo can be reduced by setting the eccentric position off the central axis of the insulator.

本発明はかかる知見に基づいて完成されたものであっ
て、中実碍子類の上下両端面の碍子中心軸から外れた偏
心位置に探触子を接触させ、探触子を碍子中心軸のまわ
りに1回転させながら中実碍子類の内部を超音波探傷す
ることを特徴とするものである。
The present invention has been completed based on such knowledge, and the probe is brought into contact with the eccentric position deviated from the insulator central axis on the upper and lower end surfaces of the solid insulator, and the probe is rotated around the insulator central axis. It is characterized in that the inside of a solid insulator is ultrasonically flaw-detected while rotating once.

このように、本発明においては中実碍子類の上下両端
面への探触子の接触位置を、碍子中心軸から外れた偏心
位置とする。これにより林状エコーの高さを探触子の接
触位置を碍子中心軸上とした場合の1/2以下とすること
ができる。ところが中心部に内部欠陥があることが分か
っている試料を用いて適切な偏心量を調べたところ、碍
子中心軸から10mmの位置では100%欠陥エコーを検出す
ることができたが、15mmの位置では5回に1回程度の割
合で欠陥エコーを検出することができなかった。従って
偏心量は通常サイズの中実碍子類の場合には15mm以下と
すべきである。
As described above, in the present invention, the contact position of the probe with the upper and lower end surfaces of the solid insulator is the eccentric position deviated from the insulator central axis. As a result, the height of the forest echo can be reduced to 1/2 or less of that when the probe contact position is on the insulator central axis. However, when an appropriate eccentricity amount was investigated using a sample in which it was known that there was an internal defect in the center, 100% defect echo could be detected at a position 10 mm from the insulator center axis, but at a position 15 mm. However, the defect echo could not be detected at a rate of about once every five times. Therefore, the amount of eccentricity should be 15 mm or less for regular size solid insulators.

また第4図に示したように、中実碍子類の上下両端面
から探傷すれば胴部全体が検出可能範囲に入るので、探
触子の位置を固定してもよいと思われたが、探触子を碍
子中心軸のまわりに回転させながら欠陥エコーを観察し
ていると、ある角度では欠陥エコーが消滅することがあ
った。これは中実碍子類の軸方向の曲がり、笠ごとの間
隔のばらつき等に起因して各笠からのエコーが互いに干
渉しあい、たまたま欠陥エコーが消滅したものと考えら
れる。従って本発明においては、探触子を碍子中心軸の
まわりに1回転させながら超音波探傷することにより、
内部欠陥を100%検出することができるようにした。
Further, as shown in FIG. 4, if the flaws are detected from the upper and lower end surfaces of the solid insulator, the whole body is in the detectable range, so it seems that the position of the probe may be fixed. When observing the defect echo while rotating the probe around the central axis of the insulator, the defect echo sometimes disappeared at a certain angle. It is thought that this is because the echoes from each shade interfered with each other due to the bending of the solid insulators in the axial direction and the variation in the distance between the shades, and the defect echo happened to disappear. Therefore, in the present invention, by performing ultrasonic flaw detection while rotating the probe once around the central axis of the insulator,
Made it possible to detect 100% of internal defects.

このように、本発明によれば中実碍子類の笠により発
生する林状エコーの高さを従来の1/2以下とすることが
できるから、林状エコーに隠れていた欠陥エコーの検出
が容易となり、内部欠陥の検出精度を大幅に向上させる
ことができる。
Thus, according to the present invention, since the height of the forest echo generated by the shade of the solid insulator can be 1/2 or less of the conventional one, it is possible to detect the defect echo hidden in the forest echo. It becomes easy, and the detection accuracy of the internal defect can be greatly improved.

次に本発明の好ましい実施例を示す。 Next, a preferred embodiment of the present invention will be described.

