JPS5917154A - Method and device for detecting defect by ultrasonic wave method - Google Patents

Method and device for detecting defect by ultrasonic wave method

Info

Publication number
JPS5917154A
JPS5917154A JP57127184A JP12718482A JPS5917154A JP S5917154 A JPS5917154 A JP S5917154A JP 57127184 A JP57127184 A JP 57127184A JP 12718482 A JP12718482 A JP 12718482A JP S5917154 A JPS5917154 A JP S5917154A
Authority
JP
Japan
Prior art keywords
flaw detection
defect
probe
channel
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57127184A
Other languages
Japanese (ja)
Other versions
JPH0245823B2 (en
Inventor
Akio Suzuki
紀生 鈴木
Hiroshi Kajikawa
梶川 弘
Tadashi Nishihara
西原 忠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP57127184A priority Critical patent/JPS5917154A/en
Priority to US06/514,864 priority patent/US4524622A/en
Priority to EP83304211A priority patent/EP0102176B1/en
Priority to DE8383304211T priority patent/DE3373709D1/en
Publication of JPS5917154A publication Critical patent/JPS5917154A/en
Publication of JPH0245823B2 publication Critical patent/JPH0245823B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • G01N29/0609Display arrangements, e.g. colour displays
    • G01N29/0618Display arrangements, e.g. colour displays synchronised with scanning, e.g. in real-time
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/11Analysing solids by measuring attenuation of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/225Supports, positioning or alignment in moving situation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/26Arrangements for orientation or scanning by relative movement of the head and the sensor
    • G01N29/265Arrangements for orientation or scanning by relative movement of the head and the sensor by moving the sensor relative to a stationary material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/36Detecting the response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/38Detecting the response signal, e.g. electronic circuits specially adapted therefor by time filtering, e.g. using time gates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/4445Classification of defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Landscapes

  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To discriminate a defect accurately in the direction, inclination, size, and depth, by transmitting and receiving an ultrasonic wave beam which crosses the center of rotation in a flaw detection area in a material to be inspected, and finding the correlation between a flaw detection pattern and a preset reference pattern. CONSTITUTION:A probe rotating mechanism 7 is scanned by a scanning mechanism 23 in an X-axis and a Y-axis direction, and the scanning mechanism 23 is cotrolled by a controller 24. Pulser receivers 25-28 are provided corresponding to probes 14'17 of four channels CH1-CH4. While the probe rotating mechanism 17 is rotated, ultrasonic wave beams 14a-17a are transmitted to the material 2 to be inspected by the probes 14-17 during flaw detection, and then a reflection echo from the defect 3 in the material 2 to be inspected is received by the pulser receivers 25-28 through the probes 14-17; and analog peak holding circuits 29-32 hold the peak values of signals generated at flaw detection gates 14b- 17b, and 128 flaw detection patterns of every 360 deg./128 from the incidence direction are stored through A/D converters 33-36 and shift registers 37-40 to generate a flaw detection pattern.

Description

【発明の詳細な説明】 本発明は、超音波法による欠陥の検出方法及び装置に関
し、材料の内部に生じた横欠状欠陥等の欠陥の方向、傾
き、大きさ、深さを高速で検出し、かつその欠陥の有害
度を判定すると表を目的とするO 鋳造材には、@造工程において内部にこもったガス等に
よって材料中に横穴状の空胴が発生することがある。こ
の場合、その使用目的によシ欠陥の形状とそれが材料強
度に及FFす有害度が明らかにされているものも少くな
く、数種の鋳造材においては、欠陥の有害度がその平面
透影図上の大きさで規定されている。しかし、材料にか
かる応力の方向性から、同じ長さの横穴状欠陥がX方向
にある場合とY方向にある場合とでは、有害度が異なる
のが通常である。逆に云えば、材料強度的に許容され得
る欠陥の大きさがX方向とY方向とで異なるのが普通で
ある。このような状況のもとでは、横穴状欠陥の形状(
方向、傾き、大きさ)を正確に認識することが必要であ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method and apparatus for detecting defects using an ultrasonic method, and is capable of detecting the direction, inclination, size, and depth of defects such as horizontal defects occurring inside a material at high speed. However, in order to determine the degree of harmfulness of the defect, horizontal hole-shaped cavities may occur in the cast material due to gas trapped inside during the @-casting process. In this case, in many cases, the shape of the defect and its harmfulness to material strength have been clarified depending on the purpose of use, and for some types of cast materials, the harmfulness of the defect is determined by the plane transparency. It is defined by the size on the shadow map. However, due to the directionality of the stress applied to the material, the level of harm is usually different depending on whether a horizontal hole-like defect of the same length is located in the X direction or in the Y direction. Conversely, the size of defects that can be tolerated in terms of material strength usually differs between the X direction and the Y direction. Under such circumstances, the shape of the horizontal hole defect (
It is necessary to accurately recognize the direction, inclination, and size.

処で、このような内部欠陥の検出方法として、被検材の
内部に超音波ビームを発信し、欠陥からのエコーを受信
する超音波法が従来から提供されかつ実用に供されてい
る。しかし、従来の超音波法は、単に探触子を被検材の
探傷域内で所定方向に移動させてエコーを捉えるだけで
あるため、そのエコーを表示媒体上に表示し7た探傷ノ
ζターンから判定し得る要素は極〈限られたものであυ
、横穴状欠陥の形状を完全に捉えることは困難であった
O そこで、本発明者等は、被検材内部の探傷領域で回転中
心と交差するように超音波ビームを送受する斜角探触子
を用い、この斜角探触子を回転中0廻りに回転させなが
ら360°の各方向から超音波ビームの送受を行ない、
探傷ゲート内に生じたエコーのピーク値を超音波ビーム
の入射方向に対応させて表示媒体上に探傷パターンとし
て表示し、この探傷パターンから欠陥の方向、傾き、大
きさ、深さを判定する方法を発明した。これは、従来の
超音波法と異なシ、被検材内部の欠陥の形状、即ち方向
、傾き、大きさ、深さを確実に認識できる利点がある。
As a method for detecting such internal defects, an ultrasonic method in which an ultrasonic beam is transmitted inside a material to be inspected and echoes from the defect are received has been provided and put into practical use. However, in the conventional ultrasonic method, the probe is simply moved in a predetermined direction within the flaw detection area of the material being tested and the echoes are captured. The elements that can be determined from are extremely limited.
, it was difficult to completely capture the shape of a horizontal hole-like defect. Therefore, the present inventors developed an oblique probe that transmits and receives an ultrasonic beam so as to intersect the rotation center in the flaw detection area inside the test material. The angle probe is rotated around zero during rotation while transmitting and receiving ultrasonic beams from each direction of 360°.
A method in which the peak value of the echo generated within the flaw detection gate is displayed as a flaw detection pattern on a display medium in correspondence with the incident direction of the ultrasonic beam, and the direction, inclination, size, and depth of the defect are determined from this flaw detection pattern. invented. This has the advantage of being able to reliably recognize the shape, ie, direction, inclination, size, and depth of defects inside the specimen, unlike conventional ultrasonic methods.

