JPH10274643A - Method and equipment for ultrasonically detecting flaw of pipe with inner surface fins - Google Patents

Method and equipment for ultrasonically detecting flaw of pipe with inner surface fins

Info

Publication number
JPH10274643A
JPH10274643A JP9078661A JP7866197A JPH10274643A JP H10274643 A JPH10274643 A JP H10274643A JP 9078661 A JP9078661 A JP 9078661A JP 7866197 A JP7866197 A JP 7866197A JP H10274643 A JPH10274643 A JP H10274643A
Authority
JP
Japan
Prior art keywords
tube
valley bottom
echo signal
defect
probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9078661A
Other languages
Japanese (ja)
Inventor
Shigetoshi Hyodo
繁俊 兵藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP9078661A priority Critical patent/JPH10274643A/en
Publication of JPH10274643A publication Critical patent/JPH10274643A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To detect a microdefect at the root part in the inner circumferential surface of a pipe with inner surface fins surely at high speed by projecting an ultrasonic wave to the center of the root part of the pipe from the outer surface side thereof at an angle substantially perpendicular to the diametral line of a pipe passing through the center of the root part. SOLUTION: An oblique angle probe 1 for flaw detection is disposed to project an ultrasonic wave from the outer surface side of a pipe P with inner surface fins to the center of a root part Rs formed in the inner circumferential surface thereof at an angle θsubstantially perpendicular to the diametral line of the pipe P passing through the center of the root part Rs. Since the magnitude of a shape echo signal from the side face at the crest part M is decreased in the vicinity of the root part Rs, a defect signal from a defect K can be distinguished easy from a shape echo signal from the crest part M and the detection accuracy is enhanced. According to the method, the defect K can be detected surely without an oversight.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、内面フィン付き管
のパルス反射方式による超音波探傷方法とその方法を実
施するための超音波探傷装置にかかわり、特に管内周面
の谷底部に発生する管軸長方向の割れ状欠陥を確実に検
出できるようにした超音波探傷方法とそのための超音波
探傷装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic flaw detection method for a tube with an internal fin by a pulse reflection method and an ultrasonic flaw detection apparatus for carrying out the method, and more particularly to a pipe generated at a valley bottom on the inner peripheral surface of the pipe. The present invention relates to an ultrasonic inspection method capable of reliably detecting a crack-like defect in an axial direction and an ultrasonic inspection apparatus therefor.

【0002】[0002]

【従来の技術】エチレン製造プラントに用いられる鋼管
のなかには、熱伝達効率を上げるために内周面に横断面
形状が三角丸ねじ山状の管軸方向に真直な複数(通常、
8〜12)条のフィンを形成させた、いわゆる内面フィ
ン付き管がある。
2. Description of the Related Art Among steel pipes used in an ethylene manufacturing plant, a plurality of pipes (usually having a triangular round thread shape whose cross section is straight in the axial direction of the pipe in order to increase the heat transfer efficiency are formed.
8-12) There is a so-called inner finned tube in which fins are formed.

【0003】図8は、上記内面フィン付き管Pの一例を
示す横断面図で、その内面は山部(フィン部)Mと、谷
部Rとからなっている。このような内面フィン付き管P
は、通常、高Cr−高Ni合金を素材とし、鋳造法もし
くはユジーンセジュルネ法に代表される熱間押し出し製
管法によって製造される。
FIG. 8 is a cross-sectional view showing an example of the above-mentioned tube P with inner fins. The inner surface of the tube P has a peak portion (fin portion) M and a valley portion R. Such a tube P with internal fins
Is usually made of a high Cr-high Ni alloy, and is manufactured by a casting method or a hot extrusion tube manufacturing method represented by the Yugene Sejournet method.

【0004】ところで、熱間押し出し製管法で上記のよ
うな内面フィン付き管Pを製造する場合には、素材の高
Cr−高Ni合金が熱間加工性に劣るので、山部Mの形
状、特にその頂部の形状が所定の形状になりにくという
特性がある。このため、山部Mの形状が所定の形状にな
るように、例えば押し出し比を大きくするなどの対策が
とられるが、この場合に谷部Rの低面、すなわち谷底部
Rsのほほ中央に集中して管軸長方向に延びた微小な割
れ疵状の欠陥Kが発生することがある。
[0004] When the above-mentioned tube P with internal fins is manufactured by the hot extrusion tube manufacturing method, the material of high Cr-Ni alloy is inferior in hot workability. In particular, there is a characteristic that the shape of the top is difficult to become a predetermined shape. For this reason, measures such as increasing the extrusion ratio are taken so that the shape of the peak M becomes a predetermined shape. In this case, however, the peak is concentrated on the lower surface of the valley R, that is, the center of the valley bottom Rs. As a result, a minute crack-like defect K extending in the pipe axis length direction may occur.

【0005】上記の場合、欠陥Kの発生を見逃すと、そ
の使用中に重大事故を招く要因になるので、製品の出荷
前に検査して欠陥Kを手入れ除去するなどする必要があ
り、そのための高能率な非破壊検査方法として超音波探
傷方法が適用される。
[0005] In the above case, if the occurrence of the defect K is overlooked, a serious accident may occur during its use. Therefore, it is necessary to inspect the defect K before shipping the product to remove and maintain the defect K. An ultrasonic flaw detection method is applied as a highly efficient nondestructive inspection method.

【0006】しかし、その適用時、図9に示すように、
内外面ともにフィンが形成されていない通常の鋼管、す
なわち内外面が円周方向に同心かつ同一曲率半径の円弧
面の鋼管を検査するのと同じ鋭角な角度θ(概ね40〜
50°)で超音波を入射させたのでは、谷底部Rsの近
傍までにわたって極めて過大な山部Mの側面からの形状
エコー信号が発生し、谷底部Rsのほほ中央に存在する
微小な欠陥Kからの欠陥信号との識別ができず、欠陥K
を確実に検出することができないという問題があった。
However, at the time of its application, as shown in FIG.
The same acute angle θ (approximately 40 to
(50 °), an extremely large shape echo signal is generated from the side surface of the peak M over the vicinity of the valley bottom Rs, and the minute defect K existing almost at the center of the valley bottom Rs. From the defect signal from
There is a problem that cannot be detected reliably.

【0007】このため、上記の内面フィン付き管Pの谷
部Rの谷底部Rsに発生する微小な欠陥Kを、高速で、
しかも確実に検出することのできる超音波探傷方法とそ
の方法を実施するための超音波探傷装置の開発が望まれ
ていた。
For this reason, a minute defect K generated at the valley bottom Rs of the valley R of the tube P with the inner fins is removed at a high speed.
In addition, there has been a demand for the development of an ultrasonic flaw detection method capable of reliably detecting an ultrasonic flaw detection apparatus and an ultrasonic flaw detection apparatus for performing the method.

【0008】[0008]

【発明が解決しようとする課題】本発明は、上記の実状
に鑑みてなされたもので、その課題は谷部の谷底部に発
生する微小な欠陥を、高速で、しかも確実に検出するこ
とのできる内面フィン付き管の超音波探傷方法と、その
方法を実施するための内面フィン付き管の超音波探傷装
置を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above situation, and an object of the present invention is to detect, at high speed and reliably, a minute defect occurring at the bottom of a valley. It is an object of the present invention to provide an ultrasonic inspection method for a tube with an internal fin and an ultrasonic inspection device for the tube with an internal fin for performing the method.