(実施例) 第3図に示すように、磁器本体の直径が200mm、全長1
000mmの中実碍子類(1)の上下の両端面(2)、
(2)の碍子中心軸から5mm偏心させた位置にそれぞれ
探触子(3)、(3)を自動的に接触させ、碍子中心軸
の回りに360度回転させながら振動周波数が2.0MHzの超
音波による超音波探傷試験を行った。
(Example) As shown in FIG. 3, the porcelain body has a diameter of 200 mm and a total length of 1
Both upper and lower end faces (2) of 000mm solid insulators (1),
The transducers (3) and (3) are automatically brought into contact with the positions eccentric to the insulator center axis of (2) by 5 mm, respectively, and the vibration frequency exceeds 2.0 MHz while rotating 360 degrees around the insulator center axis. An ultrasonic flaw detection test using sound waves was performed.

試験中、電子スイッチングデバイスであるマルチプレ
クサ(4)により両端面(2)、(2)の探触子
(3)、(3)が交互に選択され、探傷波形が超音波探
傷器(5)を通じて出力された。出力された超音波探傷
器(5)のアナログ波形はA/D変換器(6)によりデジ
タル化され、コンピュータ(7)に取り込まれてソフト
処理がなされ、欠陥波形のみが検出された。
During the test, the multiplexers (4), which are electronic switching devices, alternately select the probes (3) and (3) on both end faces (2) and (2), and the flaw detection waveform is transmitted through the ultrasonic flaw detector (5). It was output. The output analog waveform of the ultrasonic flaw detector (5) was digitized by the A / D converter (6), taken into the computer (7) and subjected to software processing, and only the defective waveform was detected.

このような本発明の方法により内部に欠陥のある100
本の中実碍子の超音波探傷を行ったところ、100%の精
度で内部欠陥を検出することができた。これに対して探
触子(3)を従来のように碍子中心軸上に固定して同様
の超音波探傷を行ったところ、内部欠陥の検出精度は87
%に低下した。
According to the method of the present invention as described above, an internal defect 100
Ultrasonic flaw detection of a solid insulator in a book was able to detect internal defects with 100% accuracy. On the other hand, when the probe (3) was fixed on the insulator central axis as in the conventional case and the same ultrasonic flaw detection was performed, the internal defect detection accuracy was 87.
%.

(発明の効果) 本発明は以上に説明したように、中実碍子類の自動超
音波探傷試験において、探触子を碍子中心軸から偏心さ
せた位置に置き、かつ碍子中心軸の回りに1回転するこ
とにより林状エコーの高さを減少させ、内部欠陥の検出
精度を格段に向上させることに成功したものである。よ
って本発明は中実SP碍子や長幹碍子のような林状エコー
を生ずる中実碍子類の内部欠陥の検出に好適な中実碍子
類の自動超音波探傷方法として、産業の発展に寄与する
ところは極めて大きいものである。
(Effects of the Invention) As described above, the present invention, in the automatic ultrasonic flaw detection test for solid insulators, places the probe at a position eccentric from the insulator central axis and also 1 By rotating it, the height of the forest echo was reduced and the accuracy of detecting internal defects was significantly improved. Therefore, the present invention contributes to industrial development as an automatic ultrasonic flaw detection method for solid insulators suitable for detecting internal defects in solid insulators that cause forest-like echoes such as solid SP insulators and long stem insulators. However, it is extremely large.

【図面の簡単な説明】[Brief description of drawings]

