JP2007187631A - Method and apparatus for detecting position of boundary surface - Google Patents

Method and apparatus for detecting position of boundary surface Download PDF

Info

Publication number
JP2007187631A
JP2007187631A JP2006007659A JP2006007659A JP2007187631A JP 2007187631 A JP2007187631 A JP 2007187631A JP 2006007659 A JP2006007659 A JP 2006007659A JP 2006007659 A JP2006007659 A JP 2006007659A JP 2007187631 A JP2007187631 A JP 2007187631A
Authority
JP
Japan
Prior art keywords
boundary surface
pair
layer
probes
oblique
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006007659A
Other languages
Japanese (ja)
Other versions
JP5132886B2 (en
Inventor
Satoru Shiroshita
悟 城下
Tatsuyuki Nagai
辰之 永井
Hideki Yabushita
秀記 藪下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Non Destructive Inspection Co Ltd
Original Assignee
Non Destructive Inspection Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Non Destructive Inspection Co Ltd filed Critical Non Destructive Inspection Co Ltd
Priority to JP2006007659A priority Critical patent/JP5132886B2/en
Publication of JP2007187631A publication Critical patent/JP2007187631A/en
Application granted granted Critical
Publication of JP5132886B2 publication Critical patent/JP5132886B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To detect weak reflected signals from a boundary surface using a simple constitution, to detect the position of the boundary surface of first and second layers, having different properties in a test target. <P>SOLUTION: A pair of oblique angle probes 2a and 2b, capable of transmitting and receiving an ultrasonic wave, are electrically connected, in parallel to each other and placed in opposed relation to the surface 101 of the test target 100. Ultrasonic waves are respectively transmitted from a pair of the oblique angle probes 2a and 2b, and the respective reflected signal, from the boundary surface 104 and the base 105 of the test object, are respectively received by a pair of the oblique angle probes 2a and 2b to detect the position of the boundary surface. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、性質の異なる第一層と第二層からなる試験体の前記第一層と前記第二層間に生じる境界面の位置を検出する境界面位置検出方法及び 境界面位置検出装置に関する。   The present invention relates to a boundary surface position detection method and a boundary surface position detection device for detecting a position of a boundary surface generated between the first layer and the second layer of a test body composed of a first layer and a second layer having different properties.

従来、性質の異なる第一層と第二層からなる試験体の前記第一層と前記第二層間に生じる境界面の位置を検出する方法、例えば、エチレン製造に使われている高Cr、高Niからなる分解炉チューブ内面に発生する浸炭層の厚さ測定方法として下記文献に記載の方法が知られている。   Conventionally, a method for detecting the position of an interface formed between the first layer and the second layer of a specimen composed of a first layer and a second layer having different properties, for example, high Cr, high As a method for measuring the thickness of the carburized layer generated on the inner surface of the cracking furnace tube made of Ni, the methods described in the following documents are known.

非特許文献1、2に記載された超音波探傷試験(UT)を使用した方法では、斜角探触子を使用して横波を用いた方法又は縦波と横波を組み合わせた方法(反射面でモード変換する波)を用いられているが、浸炭境界からの反射信号が小さいため感度を増幅する必要がある。しかし、感度増幅により種々の波が妨害エコーとして現れるため、浸炭層境界からの信号の判別が非常に困難であった。   In the method using the ultrasonic flaw detection test (UT) described in Non-Patent Documents 1 and 2, a method using a transverse wave using a bevel probe or a method combining a longitudinal wave and a transverse wave (on a reflecting surface). However, since the reflected signal from the carburizing boundary is small, it is necessary to amplify the sensitivity. However, since various waves appear as interference echoes due to sensitivity amplification, it is very difficult to distinguish signals from the carburized layer boundary.

また、特許文献1及び非特許文献1、2に記載の着目した信号の振幅が最大となるように探触子間距離を変化させる方法では、探触子の接近限界に制限があるために、管肉厚が薄くなった場合や浸炭層の境界が探傷面に近い場合には最適な探触子間距離が得られない。   Further, in the method of changing the distance between the probes so that the amplitude of the signal of interest described in Patent Document 1 and Non-Patent Documents 1 and 2 is maximized, the approach limit of the probe is limited. When the tube thickness is reduced or when the boundary of the carburized layer is close to the flaw detection surface, the optimum distance between the probes cannot be obtained.

更に、非特許文献2に記載のモード変換波を使用する方法では浸炭層境界からの信号が他の信号と重なり識別ができない場合も生じる。   Furthermore, in the method using the mode-converted wave described in Non-Patent Document 2, a signal from the carburized layer boundary may overlap with other signals and cannot be identified.

また、非特許文献3に記載の垂直探触子を使用した方法では後方散乱波のデータを加算処理した実験例も報告されているが、表面から4mmまでは垂直探触子のノイズで測定が不可能となっている。分解炉チューブで測定対象となるチューブの多くは厚さ7mm程度であり、この測定方法では50%以上の浸炭は測定することが困難であった。   In addition, in the method using the vertical probe described in Non-Patent Document 3, an experiment example in which the backscattered wave data is added is also reported, but measurement is possible with noise from the vertical probe up to 4 mm from the surface. It is impossible. Most of the tubes to be measured in the cracking furnace tube have a thickness of about 7 mm, and it is difficult to measure 50% or more of carburization by this measuring method.

