JP2933778B2 - Ultrasonic flaw detection method for insulator tube - Google Patents

Ultrasonic flaw detection method for insulator tube

Info

Publication number
JP2933778B2
JP2933778B2 JP4133674A JP13367492A JP2933778B2 JP 2933778 B2 JP2933778 B2 JP 2933778B2 JP 4133674 A JP4133674 A JP 4133674A JP 13367492 A JP13367492 A JP 13367492A JP 2933778 B2 JP2933778 B2 JP 2933778B2
Authority
JP
Japan
Prior art keywords
flaw detection
waveform
insulator tube
probe
ultrasonic flaw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4133674A
Other languages
Japanese (ja)
Other versions
JPH05322860A (en
Inventor
純一 松尾
薫 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON GAISHI KK
Original Assignee
NIPPON GAISHI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON GAISHI KK filed Critical NIPPON GAISHI KK
Priority to JP4133674A priority Critical patent/JP2933778B2/en
Publication of JPH05322860A publication Critical patent/JPH05322860A/en
Application granted granted Critical
Publication of JP2933778B2 publication Critical patent/JP2933778B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/11Analysing solids by measuring attenuation of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/269Various geometry objects
    • G01N2291/2697Wafer or (micro)electronic parts

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、外周面に回転対称形状
の笠を有する碍管の欠陥の有無を、碍管の内面から超音
波探傷する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for ultrasonically inspecting an insulator tube having a rotationally symmetrical cap on its outer peripheral surface for defects from the inner surface of the insulator tube.

【0002】[0002]

【従来の技術】碍管の内部の欠陥の有無を検査するため
には、従来から超音波探傷方法が使用されている。とこ
ろが碍管は外周面に多数の笠を有するために、探触子か
ら発信された超音波がこれらの笠によって反射して笠エ
コーとなり、図7に示すように欠陥からの反射による欠
陥エコーと入り混じることが避けられない。このために
従来は熟練した作業員が経験により笠エコーと欠陥エコ
ーとを見分けていたが、この方法は作業員による良否判
定のバラツキを招くこととなる。
2. Description of the Related Art An ultrasonic flaw detection method has conventionally been used for inspecting the presence or absence of a defect inside an insulator tube. However, since the porcelain tube has a large number of shades on the outer peripheral surface, the ultrasonic waves transmitted from the probe are reflected by these shades to form shade echoes, and as shown in FIG. Mixing is inevitable. For this reason, a skilled worker conventionally distinguishes a shade echo from a defect echo based on experience. However, this method causes variation in quality judgment by the worker.

【0003】また碍管に要求される信頼性の向上に伴
い、碍管の内面からも超音波探傷を行うことが求められ
ている。しかしこのためには碍管の径に応じて作業員が
碍管の内部に入ったり、腕を入れて探触子を操作する必
要があり、その作業性及び検査精度は低いものであっ
た。
[0003] Further, with the improvement of reliability required for the insulator tube, it is required to perform ultrasonic flaw detection from the inner surface of the insulator tube. However, for this purpose, it is necessary for an operator to enter the inside of the insulator tube or to operate the probe with his / her arm in accordance with the diameter of the insulator tube, and the workability and inspection accuracy are low.

【0004】[0004]

【発明が解決しようとする課題】本発明は上記した従来
の問題点を解決し、外周面に笠を有する碍管の欠陥の有
無を、碍管の内面から精度よく、また能率よく超音波探
傷することができる碍管の超音波探傷方法を提供するた
めに完成されたものである。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned conventional problems, and it is an object of the present invention to accurately and efficiently detect the presence or absence of a defect of an insulator having a cap on the outer peripheral surface from the inner surface of the insulator. It has been completed in order to provide an ultrasonic flaw detection method for an insulator tube that can be used.