しかし、探触子が1個であるため、深さを識別するには
、探傷深さを変えながら同様の動作を数回繰返す必要が
あり、探傷時間が多少長くなる欠点がある。オた欠陥の
有害度の判定は作業員が行なうので、小さな材料の探傷
の場合には別段問題ないが、特に大きな材料を探傷する
際には採用できず、また現場でオンラインにより探傷し
有害度を判定すると云うことはできない。
However, since there is only one probe, in order to identify the depth, it is necessary to repeat the same operation several times while changing the flaw detection depth, which has the disadvantage that the flaw detection time is somewhat longer. Since the hazardousness of defects is determined by the worker, there is no particular problem when detecting small materials, but it cannot be used when detecting particularly large materials, and the hazardousness level is determined by on-site online flaw detection. It cannot be said that it can be determined.

本発明は、このような問題点に鑑み、探傷深さの異なる
複数個の斜角探触子を同時に使用し、複数チャンネルの
探傷パターンを求めることにより深さに関する耀識も一
挙に行なうと共に、その探傷パターンに含まれている欠
陥情報を相関法を利用して解読し、オンラインで極く短
時間のうちに有害度を判定するものであって、その第1
の特徴とするところは、被検材内部の欠陥を超音波法に
より検出するに際し、被検材内部の探傷領域で回転中心
と交差するように超音波ビームを送受し、かつ探傷深さ
の異なる複数チャンネルの斜角探触子を用い、この各チ
ャンネルの斜角探触子を回転中0廻、りに回転させ々か
ら360°の各方向から夫々超音波ビームを送受し、各
チャンネルの探傷ゲート内に生じたエコーのピーク値を
各チャンネル毎に夫々入射方向に対応させた複数個の探
傷パターンをつくり、この各探傷パターンと予め設定さ
れた参照パターンとの相関を求めることにより欠陥の方
向、傾き、大きさ、深さを解読し、その結果から欠陥の
有害度を判定する点にあり、その第2の特徴とするとこ
ろは、被検材内部の欠陥を超音波法によシ検出する装置
において、被検材内部の探傷領域で回転中心と交差する
ように超音波ビームを送受しかつ探傷深さの異なる複数
チャンネルの斜角探触子と、この斜角探触子を前記回転
中心廻シに回転させる探触子回転機構とを備えると共に
、各チャンネルの探傷ゲート内に生じたエコーのピーク
値をホールドして入射方向に対応した探傷パターンを作
成する手段を各探触子に対応して設け、複数種の参敗パ
ターンを記憶するメモリを設け、各チャンネルの探傷パ
ターンと参照パターンとの相関を求めるディジタル相関
器を設け、相関するパターンから欠陥の方向、傾き、大
きさ、深さを解読して有害度を判定する手段を設けた虚
にある。
In view of these problems, the present invention uses a plurality of angle probes with different flaw detection depths at the same time and obtains flaw detection patterns of multiple channels, thereby gaining insight into the depth all at once. The defect information included in the flaw detection pattern is decoded using a correlation method, and the degree of harmfulness is determined online in a very short time.
The feature of this is that when detecting defects inside the test material using the ultrasonic method, the ultrasonic beam is transmitted and received so as to intersect the rotation center in the flaw detection area inside the test material, and the flaw detection depth is different. Using a multi-channel angle probe, each channel's angle probe is rotated around 0 and 360 degrees, and ultrasonic beams are transmitted and received from each direction from 360 degrees to perform flaw detection on each channel. By creating multiple flaw detection patterns in which the peak value of the echo generated in the gate corresponds to the incident direction for each channel, and finding the correlation between each of these flaw detection patterns and a preset reference pattern, the direction of the defect can be determined. , the inclination, size, and depth are deciphered and the harmfulness of the defect is determined from the results.The second feature is that defects inside the specimen are detected by ultrasonic method. The device includes a multi-channel bevel probe that transmits and receives an ultrasonic beam so as to intersect the center of rotation in a flaw detection region inside the material to be inspected and has different flaw detection depths, and the bevel probe is rotated as described above. In addition to being equipped with a probe rotation mechanism that rotates the probe around the center, each probe is equipped with a means for holding the peak value of the echo generated in the flaw detection gate of each channel and creating a flaw detection pattern corresponding to the incident direction. Correspondingly, a memory for storing multiple types of success/failure patterns is provided, and a digital correlator is provided for determining the correlation between the flaw detection pattern of each channel and the reference pattern. There is a way to decipher the depth and determine the degree of harm.

次に本発明の詳細な説明する。第1図(蜀(B)は屈折
角θの斜角探触子f+)を用いて斜角式超音波探傷法に
より被横側(2)中の傾きηの横穴状欠陥(3)を挟傷
する場合の超音波ビーム(4)の路程を示す。但しθ〉
ηとする。第1図(A) (B)に示す如く、探触子(
1)を回転中心廻り始線位置(欠陥を材表面に投影した
時の長平方向の位置)から矢印方向へと1回転させなが
ら超音波ビーム(4)を発信した場合、超音波ビーム(
4)が欠陥(3)に垂直に入射する方向け、始線からα
1、α22回転た位置の2方向ある。これを図中の符号
を用いて示すと、P→Q−+R→Q→Pとpl→Q1→
R1→Q+→R1で示される。従って、αとηとθとの
間には、簡単な幾何計算から次式の関係があることが分
る。
Next, the present invention will be explained in detail. Figure 1 (Shu (B) shows a horizontal hole-like defect (3) with an inclination η in the side to be examined (2) by angle-angle ultrasonic flaw detection using an oblique angle probe f+ with a refraction angle θ). The path of the ultrasonic beam (4) when causing a wound is shown. However, θ〉
Let it be η. As shown in Figure 1 (A) and (B), the probe (
When the ultrasonic beam (4) is transmitted while rotating the ultrasonic beam (4) once around the rotation center from the starting line position (the position in the elongated direction when the defect is projected onto the material surface) in the direction of the arrow, the ultrasonic beam (
4) is incident perpendicularly to the defect (3), α from the starting line
There are two directions: 1 and α22 rotated positions. This is shown using the symbols in the figure: P→Q-+R→Q→P and pl→Q1→
It is shown as R1→Q+→R1. Therefore, it can be seen from a simple geometrical calculation that there is a relationship between α, η, and θ as shown in the following equation.