さらに、非破壊的に測定する方法としては、フェライトインジケータによる磁性量で劣化度を判断する方法や、渦流探傷法(ET)による浸炭層の厚さ測定を行うなどの方法が知られている。しかし、Cr、Niの含有量が異なると、外表面側も磁性を帯び、この磁性が内面側の浸炭層の厚さ測定に悪い影響を与え、信頼性が著しく低下していた。   Further, as a non-destructive measurement method, a method of determining the degree of deterioration based on a magnetic amount by a ferrite indicator, a method of measuring a carburized layer thickness by an eddy current flaw detection method (ET), or the like is known. However, when the contents of Cr and Ni are different, the outer surface side is also magnetized, and this magnetism has a bad influence on the thickness measurement of the carburized layer on the inner surface side, and the reliability has been significantly reduced.

よって、上述のように現状のエチレンプラントでは、非破壊検査で確実に浸炭深さを測定できる方法がないため、品質管理として運転時間で管理をして新管と取り替えていた。そのため、浸炭深さが肉厚の70〜80%の時点で新管と取り替えることができるような、非破壊試験での測定方法が望まれている。   Therefore, as described above, in the current ethylene plant, there is no method that can reliably measure the carburization depth by nondestructive inspection. Therefore, a measurement method in a nondestructive test that can be replaced with a new pipe when the carburization depth is 70 to 80% of the wall thickness is desired.

すなわち、浸炭深さを超音波で測定するときに最大の問題点は、浸炭層からの散乱波(反射波)が微弱なために探傷感度を非常に高く設定する必要があり、それに伴いノイズが発生して浸炭層の信号とノイズの識別が困難なことであった。
特開2000−321041号 (社)日本非破壊検査協会発行、非破壊検査第47巻7号(1998)P480〜P486「エチレン装置の分解炉内面側に生じる浸炭層の検出」 産報出版株式会社発行、溶接技術2005年10月号P88〜P91「加熱炉管の浸炭に対する超音波検査」 日本工業出版発行、検査技術2002年2月号P33〜P35「超音波技術を利用した浸炭層の検出」
In other words, the biggest problem when measuring the carburizing depth with ultrasonic waves is that the scattered wave (reflected wave) from the carburized layer is weak, so it is necessary to set the flaw detection sensitivity to a very high level. It was difficult to distinguish carburized signal and noise.
JP 2000-321041 A Non-destructive inspection vol. 47, No. 7 (1998) P480-P486 “Detection of carburized layer generated on the inner surface of the cracking furnace of ethylene equipment” Issued by Sangyo Publishing Co., Ltd., welding technology October 2005 issue P88-P91 "Ultrasonic inspection for carburizing of furnace tube" Issued by Nippon Kogyo Publishing, February 2002 issue P33-P35 “Detection of carburized layer using ultrasonic technology”

かかる従来の実情に鑑みて、本発明は、簡素な構成で微弱な境界面からの反射信号を確実に検出して試験体における性質の異なる第一層と第二層との境界面の位置を検出することの可能な境界面位置検出方法及び境界面位置検出装置を提供することを目的とする。   In view of such a conventional situation, the present invention reliably detects a reflected signal from a weak boundary surface with a simple configuration, and determines the position of the boundary surface between the first layer and the second layer having different properties in the specimen. An object of the present invention is to provide a boundary surface position detection method and a boundary surface position detection device that can be detected.

上記目的を達成するため、本発明に係る境界面位置検出方法の特徴は、試験体における性質の異なる第一層と第二層との境界面の位置を検出する境界面位置検出方法であって、超音波を送受信可能な一対の斜角探触子を電気的に並列に接続すると共に、前記一対の斜角探触子を前記試験体の表面に相対させて載置し、前記一対の斜角探触子から超音波をそれぞれ送信し、かつ前記境界面及び試験体底面から反射される各反射信号を前記一対の斜角探触子にてそれぞれ受信することにより境界面位置を検出することにある。   In order to achieve the above object, a feature of the boundary surface position detection method according to the present invention is a boundary surface position detection method for detecting the position of the boundary surface between the first layer and the second layer having different properties in the specimen. A pair of oblique probes capable of transmitting and receiving ultrasonic waves are electrically connected in parallel, and the pair of oblique probes are placed relative to the surface of the specimen, and the pair of oblique probes are mounted. Detecting the position of the boundary surface by transmitting ultrasonic waves from the angle probe and receiving the reflected signals reflected from the boundary surface and the bottom surface of the specimen by the pair of oblique angle probes, respectively. It is in.

前記一対の斜角探触子は、受信される前記境界面からの反射信号が大きくなるように超音波を送受信する角度を調整可能であることが望ましい。   It is desirable that the pair of oblique angle probes can adjust the angle at which ultrasonic waves are transmitted and received so that a reflected signal from the boundary surface to be received is increased.

前記一対の斜角探触子が複数組設けられ、少なくとも各組における一対の斜角探触子が電気的に並列に接続されていてもよい。   A plurality of pairs of the pair of oblique angle probes may be provided, and at least the pair of oblique angle probes in each group may be electrically connected in parallel.

前記一対の斜角探触子を試験体表面に沿わせて走査を行い、受信した各反射信号を加算して測定波形を生成し、前記測定波形に対し画像処理が行われてもよい。係る場合、各斜角探触子固有の測定波形を試験体の測定波形から減ずることにより前記画像処理を行うことが望ましい。   The pair of oblique angle probes may be scanned along the surface of the specimen, and the received reflected signals may be added to generate a measurement waveform, and image processing may be performed on the measurement waveform. In such a case, it is desirable to perform the image processing by subtracting the measurement waveform unique to each oblique angle probe from the measurement waveform of the specimen.