【0005】[0005]

【課題を解決するための手段】上記の課題を解決するた
めになされた本発明は、碍管の内面に圧着される探触子
を備えたアームを持つ回転シャフトを碍管の中心軸線上
にセットし、この回転シャフトと碍管との間に相対的な
回転及び軸線方向の変位を与えながら超音波探傷を行
い、このようにして得られた探傷波形を時間軸に沿って
多数の区間に等分割して各区間毎に最大値でピークホー
ルドした波形に変換したうえ、ほぼ同一円周上における
近接した2位置の探傷波形の差により欠陥の有無を判定
することを特徴とするものである。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention is to set a rotary shaft having an arm provided with a probe to be crimped on the inner surface of an insulator tube on the center axis of the insulator tube. Ultrasonic inspection is performed while giving relative rotation and axial displacement between the rotating shaft and the insulator tube, and the inspection waveform thus obtained is equally divided into a number of sections along the time axis. The waveform is converted into a waveform peak-held at the maximum value for each section, and the presence or absence of a defect is determined based on the difference between the flaw detection waveforms at two adjacent positions on substantially the same circumference.

【0006】[0006]

【作用】本発明においては、碍管の中心軸線上にセット
された回転シャフトと碍管との間に相対的な回転及び軸
線方向の変位を与えながら、回転シャフトのアームの先
端の探触子を碍管の内面に圧着させて超音波探傷を行
う。この場合、碍管の笠は回転対称に形成されているの
で、上記の軸線方向の変位の速度を回転速度に比較して
小さく設定しておけば、探触子は碍管のほぼ同一円周上
を移動し、ほぼ同一円周上における探傷波形を得ること
ができる。従って、探傷波形を時間軸に沿って多数の区
間に等分割して各区間毎に最大値でピークホールドした
波形に変換したうえ、近接した2位置の探傷波形の差を
取ると、笠の影響は近接した2位置の探傷波形に同様に
現れるはずであるから、笠の影響はキャンセルされて欠
陥による探傷波形の変化のみを取り出すことができる。
このために本発明の方法によれば、笠の影響を受けるこ
となく碍管の内面からの超音波探傷が可能となる。
According to the present invention, the probe at the tip of the arm of the rotary shaft is provided while the relative rotation and the axial displacement are applied between the rotary shaft and the rotary shaft set on the central axis of the hollow tube. Ultrasonic flaw detection is performed by pressure bonding to the inner surface of the. In this case, since the cap of the insulator tube is formed to be rotationally symmetric, if the above-described displacement speed in the axial direction is set to be smaller than the rotation speed, the probe will move on substantially the same circumference of the insulator tube. It is possible to move and obtain a flaw detection waveform on substantially the same circumference. Therefore, if the flaw detection waveform is equally divided into a number of sections along the time axis and converted into a waveform peak-held at the maximum value for each section, and the difference between the flaw detection waveforms at two adjacent positions is obtained, Should appear similarly in the flaw detection waveforms at two adjacent positions, so that the influence of the shade is canceled and only the change in the flaw detection waveform due to the defect can be extracted.
Therefore, according to the method of the present invention, ultrasonic flaw detection from the inner surface of the insulator tube becomes possible without being affected by the shade.

【0007】[0007]

【実施例】以下に本発明を図示の実施例により、更に詳
細に説明する。図1、図2は本発明の第1の実施例を示
すもので、外周面に回転対称形状の多数の笠2を備えた
碍管1が、2本のロープ3により水平に吊り下げられて
いる。これらのロープ3の一方は動力式の滑車4により
駆動され、他方のロープ3はフリーな滑車5により支持
されたものであって、碍管1をその中心軸線のまわりに
回転させることができる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in more detail with reference to the illustrated embodiments. FIGS. 1 and 2 show a first embodiment of the present invention. An insulator tube 1 provided with a number of rotationally symmetrical caps 2 on the outer peripheral surface is hung horizontally by two ropes 3. . One of these ropes 3 is driven by a powered pulley 4 and the other rope 3 is supported by a free pulley 5 so that the porcelain tube 1 can be rotated around its central axis.