【0009】[0009]

【課題を解決するための手段】本発明の要旨は、下記
(a)の内面フィン付き管の超音波探傷方法と、下記
(b)および(c)の内面フィン付き管の超音波探傷装
置にある。
The gist of the present invention is to provide an ultrasonic flaw detection method for a tube with an internal fin described in (a) below and an ultrasonic flaw detection apparatus for a tube with an internal fin described in (b) and (c) below. is there.

【0010】(a)内面フィン付き管(P)の内周面谷
底部(Rs)に管軸長方向へ向かって発生した欠陥を斜
角探傷法によって検出する内面フィン付き管のパルス反
射方式による超音波探傷方法であって、内面フィン付き
管(P)内周面の谷底部(Rs)の中央に対して、谷底
部(Rs)の中央を通る管の直径線(L)とほぼ直交す
る角度(θ)で、管の外面側から超音波を入射させるこ
とを特徴とする内面フィン付き管の超音波探傷方法(第
1の発明)。
(A) A pulse reflection method of an inner finned tube (P) which detects a defect generated in the inner peripheral valley bottom (Rs) of the inner peripheral valley (Rs) in the tube axis length direction by an oblique flaw detection method. An ultrasonic flaw detection method, wherein a center line of a valley bottom (Rs) of an inner peripheral surface of a tube with an inner fin (P) is substantially perpendicular to a diameter line (L) of a tube passing through the center of the valley bottom (Rs). An ultrasonic flaw detection method for a tube with an internal fin, wherein ultrasonic waves are incident from an outer surface side of the tube at an angle (θ) (first invention).

【0011】(b)上記(a)に記載の超音波探傷方法
に用いる超音波探傷装置であって、内面フィン付き管
(P)内周面の谷底部(Rs)の中央に対して谷底部
(Rs)の中央を通る管の直径線(L)とほぼ直交する
角度(θ)で、管の外面側から超音波を入射する斜角探
触子(1)と、この斜角探触子(1)で受信される探傷
信号のうちから管内周面の谷底部近傍表面の形状エコー
信号を出力する形状エコー信号検出ゲート回路(4)
と、この形状エコー信号検出ゲート回路(4)と並列に
設けられ、斜角探触子(1)で受信される探傷信号のう
ちから管内周面の谷底部に存在する欠陥エコー信号を出
力する欠陥エコー信号検出ゲート回路(7)とを備える
ともに、前記形状エコー信号検出ゲート回路(4)の出
力に応じて谷底部の通過位置を推定する判定回路(5)
と、この判定回路(5)の出力に応じて前記の欠陥エコ
ー信号検出ゲート回路(7)を開閉制御するON/OF
F制御回路(6)とを具備することを特徴とする内面フ
ィン付き管の超音波検査装置(第2の発明)。
(B) An ultrasonic flaw detector used in the ultrasonic flaw detection method described in (a) above, wherein the inner finned pipe (P) has a valley bottom with respect to the center of the valley bottom (Rs) of the inner peripheral surface. An oblique probe (1) for receiving ultrasonic waves from the outer surface side of the tube at an angle (θ) substantially orthogonal to a diameter line (L) of the tube passing through the center of (Rs), and the oblique probe A shape echo signal detection gate circuit for outputting a shape echo signal of the surface near the valley bottom of the inner circumferential surface of the flaw detection signals received in (1) (4)
And a defect echo signal which is provided in parallel with the shape echo signal detection gate circuit (4) and which is present at the bottom of the inner peripheral surface of the pipe from among the flaw detection signals received by the oblique probe (1). A determination circuit (5) including a defect echo signal detection gate circuit (7) and estimating a passage position of a valley bottom in accordance with an output of the shape echo signal detection gate circuit (4);
ON / OF for controlling opening and closing of the defect echo signal detection gate circuit (7) according to the output of the determination circuit (5).
An ultrasonic inspection apparatus for a tube with internal fins, comprising an F control circuit (6) (second invention).

【0012】(c)上記(a)に記載の超音波探傷方法
に用いる超音波探傷装置であって、内面フィン付き管
(P)内周面の谷底部(Rs)の中央に対して谷底部
(Rs)の中央を通る管の直径線(L)とほぼ直交する
角度(θ)で、管の外面側から超音波を入射する斜角探
触子(1)と、この斜角探触子(1)とは管の周方向に
位相をずらせて配置され、管の外面側から内周面谷底部
の中央に対して管直径線(L)に沿って超音波を入射す
る垂直探触子(10)と、前記斜角探触子(1)で受信
される探傷信号のうちから管の内周面谷底部に存在する
欠陥エコー信号を出力する欠陥エコー信号検出ゲート回
路(40)と、前記垂直探触子(10)で受信される探
傷信号のうちから管内周面の谷底部表面の形状エコー信
号を出力する谷底部検出ゲート回路(50)と、この谷
底部検出ゲート回路(50)の出力に応じて前記欠陥エ
コー信号検出ゲート回路(40)を開閉制御するON/
OFF制御回路(60)とを具備するともに、斜角探触
子(1)の発振器(2)と垂直探触子(10)の発振器
(20)とが同期回路(70)を介して接続されている
ことを特徴とする内面フィン付き管の超音波検査装置
(第3の発明)。
(C) An ultrasonic flaw detector used in the ultrasonic flaw detection method described in (a) above, wherein the inner finned pipe (P) has a valley bottom with respect to the center of the valley bottom (Rs) of the inner peripheral surface. An oblique probe (1) for receiving ultrasonic waves from the outer surface side of the tube at an angle (θ) substantially orthogonal to a diameter line (L) of the tube passing through the center of (Rs), and the oblique probe (1) is a vertical probe which is arranged so as to be out of phase in the circumferential direction of the tube, and in which ultrasonic waves are incident along the tube diameter line (L) from the outer surface side of the tube to the center of the bottom of the inner circumferential surface. (10) a defect echo signal detection gate circuit (40) for outputting a defect echo signal existing at the bottom of the inner circumferential surface of the tube from the flaw detection signals received by the oblique probe (1); From the flaw detection signals received by the vertical probe (10), a valley bottom detection for outputting a shape echo signal of the valley bottom surface of the inner peripheral surface of the tube. A gate circuit (50), ON to open and close control the defect echo signal detection gate circuit in accordance with the output of the valley portion detection gate circuit (50) (40) /
An OFF control circuit (60) is provided, and an oscillator (2) of the oblique probe (1) and an oscillator (20) of the vertical probe (10) are connected via a synchronization circuit (70). Ultrasonic inspection apparatus for tubes with internal fins (third invention).

【0013】本発明者は、種々実験の結果、谷底部Rs
に発生する欠陥Kを確実に検出するには、斜角探触子か
らの超音波の入射角度θを従来のように鋭角(図8参
照)にするのではなく、図1に示すように、谷底部Rs
の中央に対して谷底部Rsの中央を通る管の直径線Lと
ほぼ直交する角度θで入射させればよいこと。また、欠
陥Kからの欠陥信号と山部Mからの形状エコー信号との
識別は、上記の(b)または(c)に記載した装置構成
とすることにより、高精度に識別可能であることを知見
し、本発明をなすにいたった。
As a result of various experiments, the present inventor found that the valley bottom Rs
In order to reliably detect the defect K generated in the above, instead of making the incident angle θ of the ultrasonic wave from the oblique probe an acute angle (see FIG. 8) as in the related art, as shown in FIG. Valley bottom Rs
Should be incident at an angle θ substantially orthogonal to the diameter line L of the tube passing through the center of the valley bottom Rs with respect to the center of the valley bottom Rs. Further, the discrimination between the defect signal from the defect K and the shape echo signal from the peak M can be performed with high accuracy by using the device configuration described in the above (b) or (c). The inventor has come to know the present invention.