また、前記第一層又は前記第二層のいずれかのみからなる試験体における測定波形である基準波形をあらかじめ求め、前記測定波形から前記基準波形を減ずることにより前記画像処理を行ってもよい。   In addition, the image processing may be performed by obtaining in advance a reference waveform that is a measurement waveform in a test body including only the first layer or the second layer, and subtracting the reference waveform from the measurement waveform.

さらに、試験体が金属性材料であり、前記第一層、第二層がそれぞれ健全層、材質変化層であり、健全層側に前記探触子を載置することが望ましい。   Further, it is desirable that the test body is a metallic material, the first layer and the second layer are a sound layer and a material change layer, respectively, and the probe is placed on the sound layer side.

また、上記目的を達成するため、本発明に係る境界面位置検出装置の特徴は、上記いずれかに記載の境界面位置検出方法に用いる境界面位置検出装置において、
超音波を送受信可能な一対の斜角探触子を電気的に並列に接続すると共に、前記一対の斜角探触子を前記試験体の表面に相対させて載置し、前記一対の斜角探触子から超音波をそれぞれ送信し、かつ前記境界面及び試験体底面から反射される各反射信号を前記一対の斜角探触子にてそれぞれ受信することにより境界面位置を検出することにある。
In order to achieve the above object, the boundary surface position detection device according to the present invention is characterized in that in the boundary surface position detection device used in any of the above boundary surface position detection methods,
A pair of oblique probes capable of transmitting and receiving ultrasonic waves are electrically connected in parallel, and the pair of oblique probes are placed relative to the surface of the test body, and the pair of oblique probes To detect the position of the boundary surface by transmitting ultrasonic waves from the probe and receiving the reflected signals reflected from the boundary surface and the bottom surface of the test body by the pair of oblique angle probes, respectively. is there.

本発明の目的は、簡素な構成で微弱な境界面からの反射信号を確実に検出して試験体における性質の異なる第一層と第二層との境界面の位置を検出することの可能な境界面位置検出方法及び境界面位置検出装置を提供することにある。   An object of the present invention is to detect a reflected signal from a weak boundary surface with a simple configuration, and to detect the position of the boundary surface between the first layer and the second layer having different properties in the specimen. An object of the present invention is to provide a boundary surface position detection method and a boundary surface position detection device.

本発明の他の目的、構成及び効果については、以下の発明の実施の形態の項から明らかになるであろう。   Other objects, configurations, and effects of the present invention will become apparent from the following embodiments of the present invention.

次に、適宜添付図面を参照しながら、本発明の第一実施形態について詳しく説明する。
本実施形態では、試験体100として、石油化学プラント等に利用される炉内配管を例に説明する。この炉内配管100は高Cr、高Ni合金よりなり、長期間使用することにより、図3,4に示すように、試験体内面105から浸炭が発生し、試験体外面101方向に進行していく。そのため、図4(d)に示すように、浸炭の進行により試験体内面105に近傍に炭化物がより密集した炭素飽和層103aを形成し、さらに、同図(c)に示すように、その試験体外面101側にも浸炭が進行している炭素層103bが形成される。同図(b)に示すように、炭素層103bと浸炭が進行していない健全層102とでは、組織の差異はわずかである。
Next, the first embodiment of the present invention will be described in detail with reference to the accompanying drawings as appropriate.
In the present embodiment, the test body 100 will be described taking an example of an in-furnace pipe used in a petrochemical plant or the like. This in-furnace pipe 100 is made of a high Cr, high Ni alloy, and when used for a long period of time, as shown in FIGS. Go. Therefore, as shown in FIG. 4 (d), a carbon saturated layer 103a in which carbides are more densely formed in the vicinity of the inner surface 105 of the test body is formed by the progress of carburization. Further, as shown in FIG. A carbon layer 103b in which carburization is proceeding is also formed on the outer surface 101 side. As shown in FIG. 4B, the difference in structure between the carbon layer 103b and the healthy layer 102 in which carburization has not progressed is slight.

発明者らは、浸炭の程度が異なる試料を用いて超音波の反射信号の測定を行った。測定結果によれば、図5に示すように、浸炭が発生していない試料では試料内面からの反射信号Bのみを受信したが、浸炭の生じた試料では試料内面からの反射信号B以外にも炭素飽和層の境界面からの反射信号Iを受信した。これらの信号を受信することで、炭素飽和層の有無及び炭素飽和層のおおよその厚さを知ることが可能であることが分かった。しかし、炭素層103bと健全層102とでは組織の差異はわずかであるため、微弱な反射信号となった。   The inventors measured the reflected signal of ultrasonic waves using samples with different degrees of carburization. According to the measurement result, as shown in FIG. 5, only the reflected signal B from the inner surface of the sample was received in the sample in which carburization did not occur, but in addition to the reflected signal B from the inner surface of the sample in the sample in which carburization occurred. A reflection signal I from the boundary surface of the carbon saturated layer was received. It was found that by receiving these signals, it is possible to know the presence or absence of the carbon saturation layer and the approximate thickness of the carbon saturation layer. However, since the difference in structure between the carbon layer 103b and the healthy layer 102 is slight, the reflected signal is weak.