【0008】6は上記の碍管1の中心軸線上にセットさ
れた回転シャフトであり、その上にN本(N=1、2、
3・・)のアーム7が設けられている。実施例ではN=
3であり、3本のアーム7が設けられている。各アーム
7の先端には碍管1の内面に圧着される探触子8が取り
付けられている。説明の都合上、3個の探触子8にA,
B,Cの符号を付けるものとする。実施例の回転シャフ
ト6にはねじが切ってあり、各アーム7の基部と螺合し
ているので、回転シャフト6を回転させることによって
各アーム7とともに探触子8を碍管1の軸線方向に移動
させることができる。
Reference numeral 6 denotes a rotating shaft set on the central axis of the above-mentioned insulator tube 1, and N rotating shafts (N = 1, 2,.
3) are provided. In the embodiment, N =
3 and three arms 7 are provided. A probe 8 that is crimped to the inner surface of the insulator tube 1 is attached to the tip of each arm 7. For the sake of explanation, three probes 8 have A,
The symbols of B and C shall be attached. Since the rotating shaft 6 of the embodiment is threaded and screwed with the base of each arm 7, the probe 8 is moved together with each arm 7 in the axial direction of the insulator tube 1 by rotating the rotating shaft 6. Can be moved.

【0009】探触子8は市販の斜角探触子であり、例え
ば63ヘルツのトリガクロックにより駆動され、チャネ
ルセレクタ9の作用により図3のように一つのトリガク
ロック毎にA,B,Cの探触子8からの探傷波形が演算
装置に順次取り込まれるようになっている。次に図3と
図4を参照しつつ、本発明の超音波探傷工程を説明す
る。
The probe 8 is a commercially available oblique probe, and is driven by a trigger clock of, for example, 63 Hz, and is operated by a channel selector 9 for each of the trigger clocks A, B, C as shown in FIG. The flaw detection waveform from the probe 8 is sequentially taken into the arithmetic unit. Next, the ultrasonic flaw detection step of the present invention will be described with reference to FIGS.

【0010】まず前記したように碍管1を回転させつつ
回転シャフト6を回転させ、各探触子8を碍管1の内面
に沿ってゆるやかな螺旋状に移動させる。しかし碍管1
の軸線方向への探触子8の移動速度は回転速度に比較し
て小さいので、各探触子8は碍管1のほぼ同一円周上を
移動するものと見なすことができる。
First, the rotating shaft 6 is rotated while rotating the porcelain tube 1 as described above, and each probe 8 is moved in a gentle spiral shape along the inner surface of the porcelain tube 1. But insulator 1
Since the moving speed of the probe 8 in the axial direction is smaller than the rotation speed, each probe 8 can be regarded as moving on substantially the same circumference of the insulator tube 1.

【0011】図4のフローチャートに示すように、まず
トリガクロックのナンバーを意味するti を1とする。
そしてti =1に対応するAの探触子8からの探傷波形
の取込みを開始する。このとき、トリガクロック間の探
傷波形を時間軸に沿ってN個の区間に等分割し、分割さ
れた各区間Ni 毎に区間内の波形の最大値をピークホー
ルドさせ、図3の下段に示すような波形に変換する。そ
してN個の区間について変換が終了したらその分のデー
タをメモリへ転送する。メモリは3の倍数分の波形を蓄
積できる容量を持つもので、ここでは説明を単純化する
ためにti =1〜6の6個分の波形を蓄積できるメモリ
(T=6)を使用するものとする。
As shown in the flowchart of FIG. 4, first, t i , which means the number of the trigger clock, is set to one.
Then, the acquisition of the flaw detection waveform from the probe 8 of A corresponding to t i = 1 is started. In this case, equally divided into N intervals along the flaw waveform between the trigger clock in the time axis, to the peak hold the maximum value of the waveform in the interval for each interval N i which is divided, the lower part of FIG. 3 Convert to the waveform shown. When the conversion is completed for the N sections, the data corresponding to the conversion is transferred to the memory. The memory has a capacity capable of storing waveforms corresponding to a multiple of 3, and here, for simplification of description, a memory (T = 6) capable of storing six waveforms of t i = 1 to 6 is used. Shall be.