【0014】上記のように、谷底部Rsの中央に対して
谷底部Rsの中央を通る管の直径線Lとほぼ直交する角
度θで超音波を入射させる場合には、谷底部Rs近傍で
の山部Mの形状エコー信号の大きさが可及的に小さくな
る。その結果、欠陥Kからの欠陥信号と山部Mからの形
状エコー信号の識別が容易になって欠陥Kの検出精度が
向上するので、欠陥Kの発生を見逃すことなく確実に検
出することが可能になる。
As described above, when an ultrasonic wave is incident at an angle θ substantially orthogonal to the diameter line L of a tube passing through the center of the valley bottom Rs with respect to the center of the valley bottom Rs, The size of the shape echo signal of the peak M becomes as small as possible. As a result, the defect signal from the defect K and the shape echo signal from the peak M can be easily identified, and the detection accuracy of the defect K is improved. Therefore, the defect K can be detected without fail. become.

【0015】なお、特開昭52−76986号公報、同
59−94063号公報および実開昭61−42463
号公報には、フィン付き管の超音波探傷方法および装置
が示されている。しかし、そこに示される技術は、いず
れも外周面に複数条のフィンが形成された外面フィン付
き管を検査対象にしたものであり、しかも欠陥検出用の
斜角探触子からは前述の図8に示したのと同じ鋭角な角
度θで超音波を入射する方法でしかない。
Incidentally, Japanese Patent Application Laid-Open Nos. Sho 52-79686 and 59-94063 and Japanese Utility Model Application Laid-Open No. Sho 61-42463.
The publication discloses an ultrasonic inspection method and apparatus for a finned tube. However, the techniques shown therein all target tubes with external fins having a plurality of fins formed on the outer peripheral surface, and the above-mentioned figure is obtained from the angle probe for defect detection. However, there is no other method than the method in which ultrasonic waves are incident at the same acute angle θ as shown in FIG.

【0016】また、上記各公報に示される技術は、これ
をそのまま内面フィン付き管Pの谷底部Rsのほぼ中央
に発生する欠陥Kを検出すべく適用した場合には、次に
述べるような問題が生じるという欠点もある。
In addition, when the techniques disclosed in the above publications are applied to detect a defect K generated substantially at the center of the valley bottom Rs of the tube P with the inner fins, the following problems arise. There is also a drawback that occurs.

【0017】すなわち、特開昭52−76986号公報
に示される技術では、外面フィン付き管の軸心周りに斜
角探触子を回転させ、フィン部に対応する位置に斜角探
触子がきた時、具体的には管の回転角度に応じて超音波
の発信を遮断することによって外面フィンによる形状エ
コー信号の障害を除くことにしている。従って、この方
法を内面フィン付き管Pに適用すると、管1回転当たり
8〜12回の形状エコー信号が生じるので、その都度超
音波の発信を遮断する必要がある。
That is, in the technique disclosed in Japanese Patent Application Laid-Open No. 52-67986, the oblique probe is rotated around the axis of a tube with external fins, and the oblique probe is positioned at a position corresponding to the fin portion. When it comes, specifically, the transmission of the ultrasonic wave is cut off in accordance with the rotation angle of the tube, so that the obstacle of the shape echo signal due to the outer fin is removed. Therefore, when this method is applied to a tube P with internal fins, a shape echo signal is generated 8 to 12 times per rotation of the tube, and it is necessary to interrupt the transmission of ultrasonic waves each time.

【0018】しかし、内面フィン付き管Pのフィン(山
部M)は、その熱間押し出し製管法の特性から必ずしも
真直かつ円周方向に均一でなく、わずかではあるが管軸
心周りに螺旋状に捻れたり不均一になっている場合があ
り、また管回転速度も必ずしも常時一定であるとは限ら
ない。このため、これらの影響で超音波の発信を遮断す
るタイミングに大きな誤差が生じて欠陥を見逃すことが
多くなる。
However, the fins (peaks M) of the tube P with internal fins are not always straight and uniform in the circumferential direction due to the characteristics of the hot extrusion tube-making method, and a little spiral around the tube axis. It may be twisted or uneven in shape, and the tube rotation speed is not always constant. For this reason, a large error occurs in the timing of interrupting the transmission of the ultrasonic wave due to these effects, and the defect is often overlooked.

【0019】また、特開昭59−94063号公報に示
される技術では、上記と同様の外面フィン付き管を検査
対象とし、その管軸心周りに欠陥検出用の斜角探触子と
フィン検出用の垂直探触子を配置し、垂直探触子による
外面フィン検出時に斜角探触子の受信信号出力を停止す
ることとしている。しかし、この方法もこれをそのまま
内面フィン付き管Pに適用すると、上記同様の理由によ
って欠陥を見逃すことが多くなる。また、この方法の場
合、同公報に記載されるように、検査対象の管寸法が異
なる場合の段取り替え時に細かな角度毎のデーター確認
が必要であり、このために多大な工数を要する。
In the technique disclosed in Japanese Patent Application Laid-Open No. 59-94063, a tube with an external fin similar to that described above is to be inspected, and a bevel probe for defect detection and a fin detection around the tube axis. A vertical probe is disposed, and when the external fin is detected by the vertical probe, the reception signal output of the oblique probe is stopped. However, if this method is also applied to the tube P with internal fins as it is, defects are often overlooked for the same reason as described above. In addition, in the case of this method, as described in the same gazette, it is necessary to confirm data for each fine angle at the time of setup change when the pipe size to be inspected is different, which requires a large number of man-hours.

【0020】さらに、実開昭61−42463号公報に
示される技術では、上記同様の外面フィン付き管の軸心
周りに斜角探触子を揺動させることによって外面フィン
の形状エコー信号が発生しない部分のみ検査することに
している。しかし、この方法は、斜角探触子を高速で揺
動させることが容易でなために高速での検査が困難であ
るほか、フィンの数だけ斜角探触子が必要で、内面フィ
ン付き管Pのようにフィンの数が多い場合、装置全体が
大型化して設備費が高くつく。
Further, in the technique disclosed in Japanese Utility Model Application Laid-Open No. Sho 61-42463, a shape echo signal of an external fin is generated by swinging an oblique probe around the axis of a tube with an external fin similar to the above. Only those parts that are not to be inspected. However, with this method, it is difficult to perform high-speed inspection because it is easy to swing the angle beam probe at high speed. When the number of fins is large as in the case of the pipe P, the size of the entire apparatus is increased and the equipment cost is high.

【0021】また更に、上記いずれの公報にも、本発明
で検査対象とする内面フィン付き管Pの谷底部Rsに発
生する欠陥Kを確実に検出するための欠陥検出用の斜角
探触子からの超音波の入射角度θを本発明で規定するよ
うにすればよいことを示唆する記載は一切ない。従っ
て、これらの公報に示される技術は、本発明をなすには
何らの参考にもならないものである。
Further, in each of the above publications, an oblique angle probe for detecting a defect for surely detecting a defect K generated at a valley bottom Rs of a tube P having an inner fin to be inspected in the present invention. There is no description suggesting that the incident angle θ of the ultrasonic wave from the laser beam should be specified in the present invention. Therefore, the techniques disclosed in these publications are not helpful at all in making the present invention.

【0022】[0022]

【発明の実施の形態】以下、添付図面を参照して本発明
の方法(第1の発明)と、この方法を実施するための装
置(第2の発明および第3の発明)に付いて詳細に説明
する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring to the accompanying drawings, a method of the present invention (first invention) and an apparatus for implementing the method (second invention and third invention) will be described below in detail. Will be described.

【0023】先ず、第1の発明である方法について説明
するが、本発明の方法においては、前述したように、欠
陥検出用の斜角探触子1が内面フィン付き管Pの外面側
から内周面に形成された谷底部Rsの中央に対して谷底
部Rsの中央を通る管の直径線Lとほぼ直交する角度θ
で超音波を入射させるように配置される(前述の図1参
照)。
First, the method according to the first invention will be described. In the method of the present invention, as described above, the oblique probe 1 for detecting a defect is formed from the outer surface side of the inner finned tube P to the inner surface. An angle θ substantially perpendicular to the diameter line L of the pipe passing through the center of the valley bottom Rs with respect to the center of the valley bottom Rs formed on the peripheral surface.
(See FIG. 1 described above).

【0024】上記のように超音波を入射させると、谷底
部Rs近傍での山部Mの側面からの形状エコー信号の大
きさが可及的に小さくなる。その結果、欠陥Kからの欠
陥信号と山部Mからの形状エコー信号との識別が容易に
なってその検出精度が向上するので、欠陥Kを見逃すこ
となく確実に検出することが可能になることは前述した
通りである。
When the ultrasonic waves are incident as described above, the magnitude of the shape echo signal from the side surface of the peak M near the valley bottom Rs becomes as small as possible. As a result, the defect signal from the defect K and the shape echo signal from the peak M can be easily distinguished and the detection accuracy is improved, so that the defect K can be detected without fail. Is as described above.

【0025】なお、検査は、所定の位置に固定的に配置
された斜角探触子1に対して内面フィン付き管Pをその
管軸長方向に螺進搬送させるか、所定の位置あって同一
円周上を回転するように設けられた斜角探触子1に対し
てその回転中心に軸心を一致させた状態で内面フィン付
き管Pをその管軸長方向に非回転搬送させることで行わ
れる。
In the inspection, the tube P with internal fins is screwed and conveyed to the bevel probe 1 fixedly arranged at a predetermined position in the longitudinal direction of the tube, or at a predetermined position. The non-rotating conveyance of the tube P with the inner fins in the longitudinal direction of the tube P with the axis centered on the center of rotation of the oblique probe 1 provided to rotate on the same circumference. Done in

【0026】次に、斜角探触子1で受信される信号中か
ら欠陥Kからの欠陥信号を識別するための装置について
説明するが、本発明になる装置は、斜角探触子1のみの
受信信号を用いる装置(第2の発明)と、斜角探触子1
に加えて内面形状を検出するための垂直探触子とを用
い、両者の受信信号を用いる装置(第3の発明)との2
通りがある。
Next, an apparatus for identifying a defect signal from the defect K from among signals received by the oblique probe 1 will be described. (Second invention) using the received signal of the first embodiment and the oblique probe 1
(Third invention) using a vertical probe for detecting the inner surface shape and using the received signals of both.
There is a street.

【0027】図2は、上記第2の発明になる装置構成を
示すブロック図で、図に示すように、斜角探触子1、発
振器2、増幅器3、形状エコー信号検出ゲート回路4、
判定回路5、ON/OFF制御回路6、欠陥エコー信号
検出ゲート回路7、表示装置(記録装置でもよい)8と
で構成されている。
FIG. 2 is a block diagram showing the configuration of the apparatus according to the second invention. As shown in FIG. 2, the oblique probe 1, the oscillator 2, the amplifier 3, the shape echo signal detection gate circuit 4,
It comprises a judgment circuit 5, an ON / OFF control circuit 6, a defect echo signal detection gate circuit 7, and a display device (or a recording device) 8.

【0028】上記の斜角探触子1は、前述したように内
面フィン付き管Pの谷底部Rsの中央に対して谷底部R
sの中央を通る管の直径線Lとほぼ直交する角度θ(前
述の図1参照)で超音波を入射させ得るように角度調節
されて配置されている。
As described above, the oblique probe 1 has a valley bottom portion Rs with respect to the center of the valley bottom portion Rs of the tube P with inner fins.
The angle is adjusted so that an ultrasonic wave can be incident at an angle θ (see FIG. 1 described above) substantially orthogonal to the diameter line L of the tube passing through the center of s.

【0029】そして、発振器2からの電気パルス信号を
受けて斜角探触子1から材料中に発振入射されて材料中
を伝搬し、管内面の山部Mや欠陥Kなどで反射されて斜
角探触子1で受信された超音波は、斜角探触子1中で電
気パルス信号、すなわち探傷信号に変換される。また、
この探傷信号は、増幅器3で増幅された後、並列に設け
られた形状エコー信号検出ゲート回路4と欠陥エコー信
号検出ゲート回路7との両方に入力される。
An electric pulse signal from the oscillator 2 is received and oscillated into the material from the oblique probe 1 and propagates through the material, and is reflected by the peak M and the defect K on the inner surface of the tube and obliquely reflected. The ultrasonic wave received by the angle probe 1 is converted into an electric pulse signal, that is, a flaw detection signal in the angle beam probe 1. Also,
The flaw detection signal is amplified by the amplifier 3 and then input to both the shape echo signal detection gate circuit 4 and the defect echo signal detection gate circuit 7 provided in parallel.

【0030】ここで、形状エコー信号検出ゲート回路4
には、被検査対象の内面フィン付き管Pを対象にして低
速で予備探傷を行い、図示しない波形モニター上で作業
員が判定した結果に基づいて予め定められた時間ゲート
が設定されており、図3中の(a)に太実線で示すよう
に、谷部Rの谷底部Rsとその近傍の山部M側面からの
探傷信号のみを判定回路5に入力するようになってい
る。
Here, the shape echo signal detection gate circuit 4
A gate is set for a predetermined time based on the result of a preliminary flaw detection performed at a low speed on the inner finned tube P to be inspected at a low speed and determined by a worker on a waveform monitor (not shown). As shown by the thick solid line in FIG. 3A, only the flaw detection signal from the valley bottom Rs of the valley R and the side surface of the ridge M near the valley R is input to the determination circuit 5.

【0031】一方、判定回路5には、谷底部Rsに人工
欠陥を加工形成させた試験材の探傷結果に基づいて求め
られた谷底部Rsと山部M側面からの探傷信号を識別す
るための閾値ARM(図3中の(a)に一点鎖線で示
す)が設定されており、図3中の(b)に示すように、
探傷信号レベルが予め設定された閾値ARMを超える終
始点間の時間をゲート時間としてON/OFF制御回路
6に入力するようになっている。
On the other hand, the judgment circuit 5 discriminates the flaw detection signal from the side face of the valley bottom Rs and the ridge M obtained based on the flaw detection result of the test material having the valley bottom Rs formed with an artificial defect. A threshold value ARM (shown by a dashed line in (a) of FIG. 3) is set, and as shown in (b) of FIG.
The time between the end points where the flaw detection signal level exceeds a preset threshold value ARM is input to the ON / OFF control circuit 6 as the gate time.

【0032】また、ON/OFF制御回路6には、上記
同様に、谷底部Rsに人工欠陥を加工形成させた試験材
の探傷結果に基づいて予め定められた谷底部の中央位置
を識別するためのタイマー時間とゲート時間が設定され
ており、図3の(c)に示すように、判定回路5から入
力されたゲート時間の終点から一定時間T1 経過後にT
2 時間のゲート時間の間だけ、欠陥エコー信号検出ゲー
ト回路7に対して増幅器3から入力された探傷信号を表
示装置8に出力させるON/OFF指令信号を発信する
ようになっている。
In the same manner as above, the ON / OFF control circuit 6 identifies a predetermined center position of the valley bottom based on the flaw detection result of the test material having the valley bottom Rs formed with an artificial defect. T of the timer time and the gate time is set, as shown in FIG. 3 (c), from the end point of the gates time input from the determination circuit 5 after a predetermined time T 1 elapses
An ON / OFF command signal for outputting the flaw detection signal input from the amplifier 3 to the display device 8 is transmitted to the defect echo signal detection gate circuit 7 only during the two- hour gate time.

【0033】上記のように構成された装置によれば、判
定回路5によって谷底部Rsと山部Mの境界を識別する
ので、管の回転速度が変動してもその影響をほとんど受
けることがない。しかも、谷底部Rsと山部Mの境界識
別によって山部Mからの形状エコーがほとんど除去され
るとともに、谷底部Rsの中央に対して谷底部Rsの中
央を通る管の直径線Lとほぼ直交する角度θで超音波を
入射させる相乗効果によって、形状エコー信号の極めて
小さい谷底部Rsからの探傷信号を出力させることがで
きる。
According to the apparatus configured as described above, the boundary between the valley bottom Rs and the peak M is identified by the determination circuit 5, so that even if the rotational speed of the tube fluctuates, it is hardly affected. . Moreover, the shape echo from the ridge M is almost removed by the boundary identification between the valley Rs and the ridge M, and the diameter of the pipe L passing through the center of the valley Rs is substantially perpendicular to the center of the valley Rs. The flaw detection signal from the very small valley bottom Rs of the shape echo signal can be output by the synergistic effect of making the ultrasonic wave incident at the desired angle θ.

【0034】その結果、表示装置8には、谷底部Rsの
ほぼ中央に欠陥Kがある場合、図3中の(d)に示すよ
うに、その欠陥エコー信号が明確に表示されるようにな
るので、欠陥Kを高精度に検出することができる。
As a result, when the display device 8 has a defect K substantially at the center of the valley bottom Rs, the defect echo signal is clearly displayed as shown in FIG. 3D. Therefore, the defect K can be detected with high accuracy.

【0035】また、この第2の発明になる装置は、検査
対象の内面フィン付き管Pに直接コンタクトさせる探触
子が1つですむので、装置全体がコンパクトになり、設
備費を安くすることができる。
Further, in the apparatus according to the second aspect of the present invention, since only one probe is required to directly contact the tube with internal fins P to be inspected, the entire apparatus can be made compact and equipment costs can be reduced. Can be.

【0036】次に、斜角探触子1に加えて内面形状を検
出するための垂直探触子とを用い、両者の受信信号を用
いる装置(第3の発明)について説明する。
Next, a description will be given of an apparatus (third invention) that uses a vertical probe for detecting the inner surface shape in addition to the oblique probe 1 and uses both received signals.

【0037】図4は、斜角探触子1と垂直探触子の配置
態様を示す図で、図中の符号10が内面形状を検出する
ための垂直探触子であり、図1に示したのと同じ状態で
配置された斜角探触子1とは位相を異ならせ配置されて
おり、内面フィン付き管Pの軸心に向かって超音波を入
射するようになっている。
FIG. 4 is a diagram showing an arrangement of the oblique probe 1 and the vertical probe. In FIG. 4, reference numeral 10 denotes a vertical probe for detecting the inner surface shape. The oblique probe 1 is arranged in a different phase from the oblique probe 1 arranged in the same state as above, so that ultrasonic waves are incident toward the axis of the tube P with internal fins.

【0038】また、図5は、第3の発明になる装置構成
を示すブロック図で、図に示すように、斜角探触子1、
発振器2および20、増幅器3および30、欠陥エコー
信号検出ゲート回路40、表示装置(記録装置でもよ
い)8、谷底部検出ゲート回路50、ON/OFF制御
回路60、同期回路70とで構成されている。
FIG. 5 is a block diagram showing the structure of an apparatus according to the third invention. As shown in FIG.
It comprises oscillators 2 and 20, amplifiers 3 and 30, a defective echo signal detection gate circuit 40, a display device (which may be a recording device) 8, a valley bottom detection gate circuit 50, an ON / OFF control circuit 60, and a synchronization circuit 70. I have.

【0039】上記の斜角探触子1は、第2の発明になる
装置の場合と同じで、内面フィン付き管Pの谷底部Rs
の中央に対して管の直径線Lとほぼ直交する角度θ(前
述の図1参照)で超音波を入射させ得るように角度調節
されて配置されている。また、垂直探触子10は、前述
したように、斜角探触子1とは位相を異ならせ配置され
ており、内面フィン付き管Pの軸心に向かって超音波を
入射させ得るように角度調節されて配置されている。
The above-described bevel probe 1 is the same as that of the device according to the second invention, and has a valley bottom Rs of a tube P with an inner fin.
The angle is adjusted so that an ultrasonic wave can be incident at an angle θ (see FIG. 1 described above) substantially orthogonal to the diameter line L of the tube with respect to the center of the tube. As described above, the vertical probe 10 is arranged so as to be out of phase with the oblique probe 1, so that ultrasonic waves can be made incident on the axis of the tube P with internal fins. The angle is adjusted and arranged.

【0040】そして、発振器2からの電気パルス信号を
受けて斜角探触子1から材料中に発振入射されて材料中
を伝搬し、管内面の山部Mや欠陥Kなどで反射されて斜
角探触子1で受信された超音波は、斜角探触子1中で電
気パルス信号、すなわち探傷信号に変換される。また、
この探傷信号は、増幅器3で増幅された後、欠陥エコー
信号検出ゲート回路40に入力される。
An electric pulse signal from the oscillator 2 is received, oscillated into the material from the oblique probe 1 and propagated through the material, and is reflected at the peak M or the defect K on the inner surface of the tube to be oblique. The ultrasonic wave received by the angle probe 1 is converted into an electric pulse signal, that is, a flaw detection signal in the angle beam probe 1. Also,
This flaw detection signal is input to the defect echo signal detection gate circuit 40 after being amplified by the amplifier 3.

【0041】一方、発振器20らの電気パルス信号を受
けて垂直探触子10から材料中に発振入射されて材料中
を伝搬し、管内面で反射されて垂直探触子10で受信さ
れた超音波は、垂直探触子10中で電気パルス信号、す
なわち内面形状信号に変換される。また、この内面形状
信号は、増幅器30で増幅された後、谷底部検出ゲート
回路50に入力される。
On the other hand, in response to the electric pulse signal from the oscillator 20, the vertical probe 10 oscillates and enters the material from the vertical probe 10, propagates through the material, and is reflected by the inner surface of the tube and received by the vertical probe 10. The sound wave is converted into an electric pulse signal, that is, an inner surface shape signal in the vertical probe 10. The inner shape signal is amplified by the amplifier 30 and then input to the valley detection gate circuit 50.

【0042】ここで、谷底部検出ゲート回路50には、
被検査対象の内面フィン付き管Pを対象にして低速で予
備探傷を行い、図示しない波形モニター上で作業員が判
定した結果に基づいて予め求められた谷底部Rsからの
反射(探傷)信号を検出するための閾値ARM(図6中
の(b)に一点鎖線で示す)が設定されており、内面形
状信号レベルが予め設定された閾値ARMを超える終始
点間の時間を、図6の(c)に示すように、ゲート時間
としてON/OFF制御回路60に入力するようになっ
ている。
Here, the valley bottom detection gate circuit 50 includes:
Preliminary flaw detection is performed at a low speed on the pipe P with an inner fin to be inspected, and a reflection (flaw detection) signal from the valley bottom Rs obtained in advance based on a result determined by an operator on a waveform monitor (not shown) is obtained. A threshold ARM for detection (indicated by a dashed line in (b) of FIG. 6) is set, and the time between the end point and the start point where the inner surface shape signal level exceeds the preset threshold ARM is indicated by ( As shown in c), a gate time is input to the ON / OFF control circuit 60.

