JP4596326B2 - Ultrasonic flaw detection method and apparatus for internally finned tube - Google Patents

Ultrasonic flaw detection method and apparatus for internally finned tube Download PDF

Info

Publication number
JP4596326B2
JP4596326B2 JP2005336728A JP2005336728A JP4596326B2 JP 4596326 B2 JP4596326 B2 JP 4596326B2 JP 2005336728 A JP2005336728 A JP 2005336728A JP 2005336728 A JP2005336728 A JP 2005336728A JP 4596326 B2 JP4596326 B2 JP 4596326B2
Authority
JP
Japan
Prior art keywords
flaw detection
ultrasonic
tube
ultrasonic probe
signal output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005336728A
Other languages
Japanese (ja)
Other versions
JP2007139685A (en
Inventor
繁俊 兵藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2005336728A priority Critical patent/JP4596326B2/en
Publication of JP2007139685A publication Critical patent/JP2007139685A/en
Application granted granted Critical
Publication of JP4596326B2 publication Critical patent/JP4596326B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

本発明は、内面フィン付き管の超音波探傷方法及び装置に関し、特に、管の内面形状が管周方向に不均一な場合であっても、管軸方向に延びる微小な欠陥(割れ状微小欠陥)を確実に検出することを可能とする超音波探傷方法及び装置に関する。
The present invention relates to an ultrasonic flaw detection method and apparatus for an internally finned tube, and in particular, even if the inner surface shape of the tube is not uniform in the tube circumferential direction, a minute defect (cracked minute defect) extending in the tube axis direction. The present invention relates to an ultrasonic flaw detection method and apparatus capable of reliably detecting a).

エチレンの製造プラントに用いられる鋼管として、熱伝達効率を上げることを目的とし、その内面に横断面形状が三角丸ねじ山状で管軸方向に真直な複数条(通常、8〜12条)のフィンを形成した所謂内面フィン付き管が知られている。   As a steel pipe used in an ethylene production plant, the purpose is to increase heat transfer efficiency. The inner surface of the steel pipe has a triangular cross-thread shape and is straight in the pipe axis direction (usually 8 to 12). A so-called inner finned tube in which fins are formed is known.

図1は、上記の内面フィン付き管の一例を示す模式的断面図である。図1に示すように、内面フィン付き管Pは、その内面が周方向に交互に設けられた山部(フィン部)Mと谷部Rとから形成されている。このような内面フィン付き管Pは、通常、高Cr−高NiのFe基合金を素材とし、遠心鋳造法やユジーンセジュルネ法に代表される熱間押し出し製管法によって製造される。   FIG. 1 is a schematic cross-sectional view showing an example of the inner finned tube. As shown in FIG. 1, the internally finned tube P is formed of peaks (fins) M and valleys R whose inner surfaces are alternately provided in the circumferential direction. Such an internally finned tube P is usually made of a high Cr-high Ni Fe-based alloy as a raw material, and is manufactured by a hot extrusion tube manufacturing method typified by a centrifugal casting method or a Eugene Sejurne method.

しかし、上記内面フィン付き管Pを熱間押し出し製管法で製造する場合には、素材の高Cr−高NiのFe基合金が熱間加工性に劣るので、山部Mの形状、特にその頂部の形状が所定の形状になり難いという特性がある。このため、山部Mの形状が所定の形状になるように、例えば押し出し比を大きくする等の対策が施されるが、この場合、谷底部Rsのほぼ中央において、管軸方向に延びる微小な割れ疵状の欠陥Kが発生することがある。   However, in the case of manufacturing the above inner finned pipe P by the hot extrusion pipe manufacturing method, the high Cr-high Ni Fe-based alloy is inferior in hot workability. There is a characteristic that the shape of the top is difficult to be a predetermined shape. For this reason, measures such as increasing the extrusion ratio are taken so that the shape of the peak portion M becomes a predetermined shape. In this case, however, the minute portion extending in the tube axis direction is almost at the center of the valley bottom portion Rs. A cracked flaw-like defect K may occur.

斯かる欠陥Kの発生を見逃すと、管Pの使用中に重大事故を招く要因になる。従って、製品の出荷前に検査して欠陥Kを手入れ除去する等の処置が必要であり、このための高能率な非破壊検査方法として、超音波探傷方法が適用されている。   If the occurrence of such a defect K is missed, a serious accident may occur during use of the pipe P. Accordingly, it is necessary to take measures such as inspection before product shipment to clean and remove the defect K, and the ultrasonic flaw detection method is applied as a highly efficient non-destructive inspection method for this purpose.

しかし、超音波探傷方法を適用する際、図2に示すように、内外面ともにフィンが形成されていない通常の鋼管(すなわち内外面が管周方向に同心で且つ同一曲率半径の円弧面である鋼管)を検査するのと同じように、谷底部Rsに対して鋭角な入射角θ(概ね35〜55°)で超音波ビームを入射させたのでは、谷底部Rsの近傍までに亘って極めて過大なフィンからの(山部Mの側面からの)反射エコー(形状エコー)が発生する。このため、谷底部Rsのほぼ中央に存在する微小な欠陥Kからの反射エコー(欠陥エコー)と識別が困難であり、この結果、欠陥Kを確実に検出することができないという問題があった。   However, when applying the ultrasonic flaw detection method, as shown in FIG. 2, a normal steel pipe in which fins are not formed on the inner and outer surfaces (that is, the inner and outer surfaces are concentric in the pipe circumferential direction and are circular arc surfaces having the same curvature radius). As in the case of inspecting a steel pipe), if an ultrasonic beam is incident at an acute incident angle θ (generally 35 to 55 °) with respect to the valley bottom Rs, it is extremely difficult to reach the vicinity of the valley bottom Rs. Reflective echoes (from the side surfaces of the ridge M) (shape echoes) from excessive fins are generated. For this reason, it is difficult to distinguish from a reflection echo (defect echo) from a minute defect K existing in the approximate center of the valley bottom Rs. As a result, there is a problem that the defect K cannot be detected reliably.

より具体的に説明すれば、本発明の発明者らは、下記の表1及び図3に示す探傷条件で、谷底部Rsに設けた人工欠陥(ノッチ)の探傷試験を行った。

Figure 0004596326
なお、表1における谷部肉厚は、前述した図1に符号tで示す部位の厚みに相当する。また、表1における山部高さは、前述した図1に符号hで示す部位の厚みに相当する。 More specifically, the inventors of the present invention conducted a flaw detection test for artificial defects (notches) provided in the valley bottom Rs under the flaw detection conditions shown in Table 1 and FIG.
Figure 0004596326
Note that the valley thickness in Table 1 corresponds to the thickness of the portion indicated by the symbol t in FIG. Moreover, the peak height in Table 1 corresponds to the thickness of the portion indicated by the symbol h in FIG.

上記探傷試験の結果、図4に示すように、15%ノッチ(深さ0.9mm(谷部肉厚6mmの15%=0.9mm)のノッチ)や12.5%ノッチ(深さ0.75mm(谷部肉厚6mmの12.5%=0.75mm)であれば、上記形状エコーの高さをノイズレベル(N)とし、上記欠陥エコーの高さを信号レベル(S)としたときのS/N比が2を超え検出可能であるが、5%ノッチ(深さ0.3mm(谷部肉厚6mmの5%=0.3mm)のノッチはSN比が2を大きく下回るため検出が極めて困難であることが分かった。このように従来の超音波探傷方法では、極めて過大な形状エコーが発生することに起因して、谷底部のほぼ中央に存在する微小な欠陥を検出することが困難であるという問題があった。   As a result of the flaw detection test, as shown in FIG. 4, a 15% notch (notch with a depth of 0.9 mm (15% of valley thickness 6 mm = 0.9 mm)) and a 12.5% notch (with a depth of 0.1 mm). If it is 75 mm (12.5% of valley wall thickness 6 mm = 0.75 mm), the height of the shape echo is the noise level (N) and the height of the defect echo is the signal level (S) The S / N ratio of 2 is not less than 2, but the 5% notch (depth 0.3mm (5% of valley thickness 6mm = 0.3mm) notch is detected because the SN ratio is much lower than 2. As described above, the conventional ultrasonic flaw detection method can detect a minute defect that exists in the approximate center of the valley bottom due to the generation of an extremely large shape echo. There was a problem that was difficult.

さらに、管の偏肉(特に、谷部肉厚の不均一)によって、形状エコーの検出される位置(時間軸)が変化する。このため、管に偏肉が生じている場合には、欠陥を検出するために設定した探傷ゲート内に形状エコーが入ってしまうケースがある。この際、形状エコーの高さが欠陥エコーの高さよりも十分小さければ、欠陥エコーを検出するしきい値を高めることにより問題は生じないが、微小な欠陥の欠陥エコーは形状エコーの高さとの差が小さいため、探傷ゲート内に入った形状エコーを欠陥エコーと誤認識してしまう場合がある。これにより、欠陥の自動判定が困難であるという問題があった。   Furthermore, the position (time axis) at which the shape echo is detected changes due to the uneven thickness of the tube (particularly, uneven thickness of the valley). For this reason, when there is uneven thickness in the tube, there is a case where the shape echo enters the flaw detection gate set for detecting the defect. At this time, if the height of the shape echo is sufficiently smaller than the height of the defect echo, there is no problem by increasing the threshold value for detecting the defect echo. Since the difference is small, the shape echo that enters the flaw detection gate may be erroneously recognized as a defect echo. As a result, there is a problem that it is difficult to automatically determine the defect.

ここで、本発明の発明者は、内面フィン付き管を被探傷材とした超音波探傷技術として、例えば、特許文献1、2に開示された方法や装置を提案している。   Here, the inventor of the present invention has proposed, for example, methods and apparatuses disclosed in Patent Documents 1 and 2 as an ultrasonic flaw detection technique using an internally finned tube as a flaw detection material.

特許文献1に記載の技術は、図5に示すように、欠陥Kからの欠陥エコーを識別するのに障害となる山部Mの側面からの形状エコーを過小にするために、内面フィン付き管Pの内面の谷底部Rsの中央に対して、谷底部Rsの中央を通る管の直径線Lとほぼ直交する入射角θ(θ=90〜70°)で、管の外面側から超音波ビームを入射する方法である。   As shown in FIG. 5, the technique described in Patent Document 1 uses an internally finned tube in order to minimize the shape echo from the side surface of the peak M that is an obstacle to identifying the defect echo from the defect K. An ultrasonic beam from the outer surface side of the tube at an incident angle θ (θ = 90 to 70 °) substantially orthogonal to the diameter line L of the tube passing through the center of the valley bottom portion Rs with respect to the center of the valley bottom portion Rs of the inner surface of P. Is incident.

上記特許文献1に記載の方法は、内面フィン付き管Pの内面形状が管周方向でほぼ均一な場合、具体的には谷底部Rsの谷部肉厚t(前述の図1参照)がほぼ同じである場合には何らの問題も生じない。しかしながら、内面形状が管周方向で不均一、すなわち谷底部Rsの管肉厚tが不均一であると、山部Mの側面からの形状エコーと欠陥Kからの欠陥エコーとの識別が困難になったり、著しい場合には欠陥Kを全く検出できなくなるという欠点のあることが判明した。   In the method described in Patent Document 1, when the inner surface shape of the internally finned pipe P is substantially uniform in the pipe circumferential direction, specifically, the valley wall thickness t (see FIG. 1 described above) of the valley bottom Rs is substantially the same. If they are the same, no problem will occur. However, if the inner surface shape is uneven in the tube circumferential direction, that is, if the tube wall thickness t of the valley bottom Rs is not uniform, it is difficult to distinguish between the shape echo from the side surface of the peak M and the defect echo from the defect K. It has been found that there is a drawback that the defect K cannot be detected at all when it is remarkable.

一方、特許文献2に記載の技術は、内面フィン付き管の内面の谷底部の中央に対して、谷底部の中央を通る管の直径線とほぼ直交する角度(90〜70°)で、管外面から超音波ビームを入射し、検出される探傷信号を2値化処理して複数レベルの信号に区分した上でBスコープ表示させ、このBスコープ表示画像を画像処理することによって谷底部に発生した欠陥を検出する技術である。   On the other hand, the technique described in Patent Document 2 is based on an angle (90 to 70 °) substantially perpendicular to the diameter line of the tube passing through the center of the valley bottom with respect to the center of the valley bottom of the inner surface of the internally finned tube. An ultrasonic beam is incident from the outer surface, and the detected flaw detection signal is binarized and divided into signals of multiple levels, displayed on a B scope, and this B scope display image is image-processed to generate at the bottom of the valley It is a technology to detect the defect.

特許文献2に記載の技術によれば、欠陥の深さが大きい場合には、画像上で欠陥エコーと形状エコーとの識別が可能である。しかしながら、欠陥の深さが小さい場合には、両エコーの識別が難しく、欠陥の判断を誤る虞がある。さらに、画像化や画像処理が必要なため、高速検査への適用が難しく、処理装置のコストが高くなるといった欠点がある。
特開平10−274643号公報 特開平11−211704号公報
According to the technique described in Patent Literature 2, when the depth of the defect is large, it is possible to distinguish the defect echo from the shape echo on the image. However, when the depth of the defect is small, it is difficult to identify both echoes, and there is a risk of erroneous determination of the defect. Furthermore, since imaging and image processing are required, there is a drawback that it is difficult to apply to high-speed inspection, and the cost of the processing apparatus increases.
Japanese Patent Laid-Open No. 10-274643 JP-A-11-217114

本発明は、以上に説明した従来技術の問題点を解決するべくなされたものであり、管内面に管軸方向に連続した突起を有する内面フィン付き管の内面形状が管周方向に不均一な場合であっても、管軸方向に延びる微小な欠陥(例えば、内面フィレ付き管内面の谷底部に発生した割れ状微小欠陥)を確実に検出することを可能とする内面フィン付き管の超音波探傷方法及びこの方法の実施に用いる超音波探傷装置を提供することを課題とする。
The present invention has been made to solve the problems of the prior art described above, and the inner surface shape of the internally finned tube having protrusions continuous in the tube axis direction on the tube inner surface is not uniform in the tube circumferential direction. Even in such a case, the ultrasonic wave of the internally finned tube that makes it possible to reliably detect a minute defect extending in the tube axis direction (for example, a cracked minute defect generated at the valley bottom of the inner surface of the internally filled tube). It is an object of the present invention to provide a flaw detection method and an ultrasonic flaw detection apparatus used for carrying out this method.

前記課題を解決するべく、本発明は、内面が周方向に交互に設けられた山部と谷部とから形成されている内面フィン付き管の外面側に設置した超音波探触子を前記管の管周方向に相対移動させながら斜角超音波探傷を行うことにより、前記管内面の谷底部において管軸方向に延びる欠陥を検出する超音波探傷方法であって、前記管の外面側に2つの超音波探触子を互いに管軸方向に沿って、且つ、検出対象とする前記欠陥の管軸方向の長さよりも大きな間隔を隔てて配置し、前記2つの超音波探触子の内、一方の超音波探触子から出力される探傷信号と他方の超音波探触子から出力される探傷信号とを差動演算し、前記差動演算によって得られる差動信号に基づいて前記欠陥を検出することを特徴とする内面フィン付き管の超音波探傷方法を提供するものである。
In order to solve the above-mentioned problems, the present invention provides an ultrasonic probe installed on the outer surface side of a tube with an inner surface fin formed by crests and valleys whose inner surfaces are alternately provided in the circumferential direction. The ultrasonic flaw detection method detects a defect extending in the tube axis direction at the valley bottom of the inner surface of the tube by performing oblique angle ultrasonic flaw detection while relatively moving the tube in the circumferential direction of the tube. Two ultrasonic probes are arranged along the tube axis direction and at a distance larger than the length of the defect to be detected in the tube axis direction, and the two ultrasonic probes, The flaw detection signal output from one ultrasonic probe and the flaw detection signal output from the other ultrasonic probe are differentially calculated, and the defect is determined based on the differential signal obtained by the differential calculation. the ultrasonic testing method of the internal surface fin tube and detecting It is intended to provide.

斯かる発明によれば、管の外面側に2つの超音波探触子を互いに管軸方向に沿って間隔を隔てて配置するため、各超音波探触子から送信された超音波ビームが内面フィン付き管の突起側面に到達して反射エコー(形状エコー)が生じる探傷位置(管の管周方向の位置)において、各超音波探触子から出力される探傷信号には、双方共に内面フィン付き管の突起からの同等の形状エコーが含まれることになる。また、2つの超音波探触子の配置間隔は、検出対象とする欠陥の管軸方向の長さよりも大きな間隔であるため、一方又は他方の超音波探触子から出力される探傷信号にのみ欠陥からの反射エコー(欠陥エコー)が含まれることになる。従って、一方の超音波探触子から出力される探傷信号と他方の超音波探触子から出力される探傷信号とを差動演算して得られる差動信号には、欠陥エコーが含まれると共に、形状エコーは減算されてその高さが低減されることになる。これにより、差動信号のS/N比(欠陥エコーの高さ/形状エコーの高さ)は向上することになる。
According to such an invention, since the two ultrasonic probes are arranged on the outer surface side of the tube at a distance from each other along the tube axis direction, the ultrasonic beam transmitted from each ultrasonic probe is transmitted to the inner surface. At the flaw detection position (position in the tube circumferential direction of the tube) where a reflected echo (shape echo) is generated by reaching the projection side surface of the finned tube , both of the flaw detection signals output from the ultrasonic probes are internal fins. Equivalent shape echoes from the projection of the attached tube will be included. Further, since the interval between the two ultrasonic probes is larger than the length of the defect to be detected in the tube axis direction, only the flaw detection signal output from one or the other ultrasonic probe is used. A reflection echo (defect echo) from the defect is included. Accordingly, the differential signal obtained by differentially calculating the flaw detection signal output from one ultrasonic probe and the flaw detection signal output from the other ultrasonic probe includes a defect echo. The shape echo is subtracted to reduce its height. As a result, the S / N ratio (height of defect echo / height of shape echo) of the differential signal is improved.

また、たとえ管の内面形状が管周方向に不均一であることに起因して形状エコーの出現態様が管周方向に不均一であったとしても、管軸方向に沿って配置された各超音波探触子から出力される探傷信号には同等の管周方向に不均一な形状エコーが含まれるため、両者を差動演算して得られる差動信号に含まれる形状エコーの高さはやはり低減されることになる。従って、管の内面形状が管周方向に不均一であったとしても、差動信号のS/N比は向上することになる。   In addition, even if the appearance of the shape echo is not uniform in the pipe circumferential direction due to the fact that the inner surface shape of the pipe is not uniform in the pipe circumferential direction, each super Since the flaw detection signal output from the acoustic probe includes a non-uniform shape echo in the equivalent tube circumferential direction, the height of the shape echo contained in the differential signal obtained by differentially calculating both is still Will be reduced. Therefore, even if the inner surface shape of the tube is not uniform in the tube circumferential direction, the S / N ratio of the differential signal is improved.

本発明は、斯かる差動信号に基づいて欠陥を検出するため、管の内面形状が管周方向に不均一な場合であっても、管軸方向に延びる微小な欠陥を確実に検出することが可能である。   Since the present invention detects defects based on such differential signals, it can reliably detect minute defects extending in the tube axis direction even when the inner surface shape of the tube is not uniform in the tube circumferential direction. Is possible.

なお、本発明において、各超音波探触子から送信される超音波ビームの入射角(管内面の谷底部に対する入射角、図2のθに相当)は、一般的な斜角探傷と同様に約35〜55°に設定すればよい。   In the present invention, the incident angle of the ultrasonic beam transmitted from each ultrasonic probe (incident angle with respect to the valley of the inner surface of the tube, corresponding to θ in FIG. 2) is the same as that of a general oblique flaw detection. What is necessary is just to set to about 35-55 degree.

上記のように、本発明は、各超音波探触子から出力される探傷信号の双方に内面フィン付き管の突起からの同等の形状エコーが含まれることを前提とするものである。しかしながら、実際には、各超音波探触子の取付位置の誤差や、管の形状が管軸方向に異なること等に起因して、各超音波探触子から送信された超音波ビームの伝搬距離が互いに異なる結果、各超音波探触子から出力される探傷信号中に含まれる形状エコーの位置(時間軸)がずれる場合がある。斯かる形状エコーの位置ずれが過度に大きくなれば、差動信号に形状エコーが残存することになり、確実にS/N比を向上させることができないという問題が生じる。
As described above, the present invention is based on the premise that both of the flaw detection signals output from the ultrasonic probes include the same shape echoes from the protrusions of the internally finned tube . However, in reality, the propagation of the ultrasonic beam transmitted from each ultrasonic probe is caused by the error in the mounting position of each ultrasonic probe or the tube shape being different in the tube axis direction. As a result of the distances being different from each other, the position (time axis) of the shape echo included in the flaw detection signal output from each ultrasonic probe may be shifted. If the positional deviation of the shape echo becomes excessively large, the shape echo remains in the differential signal, and there is a problem that the S / N ratio cannot be improved reliably.

斯かる形状エコーの位置ずれの影響を低減するには、被探傷材が前記欠陥の生じていない内面フィン付き管である場合に得られる前記差動信号の振幅が所定値以下に小さくなるように、前記一方の超音波探触子から出力される探傷信号又は前記他方の超音波探触子から出力される探傷信号を時間遅延させることが好ましい。
In order to reduce the influence of such positional deviation of the shape echo, the amplitude of the differential signal obtained when the material to be inspected is an internally finned tube in which the defect does not occur is reduced to a predetermined value or less. The flaw detection signal output from the one ultrasonic probe or the flaw detection signal output from the other ultrasonic probe is preferably delayed in time.

斯かる好ましい態様によれば、被探傷材が欠陥の生じていない内面フィン付き管である場合に得られる差動信号の振幅が所定値以下に小さくなるように(換言すれば、各超音波探触子から出力される探傷信号に欠陥エコーが含まれず形状エコーのみが含まれる場合の差動信号の振幅が所定値以下に小さくなるように)、一方の超音波探触子から出力される探傷信号又は他方の超音波探触子から出力される探傷信号を時間遅延させるため、形状エコーの位置ずれの影響を低減し、より一層確実にS/N比を向上させることが可能である。
According to such a preferable aspect, the amplitude of the differential signal obtained when the material to be inspected is an internally finned tube having no defect is reduced so as to be smaller than a predetermined value (in other words, each ultrasonic probe). Flaw detection output from one ultrasonic probe so that the amplitude of the differential signal when the flaw detection signal output from the probe does not include a defect echo but only a shape echo is smaller than a predetermined value) Since the signal or the flaw detection signal output from the other ultrasonic probe is time-delayed, it is possible to reduce the influence of the positional deviation of the shape echo and improve the S / N ratio more reliably.

なお、探傷信号の時間遅延は、一方(又は他方)の超音波探触子から送信される超音波ビームの送信タイミングを他方(又は一方)の超音波探触子から送信される超音波ビームの送信タイミングから遅延させることによって行うことが可能である。或いは、双方の超音波探触子から送信される超音波ビームの送信タイミングは同一にする一方、出力された探傷信号の何れか一方を適宜の遅延回路に入力することによって行うことも可能である。   The time delay of the flaw detection signal is determined by the transmission timing of the ultrasonic beam transmitted from one (or the other) ultrasonic probe to the transmission timing of the ultrasonic beam transmitted from the other (or one) ultrasonic probe. This can be done by delaying the transmission timing. Alternatively, the transmission timings of the ultrasonic beams transmitted from both ultrasonic probes can be made the same, while any one of the output flaw detection signals can be input to an appropriate delay circuit. .

また、本発明においては、各超音波探触子の感度の差や、取付位置の誤差、管の形状が管軸方向に異なること等に起因して、各超音波探触子から出力される探傷信号中に含まれる形状エコーの高さが異なる場合がある。斯かる形状エコーの高さの差が過度に大きくなれば、差動信号に形状エコーが残存することになり、確実にS/N比を向上させることができないという問題が生じる。   Further, in the present invention, output from each ultrasonic probe is caused by a difference in sensitivity of each ultrasonic probe, an error in the mounting position, a difference in tube shape in the tube axis direction, and the like. The height of the shape echo included in the flaw detection signal may be different. If the difference in height between the shape echoes becomes excessively large, the shape echoes remain in the differential signal, causing a problem that the S / N ratio cannot be improved reliably.

斯かる形状エコーの高さの差の影響を低減するには、被探傷材が前記欠陥の生じていない内面フィン付き管である場合に、前記一方の超音波探触子から出力される探傷信号の振幅と、前記他方の超音波探触子から出力される探傷信号の信号の振幅とがほぼ同等になるように、前記一方の超音波探触子から出力される探傷信号及び/又は前記他方の超音波探触子から出力される探傷信号の振幅を調整することが好ましい。
In order to reduce the influence of the difference in height between the shape echoes, a flaw detection signal output from the one ultrasonic probe when the material to be flawed is an internally finned tube in which the defect does not occur. And the other of the flaw detection signal output from the one ultrasonic probe and / or the other of the flaw detection signal so that the amplitude of the flaw detection signal is substantially equal to the amplitude of the flaw detection signal output from the other ultrasonic probe. It is preferable to adjust the amplitude of the flaw detection signal output from the ultrasonic probe.

斯かる好ましい態様によれば、被探傷材が欠陥の生じていない内面フィン付き管である場合に、一方の超音波探触子から出力される探傷信号の振幅と、他方の超音波探触子から出力される探傷信号の信号の振幅とがほぼ同等になるように(換言すれば、各超音波探触子から出力される探傷信号に含まれる形状エコーの振幅がほぼ同等になるように)、一方の超音波探触子から出力される探傷信号及び/又は他方の超音波探触子から出力される探傷信号の振幅を調整するため、形状エコーの高さの差の影響を低減し、より一層確実にS/N比を向上させることが可能である。
According to such a preferable aspect, when the material to be inspected is an internally finned tube having no defect, the amplitude of the flaw detection signal output from one ultrasonic probe and the other ultrasonic probe. So that the amplitude of the signal of the flaw detection signal output from the probe is substantially the same (in other words, the amplitude of the shape echo included in the flaw detection signal output from each ultrasonic probe is substantially the same). In order to adjust the amplitude of the flaw detection signal output from one ultrasonic probe and / or the flaw detection signal output from the other ultrasonic probe, the influence of the difference in the height of the shape echo is reduced, It is possible to improve the S / N ratio more reliably.

なお、前記課題を解決するべく、本発明は、内面が周方向に交互に設けられた山部と谷部とから形成されている内面フィン付き管の外面側に設置した超音波探触子を前記管の管周方向に相対移動させながら斜角超音波探傷を行うことにより、前記管内面の谷底部において管軸方向に延びる欠陥を検出する超音波探傷装置であって、前記管の外面側に互いに管軸方向に沿って、且つ、検出対象とする前記欠陥の管軸方向の長さよりも大きな間隔を隔てて配置した2つの超音波探触子と、前記各超音波探触子から出力される探傷信号に基づいて前記欠陥を検出する信号処理手段とを備え、前記信号処理手段は、前記2つの超音波探触子の内、一方の超音波探触子から出力される探傷信号と他方の超音波探触子から出力される探傷信号とを差動演算し、前記差動演算によって得られる差動信号に基づいて前記欠陥を検出することを特徴とする内面フィン付き管の超音波探傷装置としても提供される。
In order to solve the above-mentioned problem, the present invention provides an ultrasonic probe installed on the outer surface side of a tube with an inner surface fin formed by ridges and valleys whose inner surfaces are alternately provided in the circumferential direction. An ultrasonic flaw detector that detects a defect extending in the tube axis direction at a valley bottom of the inner surface of the tube by performing oblique angle ultrasonic flaw detection while relatively moving in the tube circumferential direction of the tube. Two ultrasonic probes arranged along the tube axis direction and at a distance larger than the length of the defect to be detected in the tube axis direction, and output from each of the ultrasonic probes Signal processing means for detecting the defect based on the detected flaw detection signal, and the signal processing means includes a flaw detection signal output from one of the two ultrasonic probes, and Differential operation with the flaw detection signal output from the other ultrasonic probe , It is also provided as an ultrasonic flaw detector with the inner surface fin tube and detects the defect based on a differential signal obtained by the differential operation.

好ましくは、前記信号処理手段は、前記一方の超音波探触子から出力される探傷信号又は前記他方の超音波探触子から出力される探傷信号を時間遅延させる遅延制御部を具備するように構成される。   Preferably, the signal processing means includes a delay control unit for delaying a time of a flaw detection signal output from the one ultrasonic probe or a flaw detection signal output from the other ultrasonic probe. Composed.

また、好ましくは、前記信号処理手段は、前記一方の超音波探触子から出力される探傷信号及び/又は前記他方の超音波探触子から出力される探傷信号の振幅を調整する振幅調整部を具備するように構成される。   Preferably, the signal processing means adjusts an amplitude of a flaw detection signal output from the one ultrasonic probe and / or an amplitude of a flaw detection signal output from the other ultrasonic probe. It is comprised so that it may comprise.

また、前記信号処理手段が、前記2つの超音波探触子による超音波ビームの送受信をそれぞれ制御するための2つの超音波探傷器を具備する場合、前記2つの超音波探傷器は互いに周波数特性が一致していることが好ましい。   Further, when the signal processing means includes two ultrasonic flaw detectors for controlling transmission and reception of ultrasonic beams by the two ultrasonic probes, the two ultrasonic flaw detectors have frequency characteristics relative to each other. Are preferably the same.

本発明に係る内面異形管の超音波探傷方法及び装置によれば、管の内面形状が管周方向に不均一な場合であっても、管軸方向に延びる微小な欠陥(割れ状微小欠陥)を確実に検出することが可能である。   According to the ultrasonic flaw detection method and apparatus for an internally deformed tube according to the present invention, even if the inner surface shape of the tube is not uniform in the tube circumferential direction, a minute defect (cracked minute defect) extending in the tube axis direction. Can be reliably detected.

以下、添付図面を適宜参照しつつ、本発明に係る超音波探傷方法を内面異形管としての内面フィン付き管に適用する場合の一実施形態について説明する。   Hereinafter, an embodiment in the case of applying an ultrasonic flaw detection method according to the present invention to an internally finned tube as an internally deformed tube will be described with reference to the accompanying drawings as appropriate.

図6は、本実施形態に係る超音波探傷方法を実施するための超音波探傷装置の概略構成を示す図であり、図6(a)は各超音波探触子の設置態様を示す模式的斜視図を、図6(b)は一方の超音波探触子1Bからの反射エコーの出現態様を説明するための模式図を、図6(c)は他方の超音波探触子1Aからの反射エコーの出現態様を説明するための模式図を、図6(d)は超音波探傷装置の機器構成を示すブロック図を示す。
図6に示すように、本実施形態に係る超音波探傷装置10は、内面フィン付き管Pの外面側に互いに管軸方向に沿って、且つ、検出対象とする欠陥(管P内面の谷底部Rsにおいて管軸方向に延びる欠陥)Kの管軸方向の長さよりも大きな間隔を隔てて配置した2つの超音波探触子1A、1Bと、各超音波探触子1A、1Bから出力される探傷信号に基づいて欠陥Kを検出する信号処理手段2とを備えている。そして、超音波探触子1A、1Bを管Pの管周方向に相対移動(本実施形態では管Pを管周方向に回転)させながら斜角超音波探傷を行うように構成されている。
FIG. 6 is a diagram showing a schematic configuration of an ultrasonic flaw detection apparatus for carrying out the ultrasonic flaw detection method according to the present embodiment, and FIG. 6 (a) is a schematic diagram showing an installation mode of each ultrasonic probe. FIG. 6B is a schematic view for explaining the appearance of reflected echoes from one ultrasonic probe 1B, and FIG. 6C is a schematic view from the other ultrasonic probe 1A. FIG. 6D is a schematic diagram for explaining the appearance of the reflected echo, and FIG. 6D is a block diagram showing the device configuration of the ultrasonic flaw detector.
As shown in FIG. 6, the ultrasonic flaw detector 10 according to the present embodiment includes a defect (valley bottom of the inner surface of the tube P) along the tube axis direction with each other on the outer surface side of the inner surface finned tube P. A defect extending in the tube axis direction at Rs) is output from the two ultrasonic probes 1A and 1B arranged at a distance larger than the length in the tube axis direction of K and the respective ultrasonic probes 1A and 1B. Signal processing means 2 for detecting the defect K based on the flaw detection signal. Then, oblique ultrasonic flaw detection is performed while relatively moving the ultrasonic probes 1A and 1B in the tube circumferential direction of the tube P (in this embodiment, the tube P is rotated in the tube circumferential direction).

超音波探触子1A、1Bは、一般的な斜角超音波探傷と同様に、送信される超音波ビームUの入射角(谷底部Rsに対する入射角)θが35〜55°の範囲内の角度に設定されている。   The ultrasonic probes 1A and 1B have an incident angle (incident angle with respect to the valley bottom portion Rs) θ of the transmitted ultrasonic beam U within a range of 35 to 55 °, as in a general oblique ultrasonic flaw detection. It is set to an angle.

本実施形態に係る信号処理手段2は、好ましい態様として、超音波探触子1Aによる超音波ビームの送受信を制御するための超音波探傷器21Aと、超音波探触子1Bによる超音波ビームの送受信を制御するための超音波探傷器21Bとを備えている。そして、好ましい態様として、超音波探傷器21Aと超音波探傷器21Bとは互いに、後述するパルス信号や増幅器の周波数特性が一致するものとされている(本実施形態では、同一の公知の超音波探傷器を用いている)。なお、超音波探傷器21A、21Bは、各超音波探触子1A、1Bから所定のタイミング毎に超音波ビームを送信させるためのパルス信号を供給する発振器(図示せず)や、超音波探触子1A、1Bから出力される探傷信号を増幅するための増幅器(図示せず)等を備えた一般的な公知の超音波探傷器であるため、その具体的な構成については説明を省略する。   As a preferred mode, the signal processing means 2 according to the present embodiment preferably includes an ultrasonic flaw detector 21A for controlling transmission / reception of an ultrasonic beam by the ultrasonic probe 1A and an ultrasonic beam by the ultrasonic probe 1B. And an ultrasonic flaw detector 21B for controlling transmission and reception. As a preferred mode, the ultrasonic flaw detector 21A and the ultrasonic flaw detector 21B have the same frequency characteristics of a pulse signal and an amplifier which will be described later (in this embodiment, the same known ultrasonic wave). Using a flaw detector). The ultrasonic flaw detectors 21A and 21B include an oscillator (not shown) that supplies a pulse signal for transmitting an ultrasonic beam from each of the ultrasonic probes 1A and 1B at a predetermined timing, and an ultrasonic probe. Since this is a general known ultrasonic flaw detector provided with an amplifier (not shown) for amplifying flaw detection signals output from the touch elements 1A and 1B, description of the specific configuration is omitted. .

また、信号処理手段2は、好ましい態様として、超音波探触子1Aから出力される探傷信号及び/又は超音波探触子1Bから出力される探傷信号の振幅を調整する振幅調整部を具備する。本実施形態では、超音波探触子1Aから出力される探傷信号(より具体的には、超音波探傷器21Aから出力される増幅後の探傷信号)の振幅を調整する振幅調整部22A及び超音波探触子1Bから出力される探傷信号(より具体的には、超音波探傷器21Bから出力される増幅後の探傷信号)の振幅を調整する振幅調整部22Bの双方を具備する構成とされている。なお、本実施形態に係る振幅調整部22A、22Bは、増幅回路とされている。   Moreover, the signal processing means 2 is equipped with the amplitude adjustment part which adjusts the amplitude of the flaw detection signal output from the ultrasonic probe 1A and / or the flaw detection signal output from the ultrasonic probe 1B as a preferable aspect. . In the present embodiment, the amplitude adjusting unit 22A that adjusts the amplitude of the flaw detection signal (more specifically, the amplified flaw detection signal output from the ultrasonic flaw detector 21A) output from the ultrasonic probe 1A and the super It is configured to include both an amplitude adjustment unit 22B that adjusts the amplitude of the flaw detection signal output from the acoustic probe 1B (more specifically, the amplified flaw detection signal output from the ultrasonic flaw detector 21B). ing. Note that the amplitude adjusting units 22A and 22B according to the present embodiment are amplifier circuits.

また、信号処理手段2は、超音波探触子1Aから出力される探傷信号(より具体的には、振幅調整部22Aから出力される振幅調整後の探傷信号)と、超音波探触子1Bから出力される探傷信号(より具体的には、振幅調整部22Bから出力される振幅調整後の探傷信号)とを差動演算し、差動信号を出力する差動演算部23を具備する。本実施形態に係る差動演算部23は、差動増幅回路とされている。   Further, the signal processing means 2 includes a flaw detection signal output from the ultrasonic probe 1A (more specifically, a flaw detection signal after amplitude adjustment output from the amplitude adjustment unit 22A) and the ultrasonic probe 1B. A differential operation unit 23 is provided for performing a differential operation on the flaw detection signal output from the signal (more specifically, the flaw detection signal after amplitude adjustment output from the amplitude adjustment unit 22B) and outputting the differential signal. The differential operation unit 23 according to the present embodiment is a differential amplifier circuit.

また、信号処理手段2は、好ましい態様として、超音波探触子1Aから出力される探傷信号又は超音波探触子1Bから出力される探傷信号を時間遅延させる遅延制御部24を具備する。本実施形態に係る遅延制御部24は、各超音波探傷器21A、21Bが具備する発振器による超音波探触子1A、1Bへのパルス信号の供給タイミングの何れか一方を所定時間だけ遅延させるように構成されている。   Moreover, the signal processing means 2 is provided with the delay control part 24 which delays the flaw detection signal output from the ultrasonic probe 1A or the flaw detection signal output from the ultrasonic probe 1B as a preferable aspect. The delay control unit 24 according to the present embodiment delays one of the pulse signal supply timings to the ultrasonic probes 1A and 1B by the oscillators included in the ultrasonic flaw detectors 21A and 21B by a predetermined time. It is configured.

さらに、信号処理手段2は、差動演算部23から出力された差動信号に対して、欠陥Kからの反射エコー(欠陥エコー)を検出するための探傷ゲートを設定し、該探傷ゲート内の差動信号を所定のしきい値と比較し、該しきい値以上の高さを有する差動信号を欠陥エコーとして検出する欠陥検出部25を備えている。   Further, the signal processing means 2 sets a flaw detection gate for detecting a reflection echo (defect echo) from the defect K with respect to the differential signal output from the differential operation unit 23, A defect detection unit 25 is provided that compares the differential signal with a predetermined threshold and detects a differential signal having a height equal to or higher than the threshold as a defect echo.

以上に説明した構成を有する超音波探傷装置10によれば、管Pの外面側に2つの超音波探触子1A、1Bを互いに管軸方向に沿って間隔を隔てて配置するため、各超音波探触子1A、1Bから送信された超音波ビームが管Pのフィンに到達して反射エコー(形状エコー)が生じる探傷位置(管Pの管周方向の位置)において、各超音波探触子1A、1Bから出力される探傷信号には、双方共に管Pのフィンからの同等の形状エコーが含まれることになる(図6(b)及び(c)参照)。また、2つの超音波探触子1A、1Bの配置間隔は、検出対象とする欠陥Kの管軸方向の長さよりも大きな間隔であるため、超音波探触子1A又は超音波探触子1Bの何れか一方から出力される探傷信号にのみ欠陥が含まれることになる(図6(c)参照)。従って、超音波探触子1Aから出力される探傷信号と超音波探触子1Bから出力される探傷信号とを差動演算部23において差動演算して得られる差動信号には、欠陥エコーが含まれると共に、形状エコーは減算されてその高さが低減されることになる。これにより、差動信号のS/N比(欠陥エコーの高さ/形状エコーの高さ)は向上することになる。   According to the ultrasonic flaw detector 10 having the above-described configuration, the two ultrasonic probes 1A and 1B are arranged on the outer surface side of the tube P at intervals along the tube axis direction. Each ultrasonic probe at a flaw detection position (position in the tube circumferential direction of the tube P) where the ultrasonic beam transmitted from the sound probes 1A and 1B reaches the fin of the tube P to generate a reflected echo (shape echo). Both flaw detection signals output from the children 1A and 1B include equivalent shape echoes from the fins of the tube P (see FIGS. 6B and 6C). Further, since the arrangement interval between the two ultrasonic probes 1A and 1B is larger than the length of the defect K to be detected in the tube axis direction, the ultrasonic probe 1A or the ultrasonic probe 1B. A defect is included only in the flaw detection signal output from either one (see FIG. 6C). Accordingly, the differential signal obtained by differentially calculating the flaw detection signal output from the ultrasonic probe 1A and the flaw detection signal output from the ultrasonic probe 1B in the differential calculation unit 23 includes a defect echo. And the shape echo is subtracted to reduce its height. As a result, the S / N ratio (height of defect echo / height of shape echo) of the differential signal is improved.

また、たとえ管Pの内面形状が管周方向に不均一であることに起因して形状エコーの出現態様が管周方向に不均一であったとしても、管軸方向に沿って配置された各超音波探触子1A、1Bから出力される探傷信号には同等の管周方向に不均一な形状エコーが含まれるため、差動信号に含まれる形状エコーの高さはやはり低減されることになる。従って、管Pの内面形状が管周方向に不均一であったとしても、差動信号のS/N比は向上することになる。   In addition, even if the appearance of the shape echo is not uniform in the pipe circumferential direction due to the inner surface shape of the pipe P being non-uniform in the pipe circumferential direction, Since the flaw detection signals output from the ultrasonic probes 1A and 1B include non-uniform shape echoes in the equivalent tube circumferential direction, the height of the shape echoes included in the differential signal is also reduced. Become. Therefore, even if the inner surface shape of the tube P is not uniform in the tube circumferential direction, the S / N ratio of the differential signal is improved.

そして、欠陥検出部25では、斯かる差動信号に基づいて欠陥を検出するため、管Pの内面形状が管周方向に不均一な場合であっても、管軸方向に延びる微小な欠陥Kを確実に検出することが可能である。   And since the defect detection part 25 detects a defect based on such a differential signal, even if it is a case where the inner surface shape of the pipe P is non-uniform | heterogenous in a pipe circumferential direction, the minute defect K extended in a pipe axial direction Can be reliably detected.

なお、被探傷材が欠陥の生じていない管Pである場合に得られる前記差動信号の振幅が所定値以下に小さくなるように、遅延制御部24によって、超音波探触子1Aから出力される探傷信号又は超音波探触子1Bから出力される探傷信号を時間遅延させることが好ましい。換言すれば、欠陥の生じていないことが分かっている管Pを用いて、差動信号の振幅が所定値以下に小さくなるように予め遅延時間を調整した後、実際の被探傷材である管Pを探傷することが好ましい。   It should be noted that the delay control unit 24 outputs the differential signal obtained from the ultrasonic probe 1A so that the amplitude of the differential signal obtained when the material to be inspected is the tube P having no defect. It is preferable to delay the flaw detection signal or the flaw detection signal output from the ultrasonic probe 1B. In other words, after the delay time is adjusted in advance so that the amplitude of the differential signal becomes smaller than a predetermined value using the tube P that is known to have no defect, the tube that is the actual flawed material It is preferable to detect P.

斯かる好ましい態様によれば、被探傷材が欠陥の生じていない管Pである場合に得られる差動信号の振幅が所定値以下に小さくなるように(換言すれば、各超音波探触子1A、1Bから出力される探傷信号に欠陥エコーが含まれず形状エコーのみが含まれる場合の差動信号の振幅が所定値以下に小さくなるように)、超音波探触子1Aから出力される探傷信号又は超音波探触子1Bから出力される探傷信号を時間遅延させるため、各超音波探触子1A、1Bの取付位置の誤差や、管Pの形状が管軸方向に異なること等に起因して生じ得る形状エコーの位置ずれの影響を低減し、より一層確実にS/N比を向上させることが可能である。   According to such a preferable aspect, the amplitude of the differential signal obtained when the material to be inspected is the tube P in which no defect is generated is reduced to a predetermined value or less (in other words, each ultrasonic probe). Flaw detection signals output from the ultrasonic probe 1A so that the amplitude of the differential signal when the flaw detection signals output from 1A and 1B do not include defect echoes and only shape echoes are smaller than a predetermined value) Due to the time delay of the signal or the flaw detection signal output from the ultrasonic probe 1B, it is caused by the error in the mounting position of each ultrasonic probe 1A, 1B, the shape of the tube P being different in the tube axis direction, etc. Thus, it is possible to reduce the influence of the positional deviation of the shape echo that can occur and to improve the S / N ratio more reliably.

また、被探傷材が欠陥の生じていない管Pである場合に、超音波探触子1Aから出力される探傷信号の振幅と、超音波探触子1Bから出力される探傷信号の信号の振幅とがほぼ同等になるように、振幅調整部22A、22Bによって、超音波探触子1Aから出力される探傷信号及び/又は超音波探触子1Bから出力される探傷信号の振幅を調整することが好ましい。換言すれば、欠陥の生じていないことが分かっている管Pを用いて、超音波探触子1Aから出力される探傷信号の振幅と、超音波探触子1Bから出力される探傷信号の信号の振幅とがほぼ同等になるように予め振幅調整部22A、22Bの増幅率を調整した後、実際の被探傷材である管Pを探傷することが好ましい。   Further, when the flaw detection material is a tube P in which no defect is generated, the amplitude of the flaw detection signal output from the ultrasonic probe 1A and the amplitude of the flaw detection signal signal output from the ultrasonic probe 1B. Are adjusted by the amplitude adjusters 22A and 22B so that the amplitude of the flaw detection signal output from the ultrasonic probe 1A and / or the flaw detection signal output from the ultrasonic probe 1B is adjusted. Is preferred. In other words, the amplitude of the flaw detection signal output from the ultrasonic probe 1A and the signal of the flaw detection signal output from the ultrasonic probe 1B using the tube P that is known to have no defect. After adjusting the amplification factors of the amplitude adjusters 22A and 22B in advance so that the amplitude of the tube P is substantially equal, it is preferable to detect the tube P that is an actual flaw detection material.

斯かる好ましい態様によれば、被探傷材が欠陥の生じていない管Pである場合に、超音波探触子1Aから出力される探傷信号の振幅と、超音波探触子1Bから出力される探傷信号の信号の振幅とがほぼ同等になるように(換言すれば、各超音波探触子1A、1Bから出力される探傷信号に含まれる形状エコーの振幅がほぼ同等になるように)、超音波探触子1Aから出力される探傷信号及び/又は超音波探触子1Bから出力される探傷信号の振幅を調整するため、各超音波探触子1A、1Bの感度の差や、取付位置の誤差、管Pの形状が管軸方向に異なること等に起因して生じ得る形状エコーの高さの差の影響を低減し、より一層確実にS/N比を向上させることが可能である。   According to such a preferable aspect, when the material to be inspected is the tube P having no defect, the amplitude of the flaw detection signal output from the ultrasonic probe 1A and the output from the ultrasonic probe 1B. The amplitude of the signal of the flaw detection signal is substantially equal (in other words, the amplitude of the shape echo included in the flaw detection signal output from each of the ultrasonic probes 1A and 1B is substantially equal). In order to adjust the amplitude of the flaw detection signal output from the ultrasonic probe 1A and / or the flaw detection signal output from the ultrasonic probe 1B, the difference in sensitivity of each of the ultrasonic probes 1A and 1B, and the attachment It is possible to reduce the influence of the difference in the height of the shape echo, which can be caused by the position error, the shape of the tube P being different in the tube axis direction, etc., and improve the S / N ratio more reliably. is there.

図7は、外径60.3mmφで10条のフィンが形成された内面フィン付き管(谷部肉厚:6mm、山部高さ:6mm)の1箇所の谷底部に5%ノッチ(深さ0.3mm)を施し、この管を本実施形態に係る超音波探傷方法によって探傷した結果の一例を示す。より具体的に説明すれば、図7(a)は、5%ノッチが存在しない(5%ノッチに超音波ビームが到達しない)所定の探傷位置(管の管周方向の位置)において超音波探触子1Aから出力される探傷信号(より具体的には、振幅調整部22Aの出力信号)例である。図7(b)は、上記と同じ所定の探傷位置において超音波探触子1Bから出力される探傷信号(より具体的には、振幅調整部22Bの出力信号)例である。図7(c)は、図7(a)に示す探傷信号と図7(b)に示す探傷信号とを差動演算することにより得られた差動信号(差動演算部23の出力信号)である。図7(d)は管Pを管周方向に回転させることによって所定の探傷位置(所定の管周方向位置)毎に出力される差動信号を表示したチャート出力(横軸は管の管周方向位置)である。   FIG. 7 shows a 5% notch (depth) at one valley bottom of an internally finned tube (valley wall thickness: 6 mm, peak height: 6 mm) with an outer diameter of 60.3 mmφ and 10 fins formed. 0.3 mm), and an example of the result of flaw detection of this tube by the ultrasonic flaw detection method according to the present embodiment will be shown. More specifically, FIG. 7A shows an ultrasonic probe at a predetermined flaw detection position (position in the tube circumferential direction) where there is no 5% notch (the ultrasonic beam does not reach the 5% notch). It is an example of a flaw detection signal (more specifically, an output signal of the amplitude adjusting unit 22A) output from the toucher 1A. FIG. 7B is an example of a flaw detection signal (more specifically, an output signal of the amplitude adjustment unit 22B) output from the ultrasonic probe 1B at the same predetermined flaw detection position as described above. FIG. 7C shows a differential signal obtained by differentially calculating the flaw detection signal shown in FIG. 7A and the flaw detection signal shown in FIG. It is. FIG. 7D shows a chart output that displays differential signals output at each predetermined flaw detection position (predetermined pipe circumferential direction position) by rotating the pipe P in the pipe circumferential direction (the horizontal axis indicates the pipe circumference of the pipe). Direction position).

図7(c)に示すように、超音波探触子1Aの探傷信号に含まれる形状エコー(図7(a))と超音波探触子1Bの探傷信号に含まれる形状エコー(図7(b))とが差動演算されることにより、当該探傷位置における差動信号からは形状エコーが消失していることが分かる。そして、図7(d)に示すように、管Pを管周方向に回転させることにより出力される差動信号には、微小な形状エコーが残っているものの、S/N比(欠陥エコーの高さ/形状エコーの高さ)=4程度を得ることが可能であった。   As shown in FIG. 7C, the shape echo (FIG. 7A) included in the flaw detection signal of the ultrasonic probe 1A and the shape echo (FIG. 7C) included in the flaw detection signal of the ultrasonic probe 1B. It is understood that the shape echo has disappeared from the differential signal at the flaw detection position by performing a differential operation with b)). As shown in FIG. 7D, the differential signal output by rotating the tube P in the circumferential direction of the tube has a small shape echo, but the S / N ratio (of the defect echo). It was possible to obtain height / height of shape echo) = about 4.

図1は、内面フィン付き管の一例を示す模式的断面図である。FIG. 1 is a schematic cross-sectional view showing an example of an internally finned tube. 図2は、一般的な超音波探触子の設置態様を示す模式的断面図である。FIG. 2 is a schematic cross-sectional view showing an installation mode of a general ultrasonic probe. 図3は、本発明の発明者らが実施した探傷試験の探傷条件を示す模式的断面図である。FIG. 3 is a schematic cross-sectional view showing flaw detection conditions for a flaw detection test conducted by the inventors of the present invention. 図4は、図3に示す探傷試験の結果を示す図である。FIG. 4 is a diagram showing the results of the flaw detection test shown in FIG. 図5は、従来技術の文献に記載された超音波探触子の設置態様を示す模式的断面図である。FIG. 5 is a schematic cross-sectional view showing an installation mode of an ultrasonic probe described in a prior art document. 図6は、本発明に係る超音波探傷方法を実施するための超音波探傷装置の概略構成を示す図である。FIG. 6 is a diagram showing a schematic configuration of an ultrasonic flaw detection apparatus for carrying out the ultrasonic flaw detection method according to the present invention. 図7は、図6に示す超音波探傷装置によって探傷した結果の一例を示す。FIG. 7 shows an example of a result of flaw detection performed by the ultrasonic flaw detector shown in FIG.

符号の説明Explanation of symbols

1A,1B・・・超音波探触子
2・・・信号処理手段
10・・・超音波探傷装置
21A,21B・・・超音波探傷器
22A,22B・・・振幅調整部
23・・・差動演算部
24・・・遅延制御部
25・・・欠陥検出部
P・・・管
K・・・欠陥
Rs・・・谷底部
DESCRIPTION OF SYMBOLS 1A, 1B ... Ultrasonic probe 2 ... Signal processing means 10 ... Ultrasonic flaw detector 21A, 21B ... Ultrasonic flaw detector 22A, 22B ... Amplitude adjustment part 23 ... Difference Dynamic calculation unit 24 ... Delay control unit 25 ... Defect detection unit P ... Tube K ... Defect Rs ... Valley bottom

Claims (7)

内面が周方向に交互に設けられた山部と谷部とから形成されている内面フィン付き管の外面側に設置した超音波探触子を前記管の管周方向に相対移動させながら斜角超音波探傷を行うことにより、前記管内面の谷底部において管軸方向に延びる欠陥を検出する超音波探傷方法であって、
前記管の外面側に2つの超音波探触子を互いに管軸方向に沿って、且つ、検出対象とする前記欠陥の管軸方向の長さよりも大きな間隔を隔てて配置し、
前記2つの超音波探触子の内、一方の超音波探触子から出力される探傷信号と他方の超音波探触子から出力される探傷信号とを差動演算し、
前記差動演算によって得られる差動信号に基づいて前記欠陥を検出する
ことを特徴とする内面フィン付き管の超音波探傷方法。
While the ultrasonic probe installed on the outer surface side of the inner finned tube formed by the crests and troughs whose inner surfaces are alternately provided in the circumferential direction, the oblique angle is moved while relatively moving in the tube circumferential direction of the tube. An ultrasonic flaw detection method for detecting defects extending in the tube axis direction at the valley bottom of the inner surface of the tube by performing ultrasonic flaw detection,
Two ultrasonic probes are arranged on the outer surface side of the tube along the tube axis direction with a gap larger than the length of the defect to be detected in the tube axis direction,
Of the two ultrasonic probes, the flaw detection signal output from one ultrasonic probe and the flaw detection signal output from the other ultrasonic probe are differentially calculated,
An ultrasonic flaw detection method for an internally finned tube , wherein the defect is detected based on a differential signal obtained by the differential operation.
被探傷材が前記欠陥の生じていない内面フィン付き管である場合に得られる前記差動信号の振幅が所定値以下に小さくなるように、前記一方の超音波探触子から出力される探傷信号又は前記他方の超音波探触子から出力される探傷信号を時間遅延させる
ことを特徴とする請求項1に記載の内面フィン付き管の超音波探傷方法。
The flaw detection signal output from the one ultrasonic probe so that the amplitude of the differential signal obtained when the flaw detection material is an internally finned tube without the defect is reduced to a predetermined value or less. 2. The ultrasonic flaw detection method for an internally finned tube according to claim 1, wherein the flaw detection signal output from the other ultrasonic probe is time-delayed.
被探傷材が前記欠陥の生じていない内面フィン付き管である場合に、前記一方の超音波探触子から出力される探傷信号の振幅と、前記他方の超音波探触子から出力される探傷信号の信号の振幅とがほぼ同等になるように、前記一方の超音波探触子から出力される探傷信号及び/又は前記他方の超音波探触子から出力される探傷信号の振幅を調整する
ことを特徴とする請求項1又は2に記載の内面フィン付き管の超音波探傷方法。
When the flaw detection material is an internally finned tube in which no defect occurs, the amplitude of a flaw detection signal output from the one ultrasonic probe and the flaw detection output from the other ultrasonic probe The amplitude of the flaw detection signal output from the one ultrasonic probe and / or the flaw detection signal output from the other ultrasonic probe is adjusted so that the amplitude of the signal is substantially equal. The ultrasonic flaw detection method for an internally finned tube according to claim 1 or 2.
内面が周方向に交互に設けられた山部と谷部とから形成されている内面フィン付き管の外面側に設置した超音波探触子を前記管の管周方向に相対移動させながら斜角超音波探傷を行うことにより、前記管内面の谷底部において管軸方向に延びる欠陥を検出する超音波探傷装置であって、
前記管の外面側に互いに管軸方向に沿って、且つ、検出対象とする前記欠陥の管軸方向の長さよりも大きな間隔を隔てて配置した2つの超音波探触子と、
前記各超音波探触子から出力される探傷信号に基づいて前記欠陥を検出する信号処理手段とを備え、
前記信号処理手段は、
前記2つの超音波探触子の内、一方の超音波探触子から出力される探傷信号と他方の超音波探触子から出力される探傷信号とを差動演算し、
前記差動演算によって得られる差動信号に基づいて前記欠陥を検出する
ことを特徴とする内面フィン付き管の超音波探傷装置。
The ultrasonic probe installed on the outer surface side of the inner finned tube formed by the crests and troughs whose inner surfaces are alternately provided in the circumferential direction is obliquely moved while relatively moving in the tube circumferential direction of the tube. By performing ultrasonic flaw detection, an ultrasonic flaw detection device that detects a defect extending in the tube axis direction at the valley bottom of the inner surface of the tube,
Two ultrasonic probes arranged on the outer surface side of the tube along the tube axis direction with a larger interval than the length of the defect to be detected in the tube axis direction;
Signal processing means for detecting the defect based on a flaw detection signal output from each of the ultrasonic probes,
The signal processing means includes
Of the two ultrasonic probes, differentially calculates a flaw detection signal output from one ultrasonic probe and a flaw detection signal output from the other ultrasonic probe,
An ultrasonic flaw detector for an internally finned tube , wherein the defect is detected based on a differential signal obtained by the differential operation.
前記信号処理手段は、前記一方の超音波探触子から出力される探傷信号又は前記他方の超音波探触子から出力される探傷信号を時間遅延させる遅延制御部を具備する
ことを特徴とする請求項に記載の内面フィン付き管の超音波探傷装置。
The signal processing means includes a delay control unit that delays a time of a flaw detection signal output from the one ultrasonic probe or a flaw detection signal output from the other ultrasonic probe. The ultrasonic flaw detector for an internally finned tube according to claim 4 .
前記信号処理手段は、前記一方の超音波探触子から出力される探傷信号及び/又は前記他方の超音波探触子から出力される探傷信号の振幅を調整する振幅調整部を具備する
ことを特徴とする請求項又はに記載の内面フィン付き管の超音波探傷装置。
The signal processing means includes an amplitude adjustment unit that adjusts the amplitude of the flaw detection signal output from the one ultrasonic probe and / or the flaw detection signal output from the other ultrasonic probe. The ultrasonic flaw detector for an internally finned tube according to claim 4 or 5 .
前記信号処理手段は、前記2つの超音波探触子による超音波ビームの送受信をそれぞれ制御するための2つの超音波探傷器を具備し、
前記2つの超音波探傷器は互いに周波数特性が一致している
ことを特徴とする請求項からの何れかに記載の内面フィン付き管の超音波探傷装置。
The signal processing means includes two ultrasonic flaw detectors for controlling transmission and reception of ultrasonic beams by the two ultrasonic probes,
The two ultrasonic flaw detector ultrasonic flaw detector with the inner surface fin tube according to claim 4 to 6, characterized in that the frequency characteristics match each other.
JP2005336728A 2005-11-22 2005-11-22 Ultrasonic flaw detection method and apparatus for internally finned tube Active JP4596326B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005336728A JP4596326B2 (en) 2005-11-22 2005-11-22 Ultrasonic flaw detection method and apparatus for internally finned tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005336728A JP4596326B2 (en) 2005-11-22 2005-11-22 Ultrasonic flaw detection method and apparatus for internally finned tube

Publications (2)

Publication Number Publication Date
JP2007139685A JP2007139685A (en) 2007-06-07
JP4596326B2 true JP4596326B2 (en) 2010-12-08

Family

ID=38202728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005336728A Active JP4596326B2 (en) 2005-11-22 2005-11-22 Ultrasonic flaw detection method and apparatus for internally finned tube

Country Status (1)

Country Link
JP (1) JP4596326B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5585305B2 (en) * 2010-08-25 2014-09-10 Jfeスチール株式会社 Tooth part inspection method and inspection device
JP5742513B2 (en) * 2011-06-29 2015-07-01 Jfeスチール株式会社 Ultrasonic flaw detection method and ultrasonic flaw detection apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62153745A (en) * 1985-12-27 1987-07-08 Furukawa Electric Co Ltd:The Method for non-destructive inspection of cable spacer
JPH10274643A (en) * 1997-03-31 1998-10-13 Sumitomo Metal Ind Ltd Method and equipment for ultrasonically detecting flaw of pipe with inner surface fins

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62153745A (en) * 1985-12-27 1987-07-08 Furukawa Electric Co Ltd:The Method for non-destructive inspection of cable spacer
JPH10274643A (en) * 1997-03-31 1998-10-13 Sumitomo Metal Ind Ltd Method and equipment for ultrasonically detecting flaw of pipe with inner surface fins

Also Published As

Publication number Publication date
JP2007139685A (en) 2007-06-07

Similar Documents

Publication Publication Date Title
JP4816731B2 (en) Ultrasonic flaw detection method, welded steel pipe manufacturing method, and ultrasonic flaw detection apparatus
US8104347B2 (en) Ultrasonic inspection method and device for plastics walls
JP5448030B2 (en) Ultrasonic flaw detection method and apparatus
WO2020250378A1 (en) Ultrasound flaw detection method, ultrasound flaw detection device, manufacturing equipment line for steel material, manufacturing method for steel material, and quality assurance method for steel material
US20020194916A1 (en) Method for inspecting clad pipe
JP4596325B2 (en) Ultrasonic flaw detection method and apparatus for internally finned tube
JP4596326B2 (en) Ultrasonic flaw detection method and apparatus for internally finned tube
JP2007187631A (en) Method and apparatus for detecting position of boundary surface
RU2383015C2 (en) Device for ultrasonic flaw detection of hot rolled metal
JP2009058238A (en) Method and device for defect inspection
JP6733650B2 (en) Ultrasonic flaw detection method, ultrasonic flaw detection equipment, steel production equipment row, and steel production method
JP4826950B2 (en) Ultrasonic flaw detection method and ultrasonic flaw detection apparatus
RU2394235C1 (en) Method for ultrasonic inspection of welded joints of small-diametre pipes
JP2008151588A (en) Flaw evaluation method of two-layered bellows and eddy current flaw detector used therein
JP2018136252A (en) Ultrasonic inspection device, ultrasonic inspection system including the same, and ultrasonic inspection method and program
JP6953953B2 (en) A method for evaluating the soundness of oblique ultrasonic flaw detection, and a method for oblique ultrasonic flaw detection using this method.
WO2018135242A1 (en) Inspection method
JP2007263956A (en) Ultrasonic flaw detection method and apparatus
JP2006194763A (en) Ultrasonic flaw detection method
JP7318617B2 (en) Ultrasonic flaw detection method for tubular test object
JP5505806B2 (en) Discrimination method of reflection echo
JP3084082B2 (en) Method for detecting defects in metal tubes with spiral ribs inside
JP3541703B2 (en) Automatic ultrasonic flaw detection method and apparatus
RU2436080C1 (en) Method for rail base ultrasonic control
JPH0278949A (en) Ultrasonic flaw detecting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100827

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100909

R150 Certificate of patent or registration of utility model

Ref document number: 4596326

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350