【0012】上記のようにしてti =1に対応するAの
探触子8からの探傷波形を変換したうえメモリに転送し
たら、次にti =2に対応するBの探触子8からの探傷
波形を同様に変換し、メモリへ転送する。更にti =3
に対応するCの探触子8からの探傷波形をメモリへ転送
し、以下同様にti =4、5、6に対応する第2巡目の
A,B,Cの探傷波形をメモリへ転送する。図3ではA
の探触子8からの探傷波形のみを示してあるが、実際に
はB,Cの探触子8からもそれぞれ異なる探傷波形が生
ずる可能性がある。このようにしてti =6に達したら
次にほぼ同一円周上における(即ち同一の探触子8から
得られた)近接した2位置の探傷波形の差を演算する。
After the flaw detection waveform from the A probe 8 corresponding to t i = 1 is converted and transferred to the memory as described above, then the B probe 8 corresponding to t i = 2 is transferred from the A probe 8 to the memory. Is converted in the same manner and transferred to the memory. Furthermore, t i = 3
Is transferred to the memory, and similarly, the second, A, B, and C flaw detection waveforms corresponding to t i = 4, 5, and 6 are transferred to the memory. I do. In FIG. 3, A
Only the flaw detection waveform from the probe 8 is shown, but actually different flaw detection waveforms may also be generated from the B and C probes 8. In this way, when t i = 6, the difference between the flaw detection waveforms at two adjacent positions on substantially the same circumference (that is, obtained from the same probe 8) is calculated.

【0013】まずti =1とし、実施例ではti =1の
Aの波形とti =4のAの波形との比較を行う。比較は
各区間Ni 毎のピークホールド値の差を求める方法で行
い、その絶対値がしきい値αを越えるか否かによって欠
陥の有無を判定する。前記したように、回転対称形状で
ある笠2の影響は同一円周上における近接した2位置の
探傷波形に同様に現れるはずであるから、ti =1のA
の波形とti =4のAの波形との差を演算すれば笠2の
影響はキャンセルされ、欠陥による波形の変化のみを取
り出すことができる。そして欠陥が検出された場合には
不良信号を発生し、欠陥が検出されない場合にはti
2とし、ti =2のBの波形とti =5のBの波形との
比較を行う。このようにしてti =3のCの波形とti
=6のCの波形との比較を行うことにより1サイクルが
終了し、以下同様の演算が繰り返される。
First, it is assumed that t i = 1, and in the embodiment, the waveform of A at t i = 1 and the waveform of A at t i = 4 are compared. Comparison was carried out by a method for determining the difference between the peak hold value of each section N i, determines absolute value of the presence or absence of a defect on whether exceeds the threshold alpha. As described above, since the influence of the shade 2 is rotationally symmetrical shape should appear similar to the flaw waveform 2 position adjacent on the same circumference, t i = 1 of A
By calculating the difference between the waveform of A and the waveform of A at t i = 4, the influence of the shade 2 is canceled, and only the change in the waveform due to the defect can be extracted. If a defect is detected, a failure signal is generated. If no defect is detected, t i =
2, and a comparison is made between the waveform of B at t i = 2 and the waveform of B at t i = 5. Thus, the waveform of C at t i = 3 and t i
One cycle is completed by comparing with the waveform of C = 6, and the same calculation is repeated thereafter.

【0014】以上に説明したように、第1の実施例にお
いては回転シャフト6上に設けられた3本のアーム7の
探触子8から得られた探傷波形を順次取込み、近接した
2位置の探傷波形の差を順次演算することにより、3つ
の断面位置における超音波探傷を並行処理することが可
能である。なお、上記の実施例ではti =1の波形とす
ぐ隣のti =4の波形とを比較したが、実際にはメモリ
の容量を大きくしておき、もう少し離れた2位置の探傷
波形の差を演算する方が好ましい。
As described above, in the first embodiment, flaw detection waveforms obtained from the probes 8 of the three arms 7 provided on the rotary shaft 6 are sequentially taken in, and the flaw detection waveforms at two adjacent positions are obtained. By sequentially calculating the difference between the flaw detection waveforms, ultrasonic flaw detection at three cross-sectional positions can be performed in parallel. In the above embodiment, the waveform at t i = 1 and the waveform at t i = 4 immediately adjacent thereto were compared. However, in actuality, the capacity of the memory was increased, and the flaw detection waveforms at two positions a little further apart were measured. It is preferable to calculate the difference.