【0043】そして、上記のゲート時間が入力されたO
N/OFF制御回路60は、そのゲート時間の間(図6
の(d)に示す)だけ欠陥エコー信号検出ゲート回路4
0に対して増幅器30から入力された探傷信号を表示装
置8に出力させるON/OFF指令信号を発信するよう
になっている。
Then, when the above gate time is inputted, O
The N / OFF control circuit 60 operates during the gate time (FIG. 6).
(D)) only the defective echo signal detection gate circuit 4
For ON, an ON / OFF command signal for outputting the flaw detection signal input from the amplifier 30 to the display device 8 is transmitted.

【0044】また、同期回路70は、斜角探触子1と垂
直探触子10とか発振される超音波が材料中で相互に干
渉しないように、その発振タイミングを制御するように
なっている。
The synchronization circuit 70 controls the oscillation timing so that the ultrasonic waves oscillated by the oblique probe 1 and the vertical probe 10 do not interfere with each other in the material. .

【0045】上記のように構成された装置によれば、垂
直探触子10の内面形状信号を谷底部検出ゲート回路5
0に通して谷底部Rsの位置を確定し、その間だけ斜角
探触子1の探傷信号を出力させるので、山部Mからの形
状エコーがほとんど除去されるとともに、谷底部Rsの
中央に対して谷底部Rsの中央を通る管の直径線Lとほ
ぼ直交する角度θで超音波を入射させるのと相俟って内
面形状信号の極めて小さい谷底部Rsからの探傷信号の
みを出力させることができる。
According to the apparatus configured as described above, the inner surface shape signal of the vertical probe 10 is transmitted to the valley bottom detection gate circuit 5.
0, the position of the valley bottom Rs is determined, and the flaw detection signal of the oblique probe 1 is output only during that time, so that the shape echo from the peak M is almost removed and the center of the valley bottom Rs is removed. Combined with the incidence of ultrasonic waves at an angle θ substantially perpendicular to the diameter line L of the tube passing through the center of the valley bottom Rs, it is possible to output only a flaw detection signal from the valley bottom Rs having an extremely small inner shape signal. it can.

【0046】その結果、表示装置8には、谷底部Rsの
ほぼ中央に欠陥Kがある場合、図6中の(e)に示すよ
うに、その欠陥エコー信号が明確に表示されるようにな
るので、欠陥Kを高精度に検出することができる。
As a result, when the display device 8 has a defect K substantially at the center of the valley bottom Rs, the defect echo signal is clearly displayed as shown in FIG. 6E. Therefore, the defect K can be detected with high accuracy.

【0047】なお、検査は、第2の発明の場合と同様
に、所定の位置に固定的に配置された斜角探触子1と垂
直探触子10に対して内面フィン付き管Pをその管軸長
方向に螺進搬送させるか、所定の位置あって同一円周上
を回転するように設けられた斜角探触子1と垂直探触子
10に対してその回転中心に軸心を一致させた状態で内
面フィン付き管Pをその管軸長方向に非回転搬送させる
ことで行われる。
In the inspection, as in the case of the second invention, the tube P with the inner fin is attached to the oblique probe 1 and the vertical probe 10 which are fixedly arranged at predetermined positions. The oblique probe 1 and the vertical probe 10 provided to rotate along the same circumference at a predetermined position by being screwed and conveyed in the longitudinal direction of the tube axis are provided with an axis centered at the rotation center thereof. In this state, the pipes P with the inner fins are conveyed non-rotatably in the longitudinal direction of the pipes.

【0048】また、上記第3に発明になる装置おける感
度調整は、次のようにして行うことが可能で、内面フィ
ン付き管Pの寸法変更時における感度調整が極めて簡単
である。すなわち、谷底部Rsの中央から若干外れた位
置に人工欠陥を形成させた試験材を用い、斜角探触子1
によって人工欠陥が検出された位置で試験材を固定す
る。次いで、人工欠陥の真上に垂直探触子10を移動さ
せてから垂直探触子10を移動させて谷底部Rs中央の
内面形状エコーが検出されるようにし、その時の内面形
状エコーレベルが予め定めて閾値よりも一定レベルだけ
高くなるように感度調節する。
The sensitivity adjustment in the device according to the third aspect of the present invention can be performed as follows, and the sensitivity adjustment at the time of changing the dimensions of the inner finned tube P is extremely simple. That is, using a test material having an artificial defect formed at a position slightly deviated from the center of the valley bottom Rs,
The test material is fixed at the position where the artificial defect was detected. Next, the vertical probe 10 is moved right above the artificial defect, and then the vertical probe 10 is moved so that the inner surface echo at the center of the valley bottom Rs is detected. The sensitivity is adjusted so as to be higher than the threshold by a certain level.

【0049】なお、本発明の超音波探傷方法と装置にあ
っては、谷底部Rsの中央に対して谷底部Rsの中央を
通る管の直径線Lとほぼ直交する角度θで超音波を入射
させることから、谷底中央よりも超音波の入射方向とは
反対側(図1の欠陥Kよりも左側)になる谷底部Rsに
発生した微小な欠陥を検出することは事実上不可能であ
る。従って、検査は、図1に示す方向からの超音波入射
による検査と同時に、図1に示すのとは逆方向から超音
波を入射する検査を行うことが必要である。
In the ultrasonic flaw detection method and apparatus according to the present invention, an ultrasonic wave is incident at an angle θ substantially perpendicular to the diameter line L of a tube passing through the center of the valley bottom Rs with respect to the center of the valley bottom Rs. Therefore, it is practically impossible to detect a minute defect generated at the valley bottom Rs on the opposite side of the center of the valley from the incident direction of the ultrasonic wave (left side of the defect K in FIG. 1). Therefore, it is necessary to perform the inspection by applying the ultrasonic wave from the direction shown in FIG. 1 and the ultrasonic wave from the opposite direction to that shown in FIG.

【0050】[0050]

【実施例】図8示す寸法諸元(D、d1 、d2 、t、
h)が表1に示す値(mm)で、フィン(山部M)の数
が8の内面フィン付き管であり、図7に示すように、そ
の谷底部の中央と中央から2mm離れた両側の位置に、
長さ25mm、幅0.5mmで、深さが0.5mmと1
mmの人工欠陥K1 、K2 、K3 を形成した試験材を対
象に、本発明の方法(図1中の超音波入射角度θ=90
°)と従来の方法(図8中の超音波入射角度θ=45
°)とで超音波探傷試験を行った。
FIG. 8 shows the dimensions (D, d 1 , d 2 , t,
h) is a value (mm) shown in Table 1 and is a tube with inner fins having 8 fins (peaks M). As shown in FIG. 7, the center of the valley bottom and both sides 2 mm away from the center are shown in FIG. At the position
Length 25mm, width 0.5mm, depth 0.5mm and 1
The method of the present invention (the ultrasonic incident angle θ = 90 in FIG. 1) was applied to a test material on which artificial defects K 1 , K 2 , and K 3 mm were formed.
°) and the conventional method (the ultrasonic incident angle θ = 45 in FIG. 8).
°) and the ultrasonic inspection test was performed.

【0051】[0051]

【表1】 [Table 1]

【0052】なお、斜角探触子としては、いずれの場合
も振動子径が9.5mmφで、超音波のビーム径が0.
9mm×3mmのものを用いた。また、信号処理には、
いずれの場合も第3の発明になる装置を用いた。
In any case, the oblique probe has a transducer diameter of 9.5 mmφ and an ultrasonic beam diameter of 0.
Those having a size of 9 mm × 3 mm were used. In signal processing,
In each case, the device according to the third invention was used.