。。、 、!’u2二jl)−一獅−l、      
■2     tanθ 実際に、探触子(1)を回転させhから、第1図(B)
に示した入射点の軌跡Cに沿って超音波ビーム(4)を
送受し、その時に得られたエコーのピーク値を入射方向
αに対してプロットすると、第2図に示したような探傷
パターンが得られる。このような探傷パターンの角度に
関する特徴は0式で決められ、ピーク値の最大は欠陥(
3)の大きさで定まるものである。欠陥(3)の大きさ
とエコー高さ、との関係は、従来から用いられている探
傷方程式を利用することもできるし、人工欠陥からの実
測値を利用することもできる。このようなことから、第
2図に示した探傷パターンは、欠陥(3)の方向、傾き
、大きさの情報を含んでいるものであることが分る。
. . , ,! 'u22jl)-ichishi-l,
■2 tanθ Actually, when rotating the probe (1), from h, Fig. 1 (B)
If the ultrasonic beam (4) is transmitted and received along the trajectory C of the incident point shown in Figure 2, and the peak value of the echo obtained at that time is plotted against the incident direction α, the flaw detection pattern shown in Figure 2 is obtained. is obtained. The angle-related characteristics of such a flaw detection pattern are determined by the formula 0, and the maximum peak value is determined by the defect (
It is determined by the size of 3). For the relationship between the size of the defect (3) and the echo height, a conventional flaw detection equation can be used, or an actual value from an artificial defect can be used. From this, it can be seen that the flaw detection pattern shown in FIG. 2 includes information on the direction, inclination, and size of the defect (3).

通常、始線の方向を被検材(2)の形状の特別な方向、
例えば長手方向等に選ぶので、欠陥(3)の方向はその
ような始線から測ることになる。その時は欠陥(3)の
方向は、次式で与えられる。
Usually, the direction of the starting line is a special direction of the shape of the material to be inspected (2),
For example, since the longitudinal direction is selected, the direction of the defect (3) is measured from such a starting line. The direction of defect (3) is then given by the following equation.

中+180° (β2−β1ン18o)       
■また欠陥(3)の傾きηは、次式より求められる。
Medium+180° (β2-β1-18o)
(2) Also, the slope η of defect (3) can be obtained from the following equation.

。。8(妊J1−)=轡1 2   tan19 (β2−β1ン18o)   ■
0   β2−β1     もanηcos (1B
O−−)= tan−j (β2−β、〉1800)■
このような操作は、図形認識力が備わった人間ならば実
行することができるのであるが、それには多大な時間が
必要である。一方、実用的々面から考えて欠陥(31の
傾きは士2.5°の誤差で0〜45までが検出判断でき
れば十分である。そこで、上記のような判定を機械に実
行させる手段として相関法を利用した。
. . 8 (pregnancy J1-) = 轡1 2 tan19 (β2-β1-18o) ■
0 β2−β1 also anηcos (1B
O--) = tan-j (β2-β, 〉1800)■
Such an operation can be performed by a person with graphic recognition ability, but it requires a large amount of time. On the other hand, from a practical point of view, it is sufficient to be able to detect and judge defects from 0 to 45 with an error of 2.5 degrees. took advantage of the law.

相互相関の゛処理は次式で与えられる。The cross-correlation process is given by the following equation.

C(Sl = −−−5,、”0r(αl f (a+
 S ) d a    ■60 ここに、f (ffl、r @lはO≦α≦360で定
義された任意の関数である。相互相関処理は、近年、画
像処理におけるパターン認識技術、通信技術におけるエ
ラー補正技術等に応用されているが、本発明は探傷パタ
ーンを図形を考えて、未知の探傷パターンを既知の参照
パターンと比較して、最も類似虚の高い参照パターンと
相似とみなすものであるO この処理を簡謝に説明すると、以下のようになる。第3
図はひとつの探傷パターンと5種類の参照パターンr1
4m −β5(atの例を示す。人間の場合、本来のパ
ターン認識機能から山の数、山と山との距離、山の傾斜
を比べることができる。そして、探傷パターンと参照パ
ターンとの重なりを調べて、最も重なシ具合いの大きか
ったβ4(−と同じである・と判断する。このような操
作が相関処理であシ、どの程度型なり合っているかと云
うことを定量的にするために、重なシ合っている部分の
面積に比例した値としての0式が導入されたものである
C(Sl = ---5,,"0r(αl f (a+
S) d a ■60 Here, f (ffl, r @l is an arbitrary function defined as O≦α≦360. Cross-correlation processing has recently been used in pattern recognition technology in image processing and error detection in communication technology. This invention is applied to correction techniques, etc., but the present invention considers the shape of the flaw detection pattern, compares the unknown flaw detection pattern with a known reference pattern, and considers it to be similar to the reference pattern with the highest degree of similarity. A brief explanation of this process is as follows.
The figure shows one flaw detection pattern and five types of reference patterns r1
An example of 4m - β5 (at is shown below. In the case of humans, the number of peaks, the distance between peaks, and the slope of the peaks can be compared using the original pattern recognition function. Then, the overlap between the detection pattern and the reference pattern can be compared. , and determine that it is the same as β4 (-), which has the greatest degree of overlap. Such an operation is a correlation process, and it is quantitatively determined to what extent the types match. Therefore, the formula 0 was introduced as a value proportional to the area of the overlapping parts.

0式におけるSは、上述したように2つのパターンを重
ね合すときの横軸のずれの針である。
S in Equation 0 is the offset needle on the horizontal axis when two patterns are superimposed as described above.

この場合、容重(イパターンは、本来、横穴状人工欠陥
から実測により、或いは0式に従って割算により作成す
るものであシ、そノ1らの人工欠陥の特性(方向、傾き
)は既知であるので、ずれの量Sは、人工欠陥の方向と
、今、検出した欠陥の方向のずれを与えるものである。
In this case, the volume pattern is originally created from a horizontal hole-like artificial defect by actual measurement or by division according to the 0 formula, and the characteristics (direction, inclination) of these artificial defects are not known. Therefore, the amount of deviation S gives the deviation between the direction of the artificial defect and the direction of the defect just detected.

以上のような原理を応用して、参照パターンとして方向
と長さと反射面の深さが同じで、傾きが0.5.10.
15.20.25.30.35.40.45γ口0種類
の横穴人工欠陥から得られたものを用意しておき、今得
られたばかりの探傷パターンと相関をとることにより、
欠陥の方向、傾きを検出することができる。この時の参
照パターンは、最大値を一定にしておぐと、欠陥の分類
が最もうまくできる。
Applying the above principle, a reference pattern with the same direction, length, and depth of the reflective surface, and with an inclination of 0.5.10.
15. 20. 25. 30. 35. 40. 45 γ Mouth By preparing the results obtained from 0 types of horizontal hole artificial defects and correlating them with the flaw detection pattern just obtained,
The direction and inclination of defects can be detected. Defect classification can be best achieved by keeping the maximum value constant for the reference pattern at this time.