【0015】つぎに図5と図6に、本発明の第2の実施
例を示す。第2の実施例は碍管1を固定し、その中心軸
線上にセットした回転シャフト6を回転させることによ
り、探触子8を碍管1の内面に沿って回転させるように
したものである。この場合には探触子8からの信号を取
り出すケーブルが捩じれることを防止するため、回転方
向を時計方向、反時計方向と交互に逆転させながら超音
波探傷を行う必要がある。また実施例のように同一円周
上を3つの探触子8により探傷するようにしておけば、
回転角度を120 °とすればよく、ケーブルのねじれが少
なくなる。第2の実施例でも3つの探触子8をA,B,
Cとすれば、第1の実施例について説明したと同様に演
算を行い、欠陥による波形変化のみを取り出すことが可
能である。
Next, FIGS. 5 and 6 show a second embodiment of the present invention. In the second embodiment, the probe 8 is rotated along the inner surface of the insulator tube 1 by fixing the insulator tube 1 and rotating the rotary shaft 6 set on the center axis thereof. In this case, in order to prevent a cable for extracting a signal from the probe 8 from being twisted, it is necessary to perform ultrasonic flaw detection while alternately reversing the rotation direction in a clockwise direction and a counterclockwise direction. If the same probe is used to detect flaws on the same circumference as in the embodiment,
The rotation angle may be set to 120 °, and the twist of the cable is reduced. Also in the second embodiment, three probes 8 are A, B,
In the case of C, it is possible to perform the calculation in the same manner as described in the first embodiment and extract only the waveform change due to the defect.

【0016】[0016]

【発明の効果】以上に説明したように、本発明の碍管の
超音波探傷方法によれば、外周面に笠を有する碍管の欠
陥の有無を笠の影響を受けることなく、碍管の内面から
精度よく、また能率よく超音波探傷することができ、特
に超高圧送電用の大型碍管の内部欠陥の有無の検査に好
適なものである。よって本発明は従来の問題点を解消し
た碍管の超音波探傷方法として、産業の発展に寄与する
ところは極めて大きいものである。
As described above, according to the ultrasonic flaw detection method for an insulator tube of the present invention, the presence or absence of a defect of the insulator tube having a shade on the outer peripheral surface can be accurately determined from the inner surface of the insulator tube without being affected by the shade. Ultrasonic flaw detection can be performed efficiently and efficiently, and it is particularly suitable for inspecting the presence or absence of internal defects in a large insulator tube for transmitting ultra-high voltage. Therefore, the present invention, as an ultrasonic flaw detection method for insulator tubes, which solves the conventional problems, greatly contributes to industrial development.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例を説明する断面図であ
る。
FIG. 1 is a cross-sectional view illustrating a first embodiment of the present invention.

【図2】本発明の第1の実施例を説明する側面図であ
る。
FIG. 2 is a side view illustrating the first embodiment of the present invention.

【図3】各探傷子の探傷波形を示すグラフである。FIG. 3 is a graph showing a flaw detection waveform of each flaw detector.

【図4】本発明の波形処理の手順を説明するフローチャ
ートである。
FIG. 4 is a flowchart illustrating a procedure of waveform processing according to the present invention.

【図5】本発明の第2の実施例を説明する断面図であ
る。
FIG. 5 is a sectional view illustrating a second embodiment of the present invention.

【図6】本発明の第2の実施例を説明する側面図であ
る。
FIG. 6 is a side view illustrating a second embodiment of the present invention.

【図7】従来の超音波探傷方法によって碍管を検査した
場合の波形図である。
FIG. 7 is a waveform diagram when an insulator tube is inspected by a conventional ultrasonic inspection method.