そこで、後述する如く微弱な反射信号を大きく受信することにより浸炭の境界面の位置を測定することが可能であることが判明した。ここで、浸炭が進行していない層を健全層102、炭素飽和層103a及び炭素層103bを浸炭層103とし、健全層102を第一層、浸炭層103を第二層として以下説明する。   Thus, it has been found that the position of the carburized boundary surface can be measured by receiving a large amount of a weak reflected signal as will be described later. Here, a layer in which carburization has not progressed will be described as a sound layer 102, a carbon saturated layer 103a and a carbon layer 103b as a carburized layer 103, a sound layer 102 as a first layer, and a carburized layer 103 as a second layer.

図1(b)に示すように、境界面検出装置1は、一対の斜角探触子2a,2bが試験体100の健全層102側表面101に相対して載置されている。各斜角探触子2a,2bは共に超音波を送受信可能であり、電気的に並列に接続されている。   As shown in FIG. 1B, in the boundary surface detection device 1, a pair of oblique angle probes 2 a and 2 b are placed relative to the sound layer 102 side surface 101 of the test body 100. Each of the oblique angle probes 2a and 2b can transmit and receive ultrasonic waves and is electrically connected in parallel.

図2に示すように、各斜角探触子2a,2bより送信された超音波は試験体100に入射すると共に、斜角探触子2a,2b間を直接伝搬する超音波Na,Nbが生じる。試験体100に入射した超音波は、健全層102と浸炭層103との境界面104及び試験体内面105で反射され、その反射信号は一対の斜角探触子2a,2bでそれぞれ受信される。   As shown in FIG. 2, the ultrasonic waves transmitted from the respective oblique angle probes 2a and 2b are incident on the test body 100, and the ultrasonic waves Na and Nb that directly propagate between the oblique angle probes 2a and 2b are generated. Arise. The ultrasonic wave incident on the test body 100 is reflected by the boundary surface 104 between the sound layer 102 and the carburized layer 103 and the test body inner surface 105, and the reflected signals are received by the pair of oblique probes 2a and 2b, respectively. .

斜角探触子2aにおいて受信される境界面104及び試験体内面105の反射信号には、その探触子自身が送信した超音波の反射信号Ia及び相対する他方の斜角探触子2bより送信した超音波の反射信号Ibの2種を含んでいる。そして、一対の斜角探触子2a,2bは電気的に並列に接続されていることから、受信した全ての反射信号を加算することにより、反射信号を約4倍に強調することができる。   The reflected signals of the boundary surface 104 and the test body inner surface 105 received by the oblique angle probe 2a are transmitted from the reflected ultrasonic wave signal Ia transmitted by the probe itself and the opposite oblique angle probe 2b. Two types of reflected ultrasonic wave signals Ib are included. Since the pair of oblique angle probes 2a and 2b are electrically connected in parallel, the reflected signal can be enhanced about four times by adding all the received reflected signals.

また、斜角探触子2a,2b間を直接伝搬する超音波の信号Na,Nbは、相対する斜角探触子に受信される。この信号Na,Nbは反射信号に対してノイズ信号となる。一対の斜角探触子2a,2bは電気的に並列に接続されているが、各斜角探触子2a,2bでそれぞれ受信されるノイズ信号Nは1種のみであるため、加算されるとしても、このノイズ信号Nは約2倍に強調されるに過ぎない。   Further, ultrasonic signals Na and Nb directly propagating between the oblique angle probes 2a and 2b are received by the opposing oblique angle probes. The signals Na and Nb become noise signals with respect to the reflected signal. The pair of oblique angle probes 2a and 2b are electrically connected in parallel. However, since there is only one type of noise signal N received by each of the oblique angle probes 2a and 2b, they are added. However, this noise signal N is only emphasized about twice.

図1(a)に示す送信探触子111と受信探触子112とを一対とした場合には、受信される信号はいずれも1種ずつであるため、微弱な反射信号はノイズに埋没してしまう。これに対し、同図(b)に示す一対の送受信可能な斜角探触子2a,2bの場合には、受信される信号の内、反射信号Iは4倍となるのに対し、ノイズ信号Nは2倍となるため、相対的にノイズ信号Nの影響を軽減し、反射信号Iを明確に検出することができる。よって、送受信可能な一対の斜角探触子2a,2bを電気的に並列に接続して用いることにより境界面104の位置を正確に測定することが可能となる。   When the transmission probe 111 and the reception probe 112 shown in FIG. 1 (a) are paired, since only one type of signal is received, a weak reflected signal is buried in noise. End up. On the other hand, in the case of the pair of oblique angle probes 2a and 2b capable of transmission / reception shown in FIG. 4B, the reflected signal I of the received signals is quadrupled, whereas the noise signal Since N is doubled, the influence of the noise signal N can be relatively reduced, and the reflected signal I can be detected clearly. Therefore, it is possible to accurately measure the position of the boundary surface 104 by using a pair of oblique probe 2a, 2b that can be transmitted and received electrically connected in parallel.

さらに、一対の斜角探触子2a,2bは境界面104からの反射信号をより強く受信可能とするため、超音波の送受信角度を調整することができる。浸炭層103の境界面104が試験体表面101に近い場合には、超音波の送受信角度θを小さくした一対の斜角探触子2a,2bを使用することができる。また、試験体100の肉厚が厚い場合には、試験体底面105及び炭素飽和層103aの境界面からの各反射信号を明瞭に得るために、超音波の送受信角度θを大きくした一対の斜角探触子2a,2bを使用することもできる。さらに、超音波の送受信角度θが大小異なる2組の一対の斜角探触子を組み合わせて同時に使用することで、境界面104の位置並びに炭素飽和層103aと炭素層103bとの境界面及び試験体底面105の位置を表す信号を同時に表示することができる。   Further, since the pair of oblique angle probes 2a and 2b can more strongly receive the reflected signal from the boundary surface 104, the transmission / reception angle of the ultrasonic wave can be adjusted. When the boundary surface 104 of the carburized layer 103 is close to the specimen surface 101, a pair of oblique probes 2a and 2b with a reduced ultrasonic transmission / reception angle θ can be used. Further, when the thickness of the test body 100 is large, in order to clearly obtain each reflected signal from the boundary surface of the test body bottom surface 105 and the carbon saturated layer 103a, a pair of oblique waves with a larger ultrasonic transmission / reception angle θ is obtained. Angular probes 2a and 2b can also be used. Furthermore, by using two pairs of oblique angle probes having different ultrasonic transmission / reception angles θ in combination, the position of the boundary surface 104, the boundary surface between the carbon saturated layer 103a and the carbon layer 103b, and the test A signal indicating the position of the body bottom surface 105 can be displayed simultaneously.

また、一対の斜角探触子2a,2bは試験体表面101に沿って走査可能に構成され、受信した反射信号を加算して測定波形を生成し画像処理を行う。走査は、健全層102側表面101上を一対の斜角探触子2a,2bの間隔を維持した状態で、試験体100の軸方向又は周方向に移動させて行う。そして、受信する信号を時間毎に加算していき、測定波形を生成し、図6〜8に示す如く信号強度を色の濃淡で表したB−scan画像として表示する。A−scan画像の場合、境界面104からの微弱な反射信号を認識することは困難であるが、B−scan画像を用いることにより、信号の連続性からノイズレベルの高さの反射信号も認識することが可能となる。   The pair of oblique angle probes 2a and 2b are configured to be able to scan along the surface 101 of the test object, add the received reflection signals, generate a measurement waveform, and perform image processing. The scanning is performed by moving the specimen 101 on the surface 101 side surface 101 in the axial direction or the circumferential direction of the specimen 100 while maintaining the distance between the pair of oblique probes 2a and 2b. Then, the received signals are added for each time, a measurement waveform is generated, and the signal intensity is displayed as a B-scan image expressed in shades of color as shown in FIGS. In the case of an A-scan image, it is difficult to recognize a weak reflected signal from the boundary surface 104, but by using a B-scan image, a reflected signal having a high noise level is also recognized from the continuity of the signal. It becomes possible to do.

ここで、境界面104から反射信号は微弱な信号であるため、図6に示す試験体100の測定波形Q3のB−scan画像のように、反射信号が明確に検出されない場合もある。これは、斜角探触子2a,2b固有のノイズ信号を含んでいるためである。斜角探触子は、振動子から超音波を発生させ、くさびを介して試験体100に超音波を入射させる。しかし、試験体100に入射せず試験体表面101を反射する超音波も発生し、この反射波がくさび内で発生する斜角探触子2a,2b固有のノイズとなる。このノイズを低減させるために、斜角探触子内には反射波を吸収する吸音材が設けられている。しかし、境界面104から反射信号は微弱な信号であるため、高感度で試験を行う必要があり、吸音材で吸収しきれないノイズが測定の妨げとなる。そのため、斜角探触子2a,2b自身が有するくさび内ノイズを除去して反射信号を明瞭に認識できるよう画像処理を行う。   Here, since the reflected signal from the boundary surface 104 is a weak signal, the reflected signal may not be clearly detected as in the B-scan image of the measurement waveform Q3 of the specimen 100 shown in FIG. This is because noise signals specific to the oblique angle probes 2a and 2b are included. The oblique angle probe generates ultrasonic waves from the vibrator and causes the ultrasonic waves to enter the test body 100 via a wedge. However, an ultrasonic wave that does not enter the test body 100 and reflects the surface 101 of the test body is also generated, and this reflected wave becomes noise inherent to the oblique probe 2a, 2b generated in the wedge. In order to reduce this noise, a sound absorbing material that absorbs reflected waves is provided in the oblique angle probe. However, since the reflected signal from the boundary surface 104 is a weak signal, it is necessary to perform a test with high sensitivity, and noise that cannot be absorbed by the sound absorbing material hinders measurement. Therefore, image processing is performed so that the reflected signal can be clearly recognized by removing the noise in the wedge of the oblique angle probes 2a and 2b itself.

ここで、図6〜8を参照しながら画像処理について説明する。なお、各図中のB−scan画像の縦軸は試験体深さ、横軸は走査距離を表し、A−scan画像の縦軸は走査時間、横軸が信号強度を表す。   Here, image processing will be described with reference to FIGS. In each figure, the vertical axis of the B-scan image represents the specimen depth, the horizontal axis represents the scanning distance, the vertical axis of the A-scan image represents the scanning time, and the horizontal axis represents the signal intensity.

図6において、符号Q1はくさび内ノイズ、Q2は健全層のみからなる健全試験体、Q3は浸炭層を有する試験体の各測定波形のB−scan画像を示す。くさび内ノイズの測定波形Q1は、斜角探触子2a,2bを試験体100に接触させないで、所定時間内において超音波を送信させて得たものである。また、図6〜10において、符号P1はくさび内ノイズの波形例、符号P2は基準波形の波形例、符号P3は試験体100の波形例、符号P4,5は画像処理後の測定波形例を示す各A−scan画像である。   In FIG. 6, reference sign Q <b> 1 indicates wedge noise, Q <b> 2 indicates a healthy test body including only a healthy layer, and Q <b> 3 indicates a B-scan image of each measurement waveform of the test body having a carburized layer. The measurement waveform Q1 of the noise in the wedge is obtained by transmitting ultrasonic waves within a predetermined time without bringing the oblique angle probes 2a and 2b into contact with the test body 100. 6 to 10, reference numeral P1 is an example of the waveform of the noise in the wedge, reference numeral P2 is an example of the waveform of the reference waveform, reference numeral P3 is an example of the waveform of the test body 100, and reference numerals P4 and P5 are examples of measured waveforms after image processing. It is each A-scan image shown.

図6,7に示すくさび内ノイズの測定波形Q1は、試験体100から得られる測定波形Q3に含まれている。よって、このノイズの測定波形Q1を試験体100の測定波形Q3から減ずることにより、図8に示すように、くさび内ノイズの測定波形Q1が除去され、明瞭に反射信号を認識できる測定波形Q4のB−scan画像を得ることができる。P3及びP4に示す波形例からも明瞭に反射信号が得られていることが分かる。   The measurement waveform Q1 of the in-wedge noise shown in FIGS. 6 and 7 is included in the measurement waveform Q3 obtained from the test body 100. Therefore, by subtracting this noise measurement waveform Q1 from the measurement waveform Q3 of the test body 100, as shown in FIG. 8, the measurement waveform Q1 of the noise in the wedge is removed, and the measurement waveform Q4 can clearly recognize the reflected signal. A B-scan image can be obtained. From the waveform examples shown in P3 and P4, it can be seen that the reflected signal is clearly obtained.

次に、境界面検出装置を用いた浸炭層の厚さ測定方法について説明する。
まず、あらかじめ、使用する一対の斜角探触子を電気的に並列に接続し、くさび内ノイズを所定時間において測定し、測定波形Q1を生成して記録する。次に、この一対の斜角探触子2a,2bを健全層102側表面101に相対して載置する。そして、一対の斜角探触子2a,2bの間隔を維持した状態で、一対の斜角探触子2a,2bを試験体表面101上を試験体100の軸方向に沿って所定距離走査させる。受信した信号を時間毎に加算し、図7に示す測定波形Q3を生成する。
Next, a method for measuring the thickness of the carburized layer using the boundary surface detection device will be described.
First, a pair of oblique angle probes to be used are electrically connected in parallel, the noise in the wedge is measured at a predetermined time, and a measurement waveform Q1 is generated and recorded. Next, the pair of oblique angle probes 2 a and 2 b are placed relative to the sound layer 102 side surface 101. The pair of oblique angle probes 2a and 2b are scanned on the specimen surface 101 by a predetermined distance along the axial direction of the specimen 100 while maintaining the distance between the pair of oblique angle probes 2a and 2b. . The received signals are added for each time to generate a measurement waveform Q3 shown in FIG.

この測定波形Q3からあらかじめ測定し記録されているくさび内ノイズの測定波形Q1を減じて画像処理を行う。画像処理された測定波形Q4は、図8に示すように、信号強度を色の濃淡で表したB−scan画像として表示される。この画像により、境界面104からの反射信号及び試験体内面105からの反射信号を明瞭に得ることができ、その反射信号から浸炭層の厚さ及び浸炭率を測定する。   Image processing is performed by subtracting the measurement waveform Q1 of the in-wedge noise recorded and measured in advance from the measurement waveform Q3. As shown in FIG. 8, the image-processed measurement waveform Q4 is displayed as a B-scan image in which the signal intensity is expressed by color shading. From this image, the reflection signal from the boundary surface 104 and the reflection signal from the test body inner surface 105 can be clearly obtained, and the thickness and carburization rate of the carburized layer are measured from the reflection signal.

なお、本実施形態において、一対の斜角探触子2a,2bを試験体100の軸方向に沿って走査したが、試験体100の周方向においても同様に走査し、浸炭層の厚さ及び浸炭率を測定することができる。   In this embodiment, the pair of oblique probes 2a and 2b are scanned along the axial direction of the test body 100. However, the scanning is similarly performed in the circumferential direction of the test body 100, and the thickness of the carburized layer and The carburization rate can be measured.

次に、図9,10を参照しながら本発明の第二実施形態について説明する。なお、上記実施形態と同様の部材には同一の符号を附してある。   Next, a second embodiment of the present invention will be described with reference to FIGS. In addition, the same code | symbol is attached | subjected to the member similar to the said embodiment.

本実施形態においては、画像処理に用いる波形が異なる。上記実施形態では斜角探触子のくさび内ノイズの測定波形Q1を用いたが、本実施形態においては健全部のみからなる基準試験体の測定波形Q2を基準波形として、試験体100の測定波形から基準波形Q2を減ずる。   In this embodiment, the waveform used for image processing is different. In the above embodiment, the measurement waveform Q1 of the noise in the wedge of the oblique angle probe is used, but in this embodiment, the measurement waveform Q2 of the reference specimen consisting only of the healthy part is used as the reference waveform, and the measurement waveform of the specimen 100 is used. From the reference waveform Q2.

健全層のみからなる試験体を基準試験体とし、この基準試験体に対して上記実施形態と同様に一対の斜角探触子を基準試験体表面に沿って走査させ、図9に示す測定波形Q2を生成し基準波形として、試験体の測定波形Q3から基準波形Q2を減じて画像処理を行う。図10に示すように、画像処理された測定波形Q5は、信号強度を色の濃淡で表したB−scan画像として表示される。P3及びP5に示す波形例からも明瞭に反射信号が得られていることが分かる。   A test body consisting only of a healthy layer is used as a reference test body, and a pair of oblique probes are scanned along the surface of the reference test body with respect to this reference test body in the same manner as in the above embodiment, and the measurement waveform shown in FIG. Q2 is generated and used as a reference waveform to perform image processing by subtracting the reference waveform Q2 from the measured waveform Q3 of the specimen. As shown in FIG. 10, the image-processed measurement waveform Q5 is displayed as a B-scan image in which the signal intensity is represented by color shading. From the waveform examples shown in P3 and P5, it can be seen that the reflected signal is clearly obtained.

この基準波形Q2には、斜角探触子のくさび内ノイズの測定波形Q1も含まれ、さらに、健全層が有する信号も含まれている。よって、基準波形Q2を用いることにより、より多くのノイズを除去することができ、明瞭に反射信号を認識できる画像を得ることができ、反射信号から浸炭層の厚さ及び浸炭率を測定することができる。なお、試験体の測定波形Q3を基準波形Q2を除算することによっても明瞭に反射信号を認識できる画像を得ることができる。   The reference waveform Q2 includes the measurement waveform Q1 of the noise in the wedge of the oblique angle probe, and further includes the signal of the sound layer. Therefore, by using the reference waveform Q2, more noise can be removed, an image from which the reflected signal can be clearly recognized can be obtained, and the thickness and carburization rate of the carburized layer can be measured from the reflected signal. Can do. Note that an image capable of clearly recognizing the reflected signal can also be obtained by dividing the measurement waveform Q3 of the test specimen by the reference waveform Q2.

最後に、本発明のさらに他の実施形態の可能性について言及する。
上記各実施形態において、受信される前記境界面からの反射信号が大きくなるように超音波を送受信する角度を調整可能であるが、境界面からの反射信号が大きくなるように送受信できればよい。また、一対の斜角探触子において、互いに送受信する角度を調整してもよく、例えば、浸炭層が試験体表面まで進行しているような場合には、一対の斜角探触子において、異なる送受信角度を設定しても構わない。
Finally, reference is made to the possibilities of yet another embodiment of the invention.
In each of the above embodiments, the angle at which ultrasonic waves are transmitted and received can be adjusted so that the received reflected signal from the boundary surface can be increased. However, it is only necessary that the reflected signal from the boundary surface can be transmitted and received. In addition, in the pair of oblique probes, the angle transmitted and received may be adjusted. For example, in the case where the carburized layer has advanced to the surface of the test body, in the pair of oblique probes, Different transmission / reception angles may be set.

また、上記各実施形態において、一対の斜角探触子を用いて走査した。しかし、一対に限られず、複数対となる斜角探触子を設けても構わない。複数設ける場合には、各組における一対の斜角探触子を電気的に並列に接続してもよく、全ての斜角探触子を電気的に並列に接続してもよい。係る場合、さらに相対的にノイズを軽減させて反射信号をより明確に検出することができる。   Further, in each of the above embodiments, scanning was performed using a pair of oblique angle probes. However, it is not limited to a pair, and a plurality of pairs of oblique angle probes may be provided. When a plurality of bevel probes are provided, a pair of bevel probes may be electrically connected in parallel, or all bevel probes may be electrically connected in parallel. In such a case, the reflected signal can be detected more clearly by relatively reducing noise.

上記各実施形態において、炉内配管の浸炭層の境界面検出について説明した。しかし、試験体の形状、材質等は特に限定されるものではない。また、第二層を浸炭層としたが、浸炭層に限られず、例えば窒化、焼入れ層、炭化等の材質変化層と健全層との境界面の検出にも用いることができる。また、上記各実施形態において、一対の斜角探触子を健全層側の試験体表面に載置したが、浸炭層側の試験体表面に載置しても構わない。   In each of the above embodiments, the detection of the boundary surface of the carburized layer of the in-furnace piping has been described. However, the shape, material, etc. of the specimen are not particularly limited. Moreover, although the second layer is a carburized layer, the present invention is not limited to the carburized layer, and can be used for detecting a boundary surface between a material change layer such as nitriding, quenching layer, carbonization and the sound layer. In each of the above embodiments, the pair of oblique probes are placed on the surface of the test body on the sound layer side, but may be placed on the surface of the test body on the carburized layer side.

本発明は、石油化学プラント等に利用される炉内配管の浸炭層の検出及び測定方法として利用することができる。しかし、これに限られず、性質の異なる第一層と第二層との境界面からの微細な反射信号を増幅することにより検出を容易と試験体に対し有効に適用することができる。また、鋳造品やオーステナイト系ステンレス鋼溶接部のように結晶粒が粗くノイズの多い試験体の欠陥検出にも適用することができる。さらに、試験体の材質変化等の劣化状況を検出する場合にも適用可能である。   The present invention can be used as a method for detecting and measuring a carburized layer in a furnace pipe used in a petrochemical plant or the like. However, the present invention is not limited to this, and detection can be easily and effectively applied to the specimen by amplifying a minute reflected signal from the interface between the first layer and the second layer having different properties. Further, the present invention can be applied to defect detection of a specimen having a coarse crystal grain and a lot of noise such as a cast product or an austenitic stainless steel weld. Furthermore, the present invention can be applied to the case where the deterioration state such as the material change of the test body is detected.

斜角探触子の配置図であり、(a)は従来の斜角探触子の配置、(b)は本発明に係る斜角探触子の配置である。FIG. 2 is an arrangement diagram of an oblique probe, where (a) shows an arrangement of a conventional oblique probe, and (b) shows an arrangement of an oblique probe according to the present invention. 超音波の伝搬経路を示す図である。It is a figure which shows the propagation path of an ultrasonic wave. 試験体の断面図である。It is sectional drawing of a test body. 試験体の断面の顕微鏡写真を示す図であり、(a)は試験体外面近傍、(b)は健全層と浸炭層との境界面近傍、(c)は炭素層、(d)は試験体内面近傍を示す。It is a figure which shows the microscope picture of the cross section of a test body, (a) is a test body outer surface vicinity, (b) is the boundary surface vicinity of a healthy layer and a carburized layer, (c) is a carbon layer, (d) is a test body. The vicinity of the surface is shown. 浸炭の有無と程度を示すグラフであり、(a)は各試料のB−scan画像、(b)は50%浸炭が進行している試料のA−scan画像である。It is a graph which shows the presence or absence and the grade of carburizing, (a) is a B-scan image of each sample, (b) is an A-scan image of the sample in which 50% carburizing has progressed. 測定波形を示すグラフである。It is a graph which shows a measurement waveform. 画像処理範囲を示すグラフである。It is a graph which shows an image processing range. 画像処理後の測定波形を示すグラフである。It is a graph which shows the measurement waveform after image processing. 他の実施形態における図6相当図である。FIG. 7 is a view corresponding to FIG. 6 in another embodiment. 他の実施形態における図7相当図である。FIG. 8 is a diagram corresponding to FIG. 7 in another embodiment.

符号の説明Explanation of symbols

1:境界面検出装置、2a,2b:斜角探触子、100:試験体、101:表面、102:第一層(健全層)、103:第二層(浸炭層、材質変化層)、103a:炭素飽和層、103b:炭素層、104:境界面、105:内面(底面)、111:送信探触子、112:受信探触子、I,Ia,Ib:境界面反射波、B:内面(底面)反射波、N:表面波(ノイズ)、P1:くさび内波形例、P2:健全試験体波形例、P3:浸炭試験体波形例、P4,P5:測定波形例、Q1:くさび内画像、Q2:健全試験体画像、Q3:浸炭試験体画像、Q4,Q5:測定波形画像、θ:送受信角度
1: boundary surface detection device, 2a, 2b: oblique probe, 100: specimen, 101: surface, 102: first layer (sound layer), 103: second layer (carburized layer, material change layer), 103a: carbon saturation layer, 103b: carbon layer, 104: boundary surface, 105: inner surface (bottom surface), 111: transmission probe, 112: reception probe, I, Ia, Ib: boundary surface reflected wave, B: Internal (bottom) reflected wave, N: Surface wave (noise), P1: Wedge waveform example, P2: Healthy specimen waveform example, P3: Carburized specimen waveform example, P4, P5: Measurement waveform example, Q1: Inside wedge Image, Q2: Healthy specimen image, Q3: Carburized specimen image, Q4, Q5: Measurement waveform image, θ: Transmission / reception angle

Claims (8)

試験体における性質の異なる第一層と第二層との境界面の位置を検出する境界面位置検出方法であって、
超音波を送受信可能な一対の斜角探触子を電気的に並列に接続すると共に、前記一対の斜角探触子を前記試験体の表面に相対させて載置し、前記一対の斜角探触子から超音波をそれぞれ送信し、かつ前記境界面及び試験体底面から反射される各反射信号を前記一対の斜角探触子にてそれぞれ受信することにより境界面位置を検出することを特徴とする境界面位置検出方法。
A boundary surface position detection method for detecting a position of a boundary surface between a first layer and a second layer having different properties in a test body,
A pair of oblique probes capable of transmitting and receiving ultrasonic waves are electrically connected in parallel, and the pair of oblique probes are placed relative to the surface of the test body, and the pair of oblique probes Detecting the position of the boundary surface by transmitting ultrasonic waves from the probe and receiving each reflection signal reflected from the boundary surface and the bottom surface of the test body by the pair of oblique angle probes. A characteristic boundary surface position detection method.
前記一対の斜角探触子は、受信される前記境界面からの反射信号が大きくなるように超音波を送受信する角度を調整可能であることを特徴とする請求項1に記載の境界面位置検出方法。 2. The boundary surface position according to claim 1, wherein the pair of oblique angle probes can adjust an angle at which ultrasonic waves are transmitted and received so that a reflected signal from the boundary surface to be received is increased. Detection method. 前記一対の斜角探触子が複数組設けられ、少なくとも各組における一対の斜角探触子が電気的に並列に接続されていることを特徴とする請求項1又は2に記載の境界面位置検出方法。 The boundary surface according to claim 1 or 2, wherein a plurality of pairs of the pair of oblique probes are provided, and at least a pair of the oblique probes in each pair are electrically connected in parallel. Position detection method. 前記一対の斜角探触子を試験体表面に沿わせて走査を行い、受信した各反射信号を加算して測定波形を生成し、前記測定波形に対し画像処理が行われることを特徴とする請求項1〜3のいずれかに記載の境界面位置検出方法。 The pair of oblique probes are scanned along the surface of the specimen, the received reflected signals are added to generate a measurement waveform, and image processing is performed on the measurement waveform. The boundary surface position detection method according to claim 1. 各斜角探触子固有の測定波形を試験体の測定波形から減ずることにより前記画像処理を行うことを特徴とする請求項4に記載の境界面位置検出方法。 5. The boundary surface position detection method according to claim 4, wherein the image processing is performed by subtracting a measurement waveform unique to each oblique angle probe