第1図は内部に欠陥のない中実碍子類の超音波探傷波形
図、第2図は林状エコー中に欠陥エコーF1、F2、F3を含
んだ不良品の示す超音波探傷波形図、第3図は実施例を
説明するブロック図、第4図は中実碍子類の内部におけ
る音波の拡がりと欠陥検出可能範囲との関係を示す断面
図である。 (1):中実碍子類、(2):両端面、(3):探触
子。
Fig. 1 is an ultrasonic flaw detection waveform diagram for solid insulators without defects inside, and Fig. 2 is an ultrasonic flaw detection waveform for defective products containing defect echoes F 1 , F 2 and F 3 in the forest echo. FIG. 3 and FIG. 3 are block diagrams illustrating an embodiment, and FIG. 4 is a cross-sectional view showing the relationship between the spread of sound waves and the defect detectable range inside solid insulators. (1): Solid insulators, (2): Both end faces, (3): Probe.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】中実碍子類(1)の上下両端面(2)、
(2)の碍子中心軸から外れた偏心位置に探触子(3)
を接触させ、探触子(3)を碍子中心軸のまわりに1回
転させながら中実碍子類の内部を超音波探傷することを
特徴とする中実碍子類の自動超音波探傷方法。
1. Upper and lower end surfaces (2) of a solid insulator (1),
The probe (3) is placed at an eccentric position off the insulator central axis of (2).
And the probe (3) is rotated once around the central axis of the insulator to perform ultrasonic flaw detection on the inside of the solid insulators, which is an automatic ultrasonic flaw detection method for solid insulators.
JP1123075A 1989-05-17 1989-05-17 Automatic ultrasonic flaw detection method for solid insulators Expired - Lifetime JP2533190B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1123075A JP2533190B2 (en) 1989-05-17 1989-05-17 Automatic ultrasonic flaw detection method for solid insulators

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1123075A JP2533190B2 (en) 1989-05-17 1989-05-17 Automatic ultrasonic flaw detection method for solid insulators

Publications (2)

Publication Number Publication Date
JPH02302662A JPH02302662A (en) 1990-12-14
JP2533190B2 true JP2533190B2 (en) 1996-09-11

Family

ID=14851572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1123075A Expired - Lifetime JP2533190B2 (en) 1989-05-17 1989-05-17 Automatic ultrasonic flaw detection method for solid insulators

Country Status (1)

Country Link
JP (1) JP2533190B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108072606B (en) * 2018-01-26 2023-09-26 中国南方电网有限责任公司超高压输电公司检修试验中心 Nondestructive testing device for interlayer adhesive force of insulating material and application method thereof
CN115327328B (en) * 2022-10-17 2023-01-20 广东电网有限责任公司 Ultrasonic detection method and device for interface defects of asymmetric epoxy-conductor insert

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63173958A (en) * 1987-01-14 1988-07-18 Ngk Insulators Ltd Automatic ultrasonic flow detection
JPS63243751A (en) * 1987-03-31 1988-10-11 Ngk Insulators Ltd Method, jig and apparatus for ultrasonic flaw detection of rotary body for bearing

Also Published As

Publication number Publication date
JPH02302662A (en) 1990-12-14

Similar Documents

Publication Publication Date Title
EP0655623B1 (en) Relative resonant frequency shifts to detect cracks
US5113697A (en) Process and apparatus for detecting discontinuities on long workpieces
JP2533190B2 (en) Automatic ultrasonic flaw detection method for solid insulators
JPH056145B2 (en)
JPH063305A (en) Method for non-destructively inspecting piezo-electric element for micro-crack
JPS61184458A (en) Measuring device for depth of crack of surface
JP2609647B2 (en) Ultrasonic flaw detector
CN105116057B (en) Small-bore pipe rolling defect ultrasonic probe and matching used test block
JPH07244028A (en) Apparatus and method for ultrasonically detecting flaw on spherical body to be detected
JP2787265B2 (en) Ultrasonic flaw detection method and apparatus
Alleyne Guided Wave Testing for touch point corrosion
JPH03120458A (en) Method and device for detecting defect
JPS61138160A (en) Ultrasonic flaw detector
JPH0212609Y2 (en)
JPS6229023B2 (en)
JPH02208554A (en) Ultrasonic flaw detector
SU864117A1 (en) Ultrasonic method of flaw detection in polycrystalline materials
JPS61286750A (en) Method for flaw detection by standing wave of ultrasonic wave
JP2933778B2 (en) Ultrasonic flaw detection method for insulator tube
Schmitz et al. Practical experiences with LSAFT
JPS62103568A (en) Split type vertical probe
SU1138732A1 (en) Method of ultrasonic checking of article surface flaws
JPS62229061A (en) Nondestructive inspection apparatus
JPH05332996A (en) Detection of surface defect of steel pipe
JPH1164298A (en) Ultrasonic oblique angle flaw detecting apparatus

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080627

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090627

Year of fee payment: 13

EXPY Cancellation because of completion of term