【0053】その結果、本発明の方法によった場合に
は、谷底中央と超音波入射側の谷底部に形成したいずれ
の深さの人工欠陥K1 、K2 も、内面形状エコーの障害
を受けずにその欠陥エコーのみが表示装置に表示され、
検出することができた。また、この時に信号の大きさが
半減して検出できなかった人工欠陥K3 は、上記と反対
方向から超音波を入射させて検査した結果、上記同様に
検出することができた。
As a result, according to the method of the present invention, the artificial defects K 1 and K 2 of any depths formed at the center of the valley bottom and at the valley bottom on the ultrasonic wave incident side also cause obstruction of the inner surface echo. Only the defective echo is displayed on the display device without receiving it,
Could be detected. Furthermore, artificial defects K 3 that the magnitude of the signal at this time can not be detected by half, the result of the inspection by the incidence of the ultrasound from the opposite direction, could be detected in the same manner as described above.

【0054】これに対し、従来の方法によった場合に
は、内面形状エコーが大きく、溝底中央に形成した深さ
0.5mmおよび1mmの人工欠陥K1 については、い
ずれも表示装置に表示されず、検出できなかった。
[0054] In contrast, if the previous method, the inner surface shape echo is large, the artificial defect K 1 depth 0.5mm and 1mm formed in the groove bottom center, displayed on both the display device Was not detected.

【0055】[0055]

【発明の効果】本発明によれば、内面フィン付き管の谷
底部からの内面形状エコーが可及的に小さくなので、谷
底部に発生する微小な欠陥からの欠陥エコーを内面形状
エコーと明確に識別することができ、谷底部の欠陥を見
逃すことなくほぼ確実に検出することができる。
According to the present invention, since the inner shape echo from the valley bottom of the tube with the inner fin is as small as possible, the defect echo from the minute defect generated at the valley bottom is clearly defined as the inner shape echo. The defect at the bottom of the valley can be identified, and the defect can be almost surely detected without missing the defect.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の探傷方法における斜角探触子による超
音波の入射態様を示す模式的横断面図である。
FIG. 1 is a schematic cross-sectional view showing an ultrasonic wave incident mode by an oblique probe in a flaw detection method of the present invention.

【図2】本発明になる探傷装置の一例を示し、斜角探触
子の受信信号のみを用いる場合におけ装置構成を示すブ
ロック図である。
FIG. 2 is a block diagram showing an example of a flaw detector according to the present invention, and showing a configuration of the apparatus when only a reception signal of an oblique probe is used.

【図3】図2に示す探傷装置における各信号の関係を示
す図である。
FIG. 3 is a diagram showing a relationship between signals in the flaw detector shown in FIG. 2;

【図4】本発明の探傷方法における斜角探触子と垂直探
触子による超音波の入射態様を示す模式的横断面図であ
る。
FIG. 4 is a schematic cross-sectional view showing an incident state of ultrasonic waves by a bevel probe and a vertical probe in the flaw detection method of the present invention.

【図5】本発明になる探傷装置の他の例を示し、斜角探
触子の受信信号と垂直探触子の受信信号の両方を用いる
場合におけ装置構成を示すブロック図である。
FIG. 5 is a block diagram showing another example of the flaw detector according to the present invention, showing the configuration of the flaw detector in a case where both the reception signal of the oblique probe and the reception signal of the vertical probe are used.

【図6】図5に示す装置における各信号の関係を示す図
である。
FIG. 6 is a diagram illustrating a relationship between signals in the device illustrated in FIG. 5;

【図7】実施例の試験に用いた試験材の谷底部に対する
人工欠陥の形成態様を示す模式的正断面図である。
FIG. 7 is a schematic front sectional view showing an aspect of forming an artificial defect on a valley bottom of a test material used in a test of an example.

【図8】内面フィン付き管の内面形状の一例を示す模式
的横断面図である。
FIG. 8 is a schematic cross-sectional view showing an example of an inner surface shape of a tube with an inner fin.

【図9】内面フィン付き管に従来の超音波探傷方法を適
用した場合における斜角探触子による超音波の入射態様
を示す模式的横断面図である。
FIG. 9 is a schematic cross-sectional view showing an incident state of ultrasonic waves by a beveled probe when a conventional ultrasonic flaw detection method is applied to a tube with internal fins.

【符号の説明】[Explanation of symbols]

1 :斜角探触子、 10 :垂直探触子、 2、20:発振器、 3、30:増幅器、 4 :形状エコー信号検出ゲート回路、 5 :判定回路、 50 :谷底部検出ゲート回路、 6、60:ON/OFF制御回路、 7 :欠陥エコー信号検出ゲート回路、 70 :同期回路、 8 :表示装置、 K :欠陥、 M :山部(フィン部)、 R :谷部、 Rs :谷底部。 1: oblique probe, 10: vertical probe, 2, 20: oscillator, 3, 30: amplifier, 4: shape echo signal detection gate circuit, 5: judgment circuit, 50: valley bottom detection gate circuit, 6 , 60: ON / OFF control circuit, 7: defect echo signal detection gate circuit, 70: synchronous circuit, 8: display device, K: defect, M: peak (fin), R: valley, Rs: valley bottom .

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】内面フィン付き管(P)の内周面谷底部
(Rs)に管軸長方向へ向かって発生した欠陥を斜角探
傷法によって検出する内面フィン付き管のパルス反射方
式による超音波探傷方法であって、内面フィン付き管
(P)内周面の谷底部(Rs)の中央に対して、谷底部
(Rs)の中央を通る管の直径線(L)とほぼ直交する
角度(θ)で、管の外面側から超音波を入射させること
を特徴とする内面フィン付き管の超音波探傷方法。
1. An ultra-fine finned tube (P) having a pulse reflection method for detecting a defect generated in a valley bottom (Rs) of an inner peripheral surface of the inner fin tube (Rs) in a longitudinal direction of the tube by an oblique flaw detection method. An ultrasonic flaw detection method, wherein an angle substantially perpendicular to a diameter line (L) of a pipe passing through the center of the valley bottom (Rs) with respect to the center of the valley bottom (Rs) of the inner peripheral surface of the inner finned pipe (P). (7) An ultrasonic flaw detection method for a tube with an inner fin, wherein ultrasonic waves are incident from the outer surface side of the tube.
【請求項2】請求項1に記載の超音波探傷方法に用いる
超音波探傷装置であって、内面フィン付き管(P)内周
面の谷底部(Rs)の中央に対して谷底部(Rs)の中
央を通る管の直径線(L)とほぼ直交する角度(θ)
で、管の外面側から超音波を入射する斜角探触子(1)
と、この斜角探触子(1)で受信される探傷信号のうち
から管内周面の谷底部近傍表面の形状エコー信号を出力
する形状エコー信号検出ゲート回路(4)と、この形状
エコー信号検出ゲート回路(4)と並列に設けられ、斜
角探触子(1)で受信される探傷信号のうちから管内周
面の谷底部に存在する欠陥エコー信号を出力する欠陥エ
コー信号検出ゲート回路(7)とを備えるともに、前記
形状エコー信号検出ゲート回路(4)の出力に応じて谷
底部の通過位置を推定する判定回路(5)と、この判定
回路(5)の出力に応じて前記の欠陥エコー信号検出ゲ
ート回路(7)を開閉制御するON/OFF制御回路
(6)とを具備することを特徴とする内面フィン付き管
の超音波検査装置。
2. An ultrasonic flaw detector used for the ultrasonic flaw detection method according to claim 1, wherein the inner finned pipe (P) has a valley bottom (Rs) with respect to a center of the valley bottom (Rs) on the inner peripheral surface. ) Is approximately perpendicular to the diameter line (L) of the tube passing through the center of ()
The angle beam probe (1) that makes ultrasonic waves incident from the outer surface of the tube
A shape echo signal detection gate circuit (4) for outputting a shape echo signal of the surface near the valley bottom of the inner peripheral surface of the flaw detection signals received by the oblique probe (1); and the shape echo signal. A defect echo signal detection gate circuit which is provided in parallel with the detection gate circuit (4) and outputs a defect echo signal existing at the bottom of the inner peripheral surface of the tube from among the flaw detection signals received by the oblique probe (1). (7), a judgment circuit (5) for estimating the passage position of the valley bottom according to the output of the shape echo signal detection gate circuit (4), and the judgment circuit (5) according to the output of the judgment circuit (5). And an ON / OFF control circuit (6) for controlling the opening and closing of the defect echo signal detection gate circuit (7).
【請求項3】請求項1に記載の超音波探傷方法に用いる
超音波探傷装置であって、内面フィン付き管(P)内周
面の谷底部(Rs)の中央に対して谷底部(Rs)の中
央を通る管の直径線(L)とほぼ直交する角度(θ)
で、管の外面側から超音波を入射する斜角探触子(1)
と、この斜角探触子(1)とは管の周方向に位相をずら
せて配置され、管の外面側から内周面谷底部の中央に対
して管直径線(L)に沿って超音波を入射する垂直探触
子(10)と、前記斜角探触子(1)で受信される探傷
信号のうちから管の内周面谷底部に存在する欠陥エコー
信号を出力する欠陥エコー信号検出ゲート回路(40)
と、前記垂直探触子(10)で受信される探傷信号のう
ちから管内周面の谷底部表面の形状エコー信号を出力す
る谷底部検出ゲート回路(50)と、この谷底部検出ゲ
ート回路(50)の出力に応じて前記欠陥エコー信号検
出ゲート回路(40)を開閉制御するON/OFF制御
回路(60)とを具備するともに、斜角探触子(1)の
発振器(2)と垂直探触子(10)の発振器(20)と
が同期回路(70)を介して接続されていることを特徴
とする内面フィン付き管の超音波検査装置。
3. An ultrasonic flaw detector used in the ultrasonic flaw detection method according to claim 1, wherein the inner finned pipe (P) has a valley bottom (Rs) with respect to a center of the valley bottom (Rs) on the inner peripheral surface. ) Is approximately perpendicular to the diameter line (L) of the tube passing through the center of ()
The angle beam probe (1) that makes ultrasonic waves incident from the outer surface of the tube
And the bevel probe (1) are arranged with a phase shift in the circumferential direction of the pipe, and are superimposed along the pipe diameter line (L) from the outer surface of the pipe to the center of the bottom of the inner circumferential surface. A vertical probe (10) that receives a sound wave, and a defect echo signal that outputs a defect echo signal existing at the bottom of the inner peripheral surface of the tube from among the flaw detection signals received by the angle beam probe (1). Detection gate circuit (40)
And a valley bottom detection gate circuit (50) for outputting a shape echo signal of the valley bottom surface of the pipe inner peripheral surface from among the flaw detection signals received by the vertical probe (10), and a valley bottom detection gate circuit ( An ON / OFF control circuit (60) for opening and closing the defect echo signal detection gate circuit (40) in accordance with the output of the oblique probe (1). An ultrasonic inspection apparatus for a tube with an inner fin, wherein the oscillator (20) of the probe (10) is connected to the oscillator (20) via a synchronous circuit (70).
JP9078661A 1997-03-31 1997-03-31 Method and equipment for ultrasonically detecting flaw of pipe with inner surface fins Pending JPH10274643A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9078661A JPH10274643A (en) 1997-03-31 1997-03-31 Method and equipment for ultrasonically detecting flaw of pipe with inner surface fins

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9078661A JPH10274643A (en) 1997-03-31 1997-03-31 Method and equipment for ultrasonically detecting flaw of pipe with inner surface fins

Publications (1)

Publication Number Publication Date
JPH10274643A true JPH10274643A (en) 1998-10-13

Family

ID=13668054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9078661A Pending JPH10274643A (en) 1997-03-31 1997-03-31 Method and equipment for ultrasonically detecting flaw of pipe with inner surface fins

Country Status (1)

Country Link
JP (1) JPH10274643A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007139685A (en) * 2005-11-22 2007-06-07 Sumitomo Metal Ind Ltd Ultrasonic flaw detection method of inner surface deformed pipe and ultrasonic flaw detection device
WO2008078513A1 (en) 2006-12-26 2008-07-03 Sumitomo Metal Industries, Ltd. Eddy current examination method for internal fin tube, differential coil for eddy current examination, and probe for eddy current examination

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007139685A (en) * 2005-11-22 2007-06-07 Sumitomo Metal Ind Ltd Ultrasonic flaw detection method of inner surface deformed pipe and ultrasonic flaw detection device
JP4596326B2 (en) * 2005-11-22 2010-12-08 住友金属工業株式会社 Ultrasonic flaw detection method and apparatus for internally finned tube
WO2008078513A1 (en) 2006-12-26 2008-07-03 Sumitomo Metal Industries, Ltd. Eddy current examination method for internal fin tube, differential coil for eddy current examination, and probe for eddy current examination

Similar Documents

Publication Publication Date Title
JP4910770B2 (en) Tubular ultrasonic inspection apparatus and ultrasonic inspection method
JP2007163470A (en) Apparatus and method for ultrasonically detecting flaw of tube
JP5003275B2 (en) Ultrasonic flaw detection apparatus and ultrasonic flaw detection method for tubular body
US20020194916A1 (en) Method for inspecting clad pipe
KR20220004184A (en) Ultrasonic flaw detection method, ultrasonic flaw detection device, steel manufacturing equipment heat, steel manufacturing method, and steel quality assurance method
JP4596325B2 (en) Ultrasonic flaw detection method and apparatus for internally finned tube
JPH10274643A (en) Method and equipment for ultrasonically detecting flaw of pipe with inner surface fins
JPH05288723A (en) Pitch-catch type ultrasonic flaw examination
JP4596326B2 (en) Ultrasonic flaw detection method and apparatus for internally finned tube
JPH01145565A (en) Ultrasonic flaw detector
JPH11211704A (en) Method and apparatus for ultrasonic flaw detection for pipe with internal fin
JP4359892B2 (en) Ultrasonic flaw detection method
JP2006275945A (en) Ultrasonic flaw detector
JP2007263956A (en) Ultrasonic flaw detection method and apparatus
JP2953301B2 (en) Ultrasonic flaw detection method and device
JPH1144675A (en) Ultrasonic measuring method for assembled and welded part in wheel
JP3084082B2 (en) Method for detecting defects in metal tubes with spiral ribs inside
JP7516212B2 (en) Ultrasonic flaw detection device and ultrasonic flaw detection method
JP5641435B2 (en) Ultrasonic oblique angle flaw detection method and ultrasonic oblique angle flaw detector
JPS5831871B2 (en) Ultrasonic flaw detection method
JPS6138460A (en) Ultrasonic flaw detection apparatus
JPS61173152A (en) Method for discriminating defect of electric welded steel pipe
JP2001074703A (en) Ultrasonic flaw detecting apparatus
JP2003302381A (en) Method for examinating ultrasonic wave
JP3209475B2 (en) Measuring method of bead cutting shape on inner surface of ERW pipe