また、相関法はS/N向上のための信号処理にもよく用
いられるように、第4図に示すような探傷パターンが多
くの雑音を含む場合にも有効である○このような雑音を
含む探傷パターン(実際の探傷において通常の場合であ
る)に対しては、山の数、山と山との距離を測ると云う
ような操作は、機械にとっては極めて困難である。
In addition, as the correlation method is often used in signal processing to improve S/N, it is also effective when the flaw detection pattern includes a lot of noise as shown in Figure 4. It is extremely difficult for a machine to perform operations such as measuring the number of peaks and the distance between peaks for a flaw detection pattern (which is the usual case in actual flaw detection).

次に本発明における欠陥検出装置の〜実施例を説明する
。第5図及び第6図は4探触子型の局部水浸法による検
出装置を示し、(5)はX軸及びY軸方向に走査可能に
設けられた支持板で、この支持板(5)の下側面に、被
検材(2)上を移動自在な水槽(6)が設けられ、この
水槽(6)内に探触子回転機構(7)が配置され、かつ
その内部に水(8)が供給されている。
Next, embodiments of the defect detection device according to the present invention will be described. Figures 5 and 6 show a four-probe type detection device using the local water immersion method. ) is provided with a water tank (6) that is movable over the test material (2), a probe rotation mechanism (7) is disposed inside this water tank (6), and water ( 8) is supplied.

探触子回転機構(7)は軸受+91 flolを介して
支持板(5)上の軸受ケース(11)に回転自在に保持
された筒状の回転軸02)と、この回転軸(12)の下
端に装着された探触子ホルダー03)とを有し、その探
触子ホルダー(13)には周方向に90°のピッチで4
個の斜角探触子(14)(151(161(lηが組込
まれている。探触子(14IQ(5)Q61Q71は被
検材(2)の表面から20111Mの範囲を8Hのピッ
チで探傷できるように配置したが、これに限定されるも
のではない。各探触子Q41Q5)θ鎖(171は例え
ば屈折角θが45゜超音波ビーム(14a)(15a)
(16g)(17a)のビーム径が9.2闘であって、
第7図に示すようにその各超音波ビーム(14a)(1
5g)(16a)(17a)が深さ2.5、フ、5.1
2.5.17.5 MMの位置で回転中心と交差するよ
うに、夫々回転中心から僅かずつ距離を変えて配置され
ている。従って、探触子(+41Q5)Q61(Iηを
1回転させた時、夫々の探傷ゲート(x4b)(t5b
)(16b)(t7b)内のエコーを愛情すれば、その
探傷領域は第7図に示す如く9盤玉状(斜線で示す部分
)となり、この範囲にある欠陥のエコーを捉えることが
できる。(18)は探触子回転機構(7)を駆動するモ
ータ、Q9)は探触子回転機構(7)の回転角を検出す
るロータリエンコーダであってこれらは支持板(5)に
装着されており、ベルト伝動機構(2rli(211を
介して回転軸(i活に連動連結されている0(221は
探触子回転機構(7)ノ各探触子+141051 +1
61 [171K対して超音波信号を送受するためのス
リップリングである。
The probe rotation mechanism (7) has a cylindrical rotating shaft (02) which is rotatably held in a bearing case (11) on a support plate (5) via a bearing +91 flol, and this rotating shaft (12). The probe holder (13) has a probe holder (03) attached to the lower end, and the probe holder (13) has four probes arranged at a pitch of 90° in the circumferential direction.
The bevel probes (14) (151 (161 (lη) are built in. The probes (14IQ(5)Q61Q71 detect flaws in a range of 20111M from the surface of the test material (2) at a pitch of 8H. Each probe Q41Q5) θ chain (171 is, for example, an ultrasonic beam (14a) (15a) with a refraction angle θ of 45°).
The beam diameter of (16g) and (17a) is 9.2mm,
As shown in FIG. 7, each ultrasonic beam (14a) (1
5g) (16a) (17a) depth 2.5, f, 5.1
2.5.17.5 They are arranged at slightly different distances from the rotation center so as to intersect with the rotation center at the MM position. Therefore, when the probe (+41Q5) Q61 (Iη) is rotated once, the respective flaw detection gates (x4b) (t5b
) (16b) (t7b), the detection area becomes a 9-ball shape (shaded area) as shown in FIG. 7, and it is possible to capture echoes of defects within this range. (18) is a motor that drives the probe rotation mechanism (7), Q9) is a rotary encoder that detects the rotation angle of the probe rotation mechanism (7), and these are attached to the support plate (5). 0 (221 is the probe rotation mechanism (7)) which is interlocked and connected to the rotating shaft (i) through the belt transmission mechanism (2rli (211)).
61 [171K] This is a slip ring for transmitting and receiving ultrasonic signals.

第8図は信号処理装置のブロック図を示し、この第8図
を参照しなから探傷時の動作を説明する。
FIG. 8 shows a block diagram of the signal processing device, and the operation during flaw detection will be explained with reference to FIG.

(5))は探触子回転機構(7)をX軸、Y軸方向に走
査する走査機構、(24)はこの走査機構(23)を制
御するコントローラである。□□□し6騰ηし8)は4
チヤンネル(CHl)(CHs+)(CH3XCH4)
の探触子f14+ 05) ([1(+ηに対応して設
けられたパルサレシーバ、Q29)(支)) Ct++
 eaはアナログピークホールド回路であり、探傷時に
探触子回転機構(7)を回転させながら各探触子(14
1(151961Qガによシ被検材(2)に対して超音
波ビーム(14a)(15a)(16a)(17a)を
送信するとその被検利(2)内の欠陥(3)からの反射
エコーが探触子(141(lfil (1610ηを経
てパルサレシーバ(2丘(261′7)怒により愛情さ
れ、探傷ゲート(14b)(15b)(16b)(17
Nに生じた信号のピーク値をアナログピークホールド回
路(29)((0) (311j3’):h カホー 
ル)−f ル。(331(34! (31m (361
はピーク値ヲ’/1)変換器、C(7j (3R1(3
!l+ (41’iはシフトレジスタであり、(360
728 )0毎に128の入射方向からピーク値、即ち、探傷ン
は各チャンネル毎に入射方向に対応し7て作成されるこ
とは云うまでもない。@1)はRAM 、 ROM @
のメモリーで、後述するようにこれには10s類の参照
パターンが記・憶されている。(4謁はデータセレクタ
、〔(8)はディジタル相関器であって、データセレク
タ(42を通して各チャンネル毎に送らねて釆る探傷パ
ターンとメモリー(41)に収められた参照パターンと
の相関処理を順次行なう。(44)はディジタルピーク
ディテクタで、各チャンネルの探傷パターンと参照パタ
ーンとの相関値の最大値を検出する。
(5)) is a scanning mechanism that scans the probe rotation mechanism (7) in the X-axis and Y-axis directions, and (24) is a controller that controls this scanning mechanism (23). □□□ and 6 rise η and 8) is 4
Channel (CHl) (CHs+) (CH3XCH4)
probe f14+ 05) ([1 (pulsar receiver provided corresponding to +η, Q29) (support)) Ct++
ea is an analog peak hold circuit, which holds each probe (14) while rotating the probe rotation mechanism (7) during flaw detection.
1 (151961Q) When ultrasonic beams (14a) (15a) (16a) (17a) are transmitted to the inspection material (2), the reflection from the defect (3) in the inspection object (2) occurs. The echo is loved by the probe (141 (lfil (1610η) and the pulsar receiver (2 hills (261'7)), and the flaw detection gate (14b) (15b) (16b) (17
Analog peak hold circuit (29) ((0) (311j3'): h
le)-f le. (331 (34! (31m) (361
is the peak value wo'/1) converter, C(7j (3R1(3
! l+ (41'i is a shift register, (360
728) It goes without saying that a peak value from the 128 incident direction for each channel, that is, a flaw detection hole is created for each channel in accordance with the incident direction. @1) is RAM, ROM @
10s of reference patterns are stored in this memory, as will be described later. (4) is a data selector, [(8) is a digital correlator, which performs correlation processing between the flaw detection pattern sent to each channel through the data selector (42) and the reference pattern stored in the memory (41). (44) is a digital peak detector that detects the maximum value of the correlation value between the flaw detection pattern of each channel and the reference pattern.

オたこの時のずれ量Sをデータラッチ(4ri1により
検出する。このようにして検出された各チャンネル毎の
相関値の最大値Cmi (1= 1.2.3.4)とず
れ量Si (i = 1.2.3.4)、及び走査機構
(z3)の現在位置(χ、y)は、データセレクタ(4
6)により順序付けられてシフトレジスタ(47)に格
納される。なお、ディジタル相関器(43)以降の信号
処理は、後述の如くコンピュータを用いたソフトウェア
でも実行できするが、その場合には長い時間を要するの
が普通である0 ディジタル相関器(43)の出力をD/A変換したもの
を第9図に示し、またその時の探傷/<ターンを第10
図に示す。この時の欠陥(3)は、第11図(A) (
B)に示す通りである。欠陥(3)の傾きηは24°で
あり、躯9図から25°の参照パターンと最大の相関を
とっていることが分る。また相関のピーク値が+60だ
け中心(=0)からずれていることから、この欠陥(3
)の方向は被検材(2)の特定方向に対して60゜の方
向にあることが分る。
The amount of deviation S at this time is detected by a data latch (4ri1. The maximum value Cmi (1=1.2.3.4) of the correlation value for each channel detected in this way and the amount of deviation Si ( i = 1.2.3.4), and the current position (χ, y) of the scanning mechanism (z3) is determined by the data selector (4
6) and stored in the shift register (47). Note that the signal processing after the digital correlator (43) can be executed by software using a computer as described later, but in that case it usually takes a long time.0 Output of the digital correlator (43) Figure 9 shows the D/A conversion of
As shown in the figure. Defect (3) at this time is shown in Figure 11 (A) (
As shown in B). The slope η of defect (3) is 24°, and it can be seen from the figure 9 that it has the maximum correlation with the reference pattern of 25°. Also, since the peak value of the correlation is shifted from the center (=0) by +60, this defect (3
) is found to be at an angle of 60° with respect to the specific direction of the test material (2).

このような判断は、実際にはインターフェース(48)
を通してシフトレジスタ(4’flのデータをコンピュ
ータ(図示省略)に転送することにより容易かつ高速に
実行させることができる。以下にコンピュータ内での処
理を述べる。
Such a judgment is actually an interface (48)
By transferring the data in the shift register (4'fl) to a computer (not shown) through the transfer register, it can be executed easily and at high speed.The processing in the computer will be described below.

第7図に示したように各チャンネルの超音波ビームft
4a)flsA)(t6a)(t7a)は、被検材(2
)中で重なっているので、ひとつの欠陥(3)から複数
個のチャンネルに有意な相関値Cmiが出現する。従っ
て、その場合には、欠陥(3)の反射面の深さを次式に
より計算する〇 次に、欠陥(3)の反射面が超音波ビームの中心線上か
らずれていることを補正する。
As shown in Figure 7, the ultrasonic beam ft of each channel
4a) flsA) (t6a) (t7a) is the test material (2
), significant correlation values Cmi appear in multiple channels from one defect (3). Therefore, in that case, the depth of the reflecting surface of defect (3) is calculated using the following formula.Next, the deviation of the reflecting surface of defect (3) from the center line of the ultrasonic beam is corrected.

Cmi = (1+k ’−”リー) Cmi    
  ■1 ここに、kは探触子径、周波数等に依存した比例定数で
ある。このようにして得られだCmiから欠陥(3)の
長さを判定することができる。第12図に直径がφ2で
長さがl、傾き35の欠陥から得られり探傷パターンと
傾きη=35°の参照パターンとの相関値の最大値の実
測値(X印)を示す。このようなデータから受信音圧の
ずれが相関値に及ばず効果を計算し、kを決定すること
ができる。
Cmi = (1+k'-”Lee) Cmi
■1 Here, k is a proportionality constant that depends on the probe diameter, frequency, etc. The length of the defect (3) can be determined from the Cmi thus obtained. FIG. 12 shows the actual measured value (marked with an X) of the maximum correlation value between the flaw detection pattern obtained from a defect with a diameter of φ2, a length of l, and an inclination of 35° and a reference pattern with an inclination of η=35°. From such data, it is possible to calculate the effect that the received sound pressure deviation is less than the correlation value and determine k.

なお、探傷中、探触子回転機構(7)のXY位屓(欠陥
のXY位置に対応している)は、コントローラ(24)
からデータセレクケ顛を介してシフトレジスタ(47)
に格納され、インターフェース+41’Qを介して相関
最大値等のデー・夕と共にコンピュータに転送される。
During flaw detection, the XY position of the probe rotation mechanism (7) (corresponding to the XY position of the defect) is controlled by the controller (24).
Shift register (47) via data selector
The data is stored in the computer via the interface +41'Q and transferred to the computer along with data such as the maximum correlation value.

そして、このデータは後に有害欠陥の探傷データの表示
の時に、欠陥(3)の位置情報としてCRT上に表示さ
れる。第8図中、(49)はタイミングコントローラで
ある。探触子回転機構(7)は電子走査型探触子に置き
換えることも可能である〇第13図i、j:コンピュー
タイ0)のソフトウェア上で欠陥(3)の形状認識を行
なう場合の信号の流れを示すブロック図である0々お、
第8図と同−名称物については同一符号を付し、説明を
省略する。この場合には、パルサレシーバ(2r+l 
(261(2η(2(至)、アナログピークホールド回
路(29)(2))(’rl+cqz及びA/D変換器
4’1314’+4+(ト)(3G)を経て、探触子(
141(+51 (161071の回転角に対応して得
らtまたエコーのピーク値を1回転分収隼してメモ!j
−Jl+に記憶し、探傷パターンを作成する。メモリー
(51)はコンピュータ(イ)の外部メモリになってお
り、探触子(14)(If+06)αηが次の回転にお
ける第回目の超音波ビームを送受する前に、DMAによ
りメモリーJl)ノ探mパターンをコンビュータイ【力
のインターフェース(15zを介して内部メモリの31
に転送する。コンピュータ(60)はCPU(541、
探傷データを表示するCRTディスプレー(6(5)、
探傷データを格納するフロッピーディスク(561等を
有する。
Then, this data is later displayed on the CRT as position information of the defect (3) when displaying the detection data of the harmful defect. In FIG. 8, (49) is a timing controller. The probe rotation mechanism (7) can also be replaced with an electronic scanning probe. Figure 13 i, j: Signals when shape recognition of defect (3) is performed on the software of computer I0) This is a block diagram showing the flow of
The same names as in FIG. 8 are given the same reference numerals, and the description thereof will be omitted. In this case, the pulsar receiver (2r+l
(261 (2η (2), analog peak hold circuit (29) (2)) ('rl+cqz and A/D converter 4'1314'+4+(g) (3G), probe (
141(+51
- Store in Jl+ and create a flaw detection pattern. The memory (51) is an external memory of the computer (a), and before the probe (14) (If+06) αη transmits and receives the first ultrasound beam in the next rotation, the memory (Jl) node is stored by DMA. Search for patterns in the internal memory via the power interface (15z).
Transfer to. The computer (60) has a CPU (541,
CRT display (6(5),
It has a floppy disk (561, etc.) for storing flaw detection data.

コンピュータの(2)は第14図に示すフローチャート
に従って信号を処理する。なお、第14図中、探傷パタ
ーンはAi(φで示し、その添字1はチャンネル、αは
回転角である。参照パターンはRj(α)で示し、その
jは欠陥の傾きを示す。Ai(司とRj(α)との相関
式は、 で与えられる。この0式はソフトウェアとして一般に提
供されている。
Computer (2) processes the signal according to the flowchart shown in FIG. In Fig. 14, the flaw detection pattern is indicated by Ai (φ, the subscript 1 is the channel, and α is the rotation angle. The reference pattern is indicated by Rj (α), and j indicates the slope of the defect. Ai ( The correlation equation between Rj and Rj(α) is given by: This equation is generally provided as software.

本発明を鋳造製プロペラ(57)の探傷に適用した場合
について説明する。このプロペラ(571の探傷域(1
′iR’は第15図に示す斜線部の如< 1200x8
00ff棒であり探傷深さが表面からQQMMとする。
A case will be described in which the present invention is applied to flaw detection of a cast propeller (57). This propeller (571 flaw detection area (1
'iR' is as shown in the shaded area in Figure 15 < 1200x8
It is a 00ff rod and the flaw detection depth is QQMM from the surface.

この探傷域(68)に含まれる横穴状の欠陥(3)を検
出し、その中から冶害な欠陥だけを出力するのであるが
、プロペラvJ7)の有害欠陥は応力のかかる方向を考
慮して周方向への投影長さloで評価する。また有害度
は欠陥(3)の先端深さ9によっても異なる。従って、
欠陥(3)の有害度は、第16図(A) (B)に示す
欠陥投影長さloと第17図に示す欠陥先端深さqとに
よって定義される。このことからコンピュータ(随は、
最終処理として次のことを行なう。
The horizontal hole-shaped defects (3) included in this flaw detection area (68) are detected, and only harmful defects are output from them, but the harmful defects of the propeller vJ7) are determined by considering the direction of stress. Evaluation is made using the projected length lo in the circumferential direction. The degree of harm also varies depending on the depth 9 of the tip of the defect (3). Therefore,
The harmfulness of defect (3) is defined by the defect projected length lo shown in FIGS. 16(A) and 16(B) and the defect tip depth q shown in FIG. 17. From this, computers (Zui,
The following is performed as final processing.

(1)欠陥投影長さlaの計算 la = Zcoe η+ 5ind        
Dここでlは欠陥の実長、ηは欠陥の傾き、αは半径方
向を始線とした欠陥の方向である。
(1) Calculation of defect projection length la = Zcoe η+ 5ind
D where l is the actual length of the defect, η is the slope of the defect, and α is the direction of the defect with the starting line in the radial direction.

(11)欠陥先端深さqの計算 q=Max [0,(d−+esinη) ]    
Dここでdは欠陥の中心深さ 01()欠陥出力するか否かの判定 O≦qく10のとき J?o≧4酊   ■0≦9≦2
0のとき /!。≧811nI    ■これを許容投
影欠陥寸法として二段階に分けて定義する。
(11) Calculation of defect tip depth q q=Max [0, (d-+esinη)]
DHere, d is the center depth of the defect 01 () Determination of whether or not to output the defect When O≦q10 J? o≧4 drunkenness ■0≦9≦2
When 0 /! . ≧811nI ■This is defined as the allowable projected defect size in two stages.

従ッテ、コンピュータ(転)’B 、第15図(7> 
70−チャートに示す7ように■、■の計算を行ない、
■■の何れかの条件を満たすとき、プリンタ上にXY位
置の情報と共に有害欠陥として出力する0以上実施例に
詳述したように本発明方法によilば、探傷深さの異な
る複数チャンネルの斜角探触子を用い、これら探触子を
同時に回転させながら超音波ビームの送受を行ない、各
チャンネルの探傷ゲート内に生じたエコーのピーク値を
捉えて探傷パターンを得るので、1個の探触子による場
合のように探傷深さを変えながら同一箇所を数回にわた
って探傷する必要がなく、能率的に作業を行なうことが
できる0また探傷パターンを予め設定された参照パター
ンとの相関を求めることにより欠陥の方向、傾き、大き
さ、深さを解読し、その結果から欠陥の有害度を判定す
る方法を採っているので、探傷パターンそのものから判
定する場合に比較してコンピュータやハードウェアの論
理回路を用いた機械による判定が容易であり、この点で
も高速化を促進できる。
Jutte, Computer (translation) 'B, Figure 15 (7>
70-Calculate ■ and ■ as shown in the chart 7,
When any of the conditions described in Using angle probes, these probes are rotated simultaneously while transmitting and receiving ultrasonic beams, and the peak value of the echo generated within the flaw detection gate of each channel is captured to obtain a flaw detection pattern. Unlike the case with a probe, it is not necessary to test the same spot several times while changing the detection depth, and the work can be carried out more efficiently.Also, it is possible to correlate the flaw detection pattern with a preset reference pattern. This method uses a method to decipher the direction, inclination, size, and depth of the defect by determining the defect's direction, inclination, size, and depth, and to judge the degree of harmfulness of the defect from the results, which requires less computer and hardware resources than when determining from the detection pattern itself. It is easy to make a judgment by a machine using a logic circuit, and in this respect, speeding up can also be promoted.

本発明装置によれば、複数チャンネルの斜角探触子を回
転中0廻りに回転させる探触子回転機構を備え、この探
触子回転機構によシ直接探触子を回転させているので、
電子走査型探触子を使用する場合に比較して構成が簡単
である。また探傷パターンと参照パターンとの相関をデ
ィジタル相関器で求めるようにしているので、オンライ
ンでの高速検出が可能であると共に、その後の信号の処
理が容易になυ、コンピュータを使用して相関処理を行
なう場合に比較して処理時間を短縮できる利点がある。
The device of the present invention is equipped with a probe rotation mechanism that rotates a plurality of channel angle probes around zero during rotation, and the probe is directly rotated by this probe rotation mechanism. ,
The configuration is simpler than when using an electronic scanning probe. In addition, since the correlation between the flaw detection pattern and the reference pattern is determined using a digital correlator, high-speed online detection is possible, and subsequent signal processing is facilitated. This method has the advantage that the processing time can be shortened compared to the case where the method is used.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例を例示するものであって、第1図
(A) (B)は超音波ビームの路桿を示す説明図、第
2図は探傷パターンの波形図、第3図は相関処理の説明
図、@4図は実際の探傷パターンの波形図、第5図は探
触子回転機構部の断面図、第6図は探触子ホルダ一部の
底面図、第7図は探傷領域の説明図、第8図はブロック
図、第9図はディジタル相関器の出力をD/A変換した
時の波形図、第10図は傾きグー。24の欠陥から得ら
れた探傷パターンの波形図、第11図(A) (B)は
その欠陥の説明図、第12図は欠陥の長さと最大相関値
の比との関係を示す説明図、第13図はブロック図、第
14図はフローチャート、第15図はプロペラの部分平
面図、第16図(A) (B)は有害欠陥の説明図、第
17図は欠陥の先端深さと許容投影欠陥長さとの関係を
示す説明図である。 (1)(141Q6) (lFilθη・・・斜角探傷
器、(2)・・・被検材、(3)・・・欠陥、f41 
(14a)(15a)(16a)(17a)−・−超音
波ビーム、f71−・・探触子回転機構、(tab)(
xsb)(16b)mb)・・・探傷ゲート、(社)(
26)(27)(2訃・・パルサレシーバ、(29)(
イ))叫)(3カ・・・アナログピークホールド回路、
4’)71 (38)139) (4n’r・・・・A
/D変換器、(41)Q10・・・メモリー、(43)
・・・ディジタル相関器、(hn)・・・コンピュータ
The drawings illustrate an embodiment of the present invention, and FIG. 1 (A) and (B) are explanatory diagrams showing the path of the ultrasonic beam, FIG. 2 is a waveform diagram of a flaw detection pattern, and FIG. An explanatory diagram of correlation processing, @Figure 4 is a waveform diagram of an actual flaw detection pattern, Figure 5 is a sectional view of the probe rotation mechanism, Figure 6 is a bottom view of a part of the probe holder, and Figure 7 is a diagram of the waveform of the actual flaw detection pattern. An explanatory diagram of the flaw detection area, FIG. 8 is a block diagram, FIG. 9 is a waveform diagram when the output of the digital correlator is D/A converted, and FIG. 10 is a slope diagram. Waveform diagrams of flaw detection patterns obtained from 24 defects, FIGS. 11A and 11B are explanatory diagrams of the defects, and FIG. 12 is an explanatory diagram showing the relationship between the length of the defect and the ratio of the maximum correlation value, Figure 13 is a block diagram, Figure 14 is a flowchart, Figure 15 is a partial plan view of the propeller, Figures 16 (A) and (B) are illustrations of harmful defects, and Figure 17 is the depth of the tip of the defect and allowable projection. It is an explanatory view showing the relationship with defect length. (1) (141Q6) (lFilθη...angle flaw detector, (2)...test material, (3)...defect, f41
(14a) (15a) (16a) (17a) --- Ultrasonic beam, f71 --- Probe rotation mechanism, (tab) (
xsb) (16b) mb)...flaw detection gate, (company) (
26) (27) (2. Pulsar receiver, (29) (
b)) (3) Analog peak hold circuit,
4')71 (38)139) (4n'r...A
/D converter, (41) Q10... memory, (43)
...digital correlator, (hn)...computer.

Claims (1)