【符号の説明】[Explanation of symbols]

1 碍管 2 笠 6 回転シヤフト 7 アーム 8 探触子 DESCRIPTION OF SYMBOLS 1 Insulator pipe 2 Cap 6 Rotary shaft 7 Arm 8 Probe

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) G01N 29/00 - 29/28 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int. Cl. 6 , DB name) G01N 29/00-29/28

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 碍管の内面に圧着される探触子を備えた
アームを持つ回転シャフトを碍管の中心軸線上にセット
し、この回転シャフトと碍管との間に相対的な回転及び
軸線方向の変位を与えながら超音波探傷を行い、このよ
うにして得られた探傷波形を時間軸に沿って多数の区間
に等分割して各区間毎に最大値でピークホールドした波
形に変換したうえ、ほぼ同一円周上における近接した2
位置の探傷波形の差により欠陥の有無を判定することを
特徴とする碍管の超音波探傷方法。
1. A rotary shaft having an arm provided with a probe crimped on the inner surface of a porcelain tube is set on a central axis of the porcelain tube, and a relative rotation and an axial direction between the rotary shaft and the porcelain tube are set. Ultrasonic flaw detection is performed while applying a displacement, and the flaw detection waveform obtained in this manner is equally divided into a number of sections along the time axis, and converted into a waveform peak-held at a maximum value for each section, and is then substantially converted. Close two on the same circumference
An ultrasonic flaw detection method for a porcelain pipe, wherein the presence or absence of a defect is determined based on a difference in flaw detection waveform at a position.
JP4133674A 1992-05-26 1992-05-26 Ultrasonic flaw detection method for insulator tube Expired - Fee Related JP2933778B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4133674A JP2933778B2 (en) 1992-05-26 1992-05-26 Ultrasonic flaw detection method for insulator tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4133674A JP2933778B2 (en) 1992-05-26 1992-05-26 Ultrasonic flaw detection method for insulator tube

Publications (2)

Publication Number Publication Date
JPH05322860A JPH05322860A (en) 1993-12-07
JP2933778B2 true JP2933778B2 (en) 1999-08-16

Family

ID=15110249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4133674A Expired - Fee Related JP2933778B2 (en) 1992-05-26 1992-05-26 Ultrasonic flaw detection method for insulator tube

Country Status (1)

Country Link
JP (1) JP2933778B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10220946A1 (en) * 2002-04-29 2003-12-04 Mannesmann Roehren Werke Ag Method for detecting imperfections on elongated workpieces using ultrasound

Also Published As

Publication number Publication date
JPH05322860A (en) 1993-12-07

Similar Documents

Publication Publication Date Title
JP6088088B1 (en) Ultrasonic flaw detection inspection apparatus and inspection method for anchor bolt
JPH01123143A (en) Method and apparatus for detection of flaw by eddy current
CN104374825A (en) Device and method for automatically detecting ultrasonic phased array of gas storage well
JP2933778B2 (en) Ultrasonic flaw detection method for insulator tube
JPH056145B2 (en)
CN111650282A (en) Ultrasonic C-scan detection method and device for triangular tube made of fiber wound composite material
JPH0394154A (en) Method and device for ultrasonic flaw detection
GB2280507A (en) SCAN - Method and apparatus for ultrasonic testing of tubular products.
JPS5917154A (en) Method and device for detecting defect by ultrasonic wave method
JP2533190B2 (en) Automatic ultrasonic flaw detection method for solid insulators
JP2787265B2 (en) Ultrasonic flaw detection method and apparatus
JPS6159458B2 (en)
JP5505806B2 (en) Discrimination method of reflection echo
JPS59135363A (en) Ultrasonic flaw detection of small diameter thin walled pipe
JPS5831871B2 (en) Ultrasonic flaw detection method
JP2002162390A (en) Method and device for ultrasonic wave inspection
JPH10246793A (en) Inspection method and device for welding part of nuclear fuel rod end plug
JPH0320612A (en) Rotary-body inspecting apparatus
JPH1164298A (en) Ultrasonic oblique angle flaw detecting apparatus
JPS5985955A (en) Method for detecting direction of ultrasonic wave probe
JPH0715456B2 (en) Ultrasonic testing equipment for pipes
JP3445914B2 (en) Ultrasonic inspection method and apparatus
JPS62102152A (en) Ultrasonic flaw inspection method
JPH01187449A (en) Sensitivity calibrating method for ultrasonic flaw detection
JP3064183B2 (en) Ultrasonic probe

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990514

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080528

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100528

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees