JP2021139821A - Ultrasonic flaw detection method for round bar material - Google Patents

Ultrasonic flaw detection method for round bar material Download PDF

Info

Publication number
JP2021139821A
JP2021139821A JP2020039422A JP2020039422A JP2021139821A JP 2021139821 A JP2021139821 A JP 2021139821A JP 2020039422 A JP2020039422 A JP 2020039422A JP 2020039422 A JP2020039422 A JP 2020039422A JP 2021139821 A JP2021139821 A JP 2021139821A
Authority
JP
Japan
Prior art keywords
flaw
round bar
bar material
ultrasonic
flaw echo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020039422A
Other languages
Japanese (ja)
Inventor
大輔 森
Daisuke Mori
大輔 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2020039422A priority Critical patent/JP2021139821A/en
Publication of JP2021139821A publication Critical patent/JP2021139821A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

To provide an ultrasonic flaw detection method for a round bar material enabling a surface flaw and a surface layer flaw to be promptly and surely discriminated.SOLUTION: A lateral wave ultrasonic beam Ub is scanned in a direction along a peripheral surface of a round bar material M while transmitting the lateral wave ultrasonic beam Ub to a round bar material M.A reflected ultrasonic wave reflected and returned by a surface layer flaw M1 of the round bar material M or a surface layer flaw M2 generated within the round bar material M immediately below a surface is received and denoted as a flaw echo signal. A flaw echo image is created by using, as axes of a two-dimensional image, each scanning position of the oblique angle flaw detection ultrasonic wave (Ub) and a time from transmitting the lateral wave ultrasonic beam Ub at the scanning position until obtaining the flaw echo signal. A required number of flaw echo images are given to a neural network 3 as learning data for learning, and a new flaw echo image is given to the neural network 3 which has learnt the learning data, to discriminate whether a flaw corresponding to the flaw echo image is a surface flaw M1 or a surface layer flaw M2.SELECTED DRAWING: Figure 1

Description

本発明は丸棒材の超音波探傷方法に関し、特に表面疵と表面直下の丸棒材内部に生じる表層疵を良好に識別して検出できる超音波探傷方法に関するものである。 The present invention relates to an ultrasonic flaw detection method for a round bar material, and more particularly to an ultrasonic flaw detection method capable of satisfactorily distinguishing and detecting a surface defect and a surface layer defect generated inside the round bar material immediately below the surface.

丸棒材の表面近くの疵を探傷する場合には図7に示すように探傷用の超音波ビームUbの横波を使用しその屈折角(セクタースキャン角)を45度程度に設定して行う。しかし、この方法では、丸棒材Mの表面に開口する表面疵M1(図7(1))と丸棒材Mの表面直下の内部に生じる表層疵M2(図7(2))からの疵エコー信号(図8(1)、(2))がほほ同じ大きさで同じ時間帯に現れることがあるため、往々にして両者を区別することが困難であった。 When detecting a flaw near the surface of the round bar, a transverse wave of the ultrasonic beam Ub for flaw detection is used and the refraction angle (sector scan angle) is set to about 45 degrees as shown in FIG. However, in this method, a surface defect M1 (FIG. 7 (1)) that opens on the surface of the round bar M and a surface defect M2 (FIG. 7 (2)) that occurs immediately below the surface of the round bar M are formed. Since echo signals (FIGS. 8 (1) and 8 (2)) may appear at almost the same size and at the same time zone, it is often difficult to distinguish between the two.

そこで、例えば特許文献1では異なるセクタースキャン角を設定して、各セクタースキャン角で得られた疵エコー信号の大きさが所定の閾値を超えたときにそれぞれ表面疵あるいは表層疵があるもと判定する探傷方法が開示されている。 Therefore, for example, in Patent Document 1, different sector scan angles are set, and when the magnitude of the defect echo signal obtained at each sector scan angle exceeds a predetermined threshold value, it is determined that there is a surface defect or a surface defect, respectively. The method of flaw detection is disclosed.

特開2012−225887JP 2012-225887

しかし、上記従来の方法では、セクタースキャン角を変更して同様の探傷を繰り返す必要があるために探傷に時間を要し、ラインを流れる丸棒材の探傷を迅速に行えないという問題があった。 However, in the above-mentioned conventional method, since it is necessary to change the sector scan angle and repeat the same flaw detection, it takes time to detect the flaw, and there is a problem that the round bar material flowing through the line cannot be quickly detected. ..

そこで、本発明はこのような課題を解決するもので、表面疵と表層疵を迅速かつ確実に判別できる丸棒材の超音波探傷方法を提供することを目的とする。 Therefore, the present invention solves such a problem, and an object of the present invention is to provide an ultrasonic flaw detection method for a round bar material capable of quickly and surely discriminating between surface defects and surface surface defects.

上記目的を達成するために、本第1発明では、丸棒材(M)に向けて斜角探傷用超音波(Ub)を送信しつつこれを前記丸棒材(M)の周面に沿う方向で走査し、前記丸棒材(M)の表面疵(M1)、ないし表面直下の丸棒材(M)内部に生じる表層疵(M2)で反射して戻る反射超音波を受信して疵エコー信号とし、前記斜角探傷用超音波(Ub)の各走査位置と、当該走査位置における疵エコー信号の信号強度の時間変化とから疵エコー画像を作成して、必要数の前記疵エコー画像を学習データとしてニューラルネットワーク(3)に与えて学習させ、学習済みの前記ニューラルネットワーク(3)に対して新たな前記疵エコー画像を与えて当該疵エコー画像に対応する疵が前記表面疵(M1)か表層疵(M2)かを判別させる。 In order to achieve the above object, in the first invention, while transmitting the oblique angle flaw detection ultrasonic wave (Ub) toward the round bar member (M), this is along the peripheral surface of the round bar member (M). Scanned in the direction, the surface defect (M1) of the round bar material (M) or the surface layer defect (M2) generated inside the round bar material (M) just below the surface receives the reflected ultrasonic wave reflected and returned to the defect. As an echo signal, a flaw echo image is created from each scanning position of the oblique angle flaw detection ultrasonic wave (Ub) and the time change of the signal intensity of the flaw echo signal at the scanning position, and a required number of the flaw echo images are created. Is given to the neural network (3) as training data for training, and a new flaw echo image is given to the trained neural network (3), and the flaw corresponding to the flaw echo image is the surface flaw (M1). ) Or surface defect (M2).

本第1発明においては、疵エコー画像を作成し、当該疵エコー画像によって予め学習させたニューラルネットワークに、新たな疵エコー画像を与えて当該疵画像に対応する疵が表面疵か表層疵かを判別するようにしたから、表面疵と表層疵を迅速かつ確実に判別することができる。 In the first invention, a flaw echo image is created, and a new flaw echo image is given to the neural network trained in advance by the flaw echo image to determine whether the flaw corresponding to the flaw image is a surface defect or a surface defect. Since the discrimination is made, the surface defect and the surface layer defect can be discriminated quickly and surely.

本第2発明では、前記斜角探傷用超音波の送信と受信にフェーズドアレイ探触子(1)を使用する。 In the second invention, the phased array probe (1) is used for transmitting and receiving the ultrasonic wave for oblique angle flaw detection.

本第2発明によれば、フェーズドアレイ探触子によって斜角探傷用超音波を送信と走査、および反射超音波の受信を簡易かつコンパクトに行うことができる。 According to the second invention, the phased array probe can transmit and scan the ultrasonic wave for oblique angle flaw detection, and receive the reflected ultrasonic wave easily and compactly.

本第3発明では、前記疵エコー画像を得るために抽出される疵エコー信号の数を、使用目的に応じて大小変更可能にする。 In the third invention, the number of flaw echo signals extracted to obtain the flaw echo image can be changed in magnitude according to the purpose of use.

本第3発明によれば、抽出される疵エコー信号の数を適宜大小変更することによって、判別の精度とこれとトレードオフの関係にある判別のスピードを探傷対象に応じて適正に選択することができる。 According to the third invention, by appropriately changing the number of the extracted defect echo signals, the accuracy of discrimination and the speed of discrimination, which is in a trade-off relationship with the discrimination speed, can be appropriately selected according to the flaw detection target. Can be done.

本第4発明では、前記疵エコー画像は、前記疵エコー信号の信号強度が高い部分は高い明度で表示され、前記疵エコー信号の信号強度が低い部分は低い明度で表示される。 In the fourth invention, in the flaw echo image, a portion having a high signal intensity of the flaw echo signal is displayed with high brightness, and a portion having a low signal intensity of the flaw echo signal is displayed with low brightness.

本第5発明では、前記疵エコー画像は、前記疵エコー信号の信号強度が高い部分は低い明度で表示され、前記疵エコー信号の信号強度が低い部分は高い明度で表示される。 In the fifth aspect of the present invention, in the flaw echo image, a portion having a high signal intensity of the flaw echo signal is displayed with a low brightness, and a portion having a low signal intensity of the flaw echo signal is displayed with a high brightness.

本第6発明では、前記丸棒材(M)は黒皮材である。 In the sixth invention, the round bar material (M) is a black skin material.

上記カッコ内の符号は、後述する実施形態に記載の具体的手段との対応関係を参考的に示すものである。 The reference numerals in parentheses indicate the correspondence with the specific means described in the embodiments described later for reference.

以上のように、本発明の丸棒材の超音波探傷方法によれば、表面疵と表層疵を迅速かつ確実に判別することができる。より具体的には、丸棒材が圧延工程、熱処理工程、曲がり矯正工程を経た状態で、その表面が酸化金属である黒錆で覆われた状態のものを対象とすることができる。黒皮材は最表層に黒錆を備えることから、特に表面疵と表層疵等の判別が困難であるが、本発明の方法を適用することで、表面疵と表層疵を迅速かつ確実に判別することが可能となる。 As described above, according to the ultrasonic flaw detection method for round bar members of the present invention, surface defects and surface surface defects can be quickly and reliably discriminated. More specifically, a round bar material that has undergone a rolling step, a heat treatment step, and a bending straightening step and whose surface is covered with black rust, which is a metal oxide, can be targeted. Since the black skin material has black rust on the outermost surface layer, it is particularly difficult to distinguish between surface defects and surface layer defects. However, by applying the method of the present invention, surface defects and surface layer defects can be quickly and reliably discriminated. It becomes possible to do.

本発明方法を実施する装置の構成を示す図であるIt is a figure which shows the structure of the apparatus which carries out the method of this invention. 疵エコー画像の一例を示す図である。It is a figure which shows an example of a defect echo image. 疵エコー画像から、疵エコー信号を含む所定領域を切り出した画像を示す図である。It is a figure which shows the image which cut out the predetermined region containing the flaw echo signal from the flaw echo image. 畳み込みニューラルネットワークの概略構成を示す図である。It is a figure which shows the schematic structure of the convolutional neural network. 疵エコー画像の他の例を示す図である。It is a figure which shows another example of a defect echo image. 疵エコー画像のさらに他の例を示す図である。It is a figure which shows still another example of a defect echo image. 従来の探傷方法を示す概略断面図である。It is a schematic cross-sectional view which shows the conventional flaw detection method. 従来の探傷方法における疵エコー信号を示す図である。It is a figure which shows the flaw echo signal in the conventional flaw detection method.

なお、以下に説明する実施形態はあくまで一例であり、本発明の要旨を逸脱しない範囲で当業者が行う種々の設計的改良も本発明の範囲に含まれる。 The embodiments described below are merely examples, and various design improvements made by those skilled in the art within the scope of the present invention are also included in the scope of the present invention.

図1には本発明の超音波探傷方法を実施する装置の構成を示す。図1において、金属製丸棒材Mの外周面に対向させてフェーズドアレイ探触子1が設けられている。フェーズドアレイ探触子1では、多数の超音波振動子(図示略)が丸棒材Mの外周に倣って湾曲する送受信面1aを形成するように公知の構造で隣接配置されており、隣接する所定数の超音波振動子を、コンピュータを内蔵した制御装置2から出力される所定の時間差を有する励振信号で振動させることによって、本実施形態では略45度のセクタースキャン角を有して丸棒材の表面およびその直下の表層を含む領域で収束する斜角探傷用超音波たる横波超音波ビームUbを生成している。そして振動させる所定数の超音波振動子の範囲を順次移動させることによって、約90度の角度範囲Dで横波超音波ビームUbを走査して、この範囲にある表面疵M1および表層疵M2からの反射超音波をフェーズドアレイ探触子1で再び受信して、疵エコー信号として制御装置2へ出力している。 FIG. 1 shows the configuration of an apparatus for carrying out the ultrasonic flaw detection method of the present invention. In FIG. 1, a phased array probe 1 is provided so as to face the outer peripheral surface of the metal round bar M. In the phased array probe 1, a large number of ultrasonic vibrators (not shown) are adjacent to each other in a known structure so as to form a transmission / reception surface 1a that curves according to the outer circumference of the round bar member M, and are adjacent to each other. By vibrating a predetermined number of ultrasonic vibrators with an excitation signal having a predetermined time difference output from a control device 2 having a built-in computer, a round bar having a sector scan angle of approximately 45 degrees in the present embodiment. A transverse ultrasonic beam Ub, which is an ultrasonic for oblique flaw detection, is generated that converges in a region including the surface of the material and the surface layer immediately below the material. Then, by sequentially moving the range of a predetermined number of ultrasonic vibrators to be vibrated, the transverse ultrasonic beam Ub is scanned in an angle range D of about 90 degrees, and the surface flaws M1 and the surface flaws M2 in this range are scanned. The reflected ultrasonic wave is received again by the phased array probe 1 and output to the control device 2 as a defect echo signal.

なお、丸棒材Mの全周について表面疵M1および表層疵M2を検出する場合には、同様の構成のフェーズドアレイ探触子1を丸棒材Mの全周に沿って複数(4つ)設けるか、丸棒材Mを回転させ、ないしフェーズドアレイ探触子1を丸棒材M周りに旋回させる。 When detecting surface defects M1 and surface defects M2 on the entire circumference of the round bar material M, a plurality (4) of phased array probes 1 having the same configuration are provided along the entire circumference of the round bar material M. It is provided or the round bar M is rotated, or the phased array probe 1 is swiveled around the round bar M.

図2には超音波ビームUbを走査し、走査位置を横軸に、疵エコー信号の信号強度の時間変化を縦軸にして制御装置2内で描かれた疵エコー画像(Bスコープ)を示す。ここで、図2の破線で囲った領域の白線部が疵エコー信号に相当する部分である。なお、この場合の疵エコー画像は97ライン(走査位置)/45度の走査位置間隔で得たものである。 FIG. 2 shows a flaw echo image (B scope) drawn in the control device 2 with the scanning position as the horizontal axis and the time change of the signal intensity of the flaw echo signal as the vertical axis by scanning the ultrasonic beam Ub. .. Here, the white line portion of the region surrounded by the broken line in FIG. 2 is the portion corresponding to the flaw echo signal. The defect echo image in this case was obtained at a scanning position interval of 97 lines (scanning position) / 45 degrees.

ここで、前述した図8(1)(2)に示した疵エコー信号では、反射強度の波形を絶対値で換算しているため、正の波形と負の波形の各々を表しておらず、分解能が低くなっているため疵の判定精度に影響が出てしまう。これに対して、図2に示した疵エコー画像(Bスコープ)では、絶対値では換算しておらず、信号強度において、正の疵エコー信号と負の疵エコー信号の双方を反映していることから、図8(1)(2)の疵エコー信号と比較すると分解能が2倍となり、高分解能を有していることが明らかである。 Here, in the defect echo signal shown in FIGS. 8 (1) and 8 (2) described above, since the waveform of the reflection intensity is converted by an absolute value, each of the positive waveform and the negative waveform is not represented. Since the resolution is low, the accuracy of defect determination is affected. On the other hand, in the flaw echo image (B scope) shown in FIG. 2, the absolute value is not converted, and both the positive flaw echo signal and the negative flaw echo signal are reflected in the signal strength. From this, it is clear that the resolution is doubled as compared with the defect echo signal of FIGS. 8 (1) and 8 (2), and the resolution is high.

さらに、疵エコー画像は、疵エコー信号の信号強度が高い部分は高い明度で表示され、疵エコー信号の信号強度が低い部分は低い明度で表示されることで高い分解能が得られ、後述する学習データ画像として好適に使用することができる。なお、疵エコー画像は、疵エコー信号の信号強度が高い部分が低い明度で表示され、疵エコー信号の信号強度が低い部分が高い明度で表示されても、同様に高い分解能が得られるから、学習データ画像として好適に使用することができる。 Further, in the flaw echo image, the portion where the signal strength of the flaw echo signal is high is displayed with high brightness, and the portion where the signal strength of the flaw echo signal is low is displayed at low brightness, so that high resolution can be obtained. It can be suitably used as a data image. In the flaw echo image, even if the portion where the signal strength of the flaw echo signal is high is displayed at low brightness and the portion where the signal strength of the flaw echo signal is low is displayed at high brightness, the same high resolution can be obtained. It can be suitably used as a training data image.

所定数得られた疵エコー画像の、疵エコー信号を含む所定領域X(図2)を表面疵M1、表層疵M2についてそれぞれ図3(1)、(2)に示すように切り出し、それぞれについて適当数の学習データ画像とテストデータ画像に振り分ける。一例として、表面疵M1の学習データ画像を309枚、テストデータ画像を1236枚取得し、表層疵M2の学習データ画像を260枚、テストデータ画像を1040枚取得した。 A predetermined region X (FIG. 2) containing a defect echo signal of a predetermined number of obtained defect echo images is cut out for surface defects M1 and surface defect M2 as shown in FIGS. 3 (1) and 3 (2), respectively, and appropriate for each. Divide into a number of training data images and test data images. As an example, 309 learning data images of the surface defect M1 and 1236 test data images were acquired, 260 learning data images of the surface defect M2, and 1040 test data images were acquired.

そして、制御装置2内に構築された図4に示す、適当数の畳み込み層31とプーリング層32、および全結合層33を有する公知の構成の畳み込みニューラルネットワーク(CNN)に、学習データ画像(309枚+260枚)を与えて学習させた後、テストデータ画像(1236枚+1040枚)を与えてテスト正解率を得た。これを表1(1)に示す。 Then, a training data image (309) is generated on a convolutional neural network (CNN) having a known configuration having an appropriate number of convolutional layers 31, a pooling layer 32, and a fully connected layer 33, as shown in FIG. 4 constructed in the control device 2. After the training was given by giving (sheet + 260 images), a test data image (1236 images + 1040 images) was given to obtain a test correct answer rate. This is shown in Table 1 (1).

表1(1)に示すように、表面疵M1、表層疵M2ともにテスト正解率は100%で非常に良い判定結果を得ている。しかし一方で、生産ラインでの使用を考えた場合に問題となるデータ転送速度は比較的遅く、学習モデル生成の処理時間も比較的長い。なお、表1中のデータ転送速度比率および学習モデル生成の処理時間比率は後述する表1(3)のものを1.0とした時の比率である。 As shown in Table 1 (1), the test accuracy rate for both the surface defect M1 and the surface layer defect M2 is 100%, and very good judgment results are obtained. However, on the other hand, the data transfer speed, which is a problem when considering the use on a production line, is relatively slow, and the processing time for learning model generation is also relatively long. The data transfer speed ratio and the processing time ratio for learning model generation in Table 1 are the ratios when the one in Table 1 (3) described later is set to 1.0.

そこで、疵エコー信号を含む上記所定領域X(図2)を3ラインの走査位置でのみ抽出して疵エコー画像(図5)を得て、これより、表面疵M1の学習データ画像を372枚、テストデータ画像を1125枚取得し、表層疵M2の学習データ画像を299枚、テストデータ画像を900枚取得した。続いてCNNに上記各学習データ画像(372枚+299枚)を与えて学習させた後、テストデータ画像(1125枚+900枚)を与えてテスト正解率を得た。これを表1(2)に示す。これによると表面疵M1のテスト正解率は100%、表層疵M2のテスト正解率は99.4%であった。データ転送速度、および学習モデル生成の処理時間はいずれも大きく改善されている。 Therefore, the predetermined region X (FIG. 2) including the defect echo signal is extracted only at the scanning positions of the three lines to obtain a defect echo image (FIG. 5), and 372 learning data images of the surface defect M1 are obtained from this. , 1125 test data images were acquired, 299 learning data images of surface defect M2 were acquired, and 900 test data images were acquired. Subsequently, CNN was given each of the above training data images (372 + 299) for training, and then a test data image (1125 + 900) was given to obtain a test accuracy rate. This is shown in Table 1 (2). According to this, the test correct answer rate of the surface defect M1 was 100%, and the test correct answer rate of the surface defect M2 was 99.4%. Both the data transfer rate and the processing time for learning model generation have been greatly improved.

さらに、疵エコー信号を含む上記所定領域X(図2)を1ラインの走査位置でのみ抽出して疵エコー画像(図6)を得て、表面疵M1の学習データ画像を298枚、テストデータ画像を1203枚取得し、表層疵M2の学習データ画像を246枚、テストデータ画像を992枚取得した。続いてCNNに上記各学習データ画像(298枚+246枚)を与えて学習させた後、テストデータ画像(1203枚+992枚)を与えてテスト正解率を得た。これを表1(3)に示す。これによると表面疵M1のテスト正解率は98.3%、表層疵M2のテスト正解率は98.0%であった。データ転送速度、および学習モデル生成の処理時間はいずれもさらに改善されている。 Further, the predetermined region X (FIG. 2) including the flaw echo signal is extracted only at the scanning position of one line to obtain a flaw echo image (FIG. 6), and 298 learning data images of the surface flaw M1 and test data are obtained. 1203 images were acquired, 246 learning data images of the surface defect M2, and 992 test data images were acquired. Subsequently, CNN was given each of the above training data images (298 + 246) for training, and then a test data image (1203 + 992) was given to obtain a test accuracy rate. This is shown in Table 1 (3). According to this, the test accuracy rate of the surface defect M1 was 98.3%, and the test accuracy rate of the surface defect M2 was 98.0%. Both the data transfer rate and the processing time for training model generation have been further improved.

このように、CNNに与える疵エコー画像を得るために抽出される疵エコー信号を多くすると(疵エコー画像の精細度を上げると)CNNのテスト正解率(判定結果)は向上するが、一方でデータ転送速度は遅く、学習モデル生成の処理時間は長くなるので、CCNに与える疵エコー画像を得るために抽出する疵エコー信号の数を用途に応じて最適に選択すると良い。 In this way, increasing the number of flaw echo signals extracted to obtain the flaw echo image given to the CNN (increasing the definition of the flaw echo image) improves the CNN test accuracy rate (judgment result), but on the other hand. Since the data transfer speed is slow and the processing time for generating the training model is long, it is preferable to optimally select the number of flaw echo signals to be extracted in order to obtain the flaw echo image to be given to the CCN according to the application.

Figure 2021139821
Figure 2021139821

1…フェーズドアレイ探触子、2…制御装置、3…畳み込みニューラルネットワーク、M…丸棒材、M1…表面疵、M2…表層疵、Ub…横波超音波ビーム(斜角探傷用超音波)。 1 ... Phased array probe, 2 ... Control device, 3 ... Convolutional neural network, M ... Round bar material, M1 ... Surface flaw, M2 ... Surface flaw, Ub ... Transverse wave ultrasonic beam (ultrasonic wave for oblique flaw detection).

Claims (6)

丸棒材に向けて斜角探傷用超音波を送信しつつこれを前記丸棒材の周面に沿う方向で走査し、前記丸棒材の表面疵、ないし表面直下の丸棒材内部に生じる表層疵で反射して戻る反射超音波を受信して疵エコー信号とし、前記斜角探傷用超音波の各走査位置と、当該走査位置における疵エコー信号の信号強度の時間変化とから疵エコー画像を作成して、必要数の前記疵エコー画像を学習データとしてニューラルネットワークに与えて学習させ、学習済みの前記ニューラルネットワークに対して新たな前記疵エコー画像を与えて当該疵エコー画像に対応する疵が前記表面疵か表層疵かを判別させることを特徴とする丸棒材の超音波探傷方法。 While transmitting an oblique angle flaw detection ultrasonic wave toward the round bar material, it is scanned in a direction along the peripheral surface of the round bar material, and it occurs in a surface defect of the round bar material or inside the round bar material just below the surface. The reflected ultrasonic waves reflected and returned by the surface flaws are received and used as a flaw echo signal. Is created, the required number of the flaw echo images are given to the neural network as training data for training, and a new flaw echo image is given to the trained neural network to correspond to the flaw echo image. An ultrasonic flaw detection method for a round bar material, characterized in that a surface defect or a surface defect is discriminated. 前記斜角探傷用超音波を送信と受信にフェーズドアレイ探触子を使用した請求項1に記載の丸棒材の超音波探傷方法。 The ultrasonic flaw detection method for a round bar material according to claim 1, wherein a phased array probe is used for transmitting and receiving the ultrasonic flaw detection for bevel angle. 前記疵エコー画像を得るために抽出される疵エコー信号の数を、使用目的に応じて大小変更可能にした請求項1又は2に記載の丸棒材の超音波探傷方法。 The ultrasonic flaw detection method for a round bar material according to claim 1 or 2, wherein the number of flaw echo signals extracted to obtain the flaw echo image can be changed in magnitude according to the purpose of use. 前記疵エコー画像は、前記疵エコー信号の信号強度が高い部分は高い明度で表示され、前記疵エコー信号の信号強度が低い部分は低い明度で表示される請求項1ないし3のいずれかに記載の丸棒材の超音波探傷方法。 The flaw echo image according to any one of claims 1 to 3, wherein a portion having a high signal strength of the flaw echo signal is displayed with high brightness, and a portion having a low signal strength of the flaw echo signal is displayed with a low brightness. Ultrasonic flaw detection method for round bar materials. 前記疵エコー画像は、前記疵エコー信号の信号強度が高い部分は低い明度で表示され、前記疵エコー信号の信号強度が低い部分は高い明度で表示される請求項1ないし3のいずれかに記載の丸棒材の超音波探傷方法。 The flaw echo image according to any one of claims 1 to 3, wherein a portion having a high signal intensity of the flaw echo signal is displayed with a low brightness, and a portion having a low signal strength of the flaw echo signal is displayed with a high brightness. Ultrasonic flaw detection method for round bar materials. 前記丸棒材は黒皮材である請求項1ないし5のいずれかに記載の丸棒材の超音波探傷方法。 The ultrasonic flaw detection method for a round bar according to any one of claims 1 to 5, wherein the round bar is a black skin material.
JP2020039422A 2020-03-08 2020-03-08 Ultrasonic flaw detection method for round bar material Pending JP2021139821A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020039422A JP2021139821A (en) 2020-03-08 2020-03-08 Ultrasonic flaw detection method for round bar material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020039422A JP2021139821A (en) 2020-03-08 2020-03-08 Ultrasonic flaw detection method for round bar material

Publications (1)

Publication Number Publication Date
JP2021139821A true JP2021139821A (en) 2021-09-16

Family

ID=77668384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020039422A Pending JP2021139821A (en) 2020-03-08 2020-03-08 Ultrasonic flaw detection method for round bar material

Country Status (1)

Country Link
JP (1) JP2021139821A (en)

Similar Documents

Publication Publication Date Title
EP3667311B1 (en) Shear wave oblique probe reflected/diffracted/deformed wave detection method
JP4910769B2 (en) Pipe quality control method and manufacturing method
JP5535044B2 (en) Circuit device for ultrasonic nondestructive testing of subjects
JP5590249B2 (en) Defect detection apparatus, defect detection method, program, and storage medium
WO2007058391A1 (en) Pipe ultrasonic flaw detecting apparatus and ultrasonic flaw detecting method
CN104865316B (en) A kind of unilateral air coupling ultrasonic scanned imagery device
JP3861833B2 (en) Ultrasonic inspection method and apparatus
McKee et al. Volumetric imaging through a doubly-curved surface using a 2D phased array
JP2011203037A (en) Ultrasonic flaw detecting apparatus and ultrasonic flaw detecting method
JP4792440B2 (en) Pipe weld inspection system
JP6197458B2 (en) Defect inspection apparatus, defect inspection method, program, and storage medium
JP6290748B2 (en) Ultrasonic inspection method and ultrasonic inspection apparatus
JP2021139821A (en) Ultrasonic flaw detection method for round bar material
US8770029B2 (en) Method and apparatus for ultrasonic testing
WO2020250379A1 (en) Ultrasound flaw detection method, ultrasound flaw detection device, manufacturing equipment line for steel material, manufacturing method for steel material, and quality assurance method for steel material
CN109142527B (en) Defect positioning method for ultrasonic phased array weld joint detection
JP2021167730A (en) Ultrasonic flaw detection method for round bar material
WO2011052902A2 (en) Two-dimensional virtual array probe for three-dimensional ultrasonic imaging
CN1588036A (en) Supersonic flaw detector
JPS5917154A (en) Method and device for detecting defect by ultrasonic wave method
CN105259253B (en) A kind of phased array detection method of main inlet throttle-stop valve valve rod
JPH11211701A (en) Ultrasonic inspection device
KR102526247B1 (en) Ultrasound inspection system using color analysis
JPH1114611A (en) Electronic scanning system ultrasonic inspection equipment
JP2019211215A (en) Ultrasonic flaw detection method, ultrasonic flaw detector, steel material manufacturing equipment row, steel material manufacturing method, and steel material quality assurance method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231017

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20231212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240402

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20240524