【特許請求の範囲】 1、#横側内部の欠陥を超音波法により検出するに際し
、被検材内部の探傷領域で回転中心と交差するように超
音波ビームを送受しかつ探傷深さの異なる複数チャンネ
ルの斜角探触子を用い、この各チャンネルの斜角探触子
を回転中心廻りに回転させながら360の各方向から夫
々超音波ビームを送受し、各チャンネルの探傷ゲート内
に生じたエコーのピーク値を各チャンネル毎に夫々入射
方向に対応させた複数個の探傷パターンをつくり、この
各探傷パターンと予め設定された参照パターンとの相関
を求めることにより欠陥の方向、傾き、大きさ、深さを
解読し、その結果から欠陥の有害度を判定することを特
徴とする超音波法による欠陥の検出方法。 2、 被検材内部の欠陥を超音波法により検出する装置
において、被検材内部の探傷領域で回転中心と交差する
ように超音波ビームを送受しかつ探傷深さの異なる複数
チャンネルの斜角探触子と、この斜角探触子を前記回転
中心廻りに回転させる探触子回転機構とを備えると共に
、各チャンネルの探傷ゲート内に生じたエコーのピーク
値をホールドして入射方向に対応した探傷パターンを作
成する手段を各探触子に対応して設け、複数種の参照パ
ターンを記憶するメモリを設け、各チャンネルの探傷パ
ターンと参照パターンとの相関を求めるディジタル相関
器を設け、相関するパターンから欠陥の方向、傾き、大
きさ、深さを解読して有害度を判定する手段を設けたこ
とを特徴とする超音波法による欠陥の検出装置。
[Claims] 1. # When detecting internal defects on the lateral side using the ultrasonic method, an ultrasonic beam is transmitted and received so as to intersect the rotation center in the flaw detection area inside the test material, and the flaw detection depths are different. Using a multi-channel bevel probe, the bevel probe of each channel is rotated around its rotation center while transmitting and receiving ultrasonic beams from each of 360 directions to detect flaws generated within the flaw detection gate of each channel. By creating multiple flaw detection patterns in which the echo peak value corresponds to the incident direction for each channel, and finding the correlation between each of these flaw detection patterns and a preset reference pattern, the direction, inclination, and size of the defect can be determined. , a method for detecting defects using an ultrasonic method, characterized by decoding the depth and determining the degree of harmfulness of the defect from the result. 2. In a device that detects defects inside a test material using the ultrasonic method, an ultrasonic beam is transmitted and received so as to intersect the rotation center in the flaw detection area inside the test material, and multiple channels with different flaw detection depths are installed at different angles. It is equipped with a probe and a probe rotation mechanism that rotates the angle probe around the rotation center, and also holds the peak value of the echo generated in the flaw detection gate of each channel to correspond to the incident direction. A means for creating a flaw detection pattern corresponding to each probe is provided, a memory for storing multiple types of reference patterns is provided, and a digital correlator is provided to obtain a correlation between the flaw detection pattern of each channel and the reference pattern. What is claimed is: 1. A defect detection device using an ultrasonic method, characterized in that the device is provided with means for determining the degree of harmfulness by deciphering the direction, inclination, size, and depth of a defect from a pattern formed by the defect.
JP57127184A 1982-07-20 1982-07-20 Method and device for detecting defect by ultrasonic wave method Granted JPS5917154A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP57127184A JPS5917154A (en) 1982-07-20 1982-07-20 Method and device for detecting defect by ultrasonic wave method
US06/514,864 US4524622A (en) 1982-07-20 1983-07-18 Method and apparatus of ultrasonic flaw detection
EP83304211A EP0102176B1 (en) 1982-07-20 1983-07-20 Method and apparatus for ultrasonic flaw detection
DE8383304211T DE3373709D1 (en) 1982-07-20 1983-07-20 Method and apparatus for ultrasonic flaw detection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57127184A JPS5917154A (en) 1982-07-20 1982-07-20 Method and device for detecting defect by ultrasonic wave method

Publications (2)

Publication Number Publication Date
JPS5917154A true JPS5917154A (en) 1984-01-28
JPH0245823B2 JPH0245823B2 (en) 1990-10-11

Family

ID=14953752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57127184A Granted JPS5917154A (en) 1982-07-20 1982-07-20 Method and device for detecting defect by ultrasonic wave method

Country Status (1)

Country Link
JP (1) JPS5917154A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61137060A (en) * 1984-12-10 1986-06-24 Mitsubishi Heavy Ind Ltd Method for detecting deterioration of turbine parts
US7906021B2 (en) 2007-06-21 2011-03-15 Bunri Incorporation Contaminated fluid recovery apparatus
US8038895B2 (en) 2006-06-22 2011-10-18 Siltronic Ag Method and appartus for detection of mechanical defects in an ingot piece composed of semiconductor material
WO2018088288A1 (en) * 2016-11-08 2018-05-17 株式会社日立製作所 Ultrasonic measuring device and method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4167841B2 (en) * 2002-03-22 2008-10-22 恭二 本間 Intelligent ultrasonic flaw detection system using neural network
DE102006032431B4 (en) * 2006-06-22 2011-12-01 Siltronic Ag Method and device for detecting mechanical defects in a rod made of semiconductor material
JP5738034B2 (en) * 2011-03-28 2015-06-17 三菱重工業株式会社 Ultrasonic flaw detector

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5058783U (en) * 1973-01-29 1975-05-31
JPS5190986U (en) * 1975-01-20 1976-07-21

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5058783U (en) * 1973-01-29 1975-05-31
JPS5190986U (en) * 1975-01-20 1976-07-21

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61137060A (en) * 1984-12-10 1986-06-24 Mitsubishi Heavy Ind Ltd Method for detecting deterioration of turbine parts
US8038895B2 (en) 2006-06-22 2011-10-18 Siltronic Ag Method and appartus for detection of mechanical defects in an ingot piece composed of semiconductor material
US7906021B2 (en) 2007-06-21 2011-03-15 Bunri Incorporation Contaminated fluid recovery apparatus
WO2018088288A1 (en) * 2016-11-08 2018-05-17 株式会社日立製作所 Ultrasonic measuring device and method

Also Published As

Publication number Publication date
JPH0245823B2 (en) 1990-10-11

Similar Documents

Publication Publication Date Title
US4524622A (en) Method and apparatus of ultrasonic flaw detection
US5767410A (en) Lamb wave ultrasonic probe for crack detection and measurement in thin-walled tubing
WO2020250378A1 (en) Ultrasound flaw detection method, ultrasound flaw detection device, manufacturing equipment line for steel material, manufacturing method for steel material, and quality assurance method for steel material
JP2017191078A (en) Ultrasonic inspection device for anchor bolt and method for inspection
JPS5917154A (en) Method and device for detecting defect by ultrasonic wave method
JPH01248053A (en) Ultrasonic measuring method and apparatus
JP2004279144A (en) Ultrasonic inspection method and device
JP6500865B2 (en) Ultrasonic flaw detection method and ultrasonic flaw detection apparatus
JP6733650B2 (en) Ultrasonic flaw detection method, ultrasonic flaw detection equipment, steel production equipment row, and steel production method
GB2280507A (en) SCAN - Method and apparatus for ultrasonic testing of tubular products.
JPH07244028A (en) Apparatus and method for ultrasonically detecting flaw on spherical body to be detected
JP3442057B2 (en) Ultrasonic inspection method and ultrasonic inspection device
JPH11211704A (en) Method and apparatus for ultrasonic flaw detection for pipe with internal fin
JP7207205B2 (en) Method for evaluating mixed grain ratio of crystal grains of material to be evaluated having approximately circular cross section
JP2002122573A (en) Method and apparatus for inspection of defect of round material
JPS6180044A (en) Ultrasonic flaw detection apparatus
JP2021167730A (en) Ultrasonic flaw detection method for round bar material
JPS63256849A (en) Automatic defect display device for circumferential weld joint of cylindrical structure
JP2021139821A (en) Ultrasonic flaw detection method for round bar material
JPS58151555A (en) Ultrasonic flaw detecting method
JPH10274643A (en) Method and equipment for ultrasonically detecting flaw of pipe with inner surface fins
JPH10206402A (en) Ultrasonic flaw detection method
JPS61134663A (en) Ultrasonic test equipment
JPH0354456A (en) Apparatus for measuring internal flaw of object having uneven surface
JPH0850118A (en) Inside-surface pitting detection device for boiler heat-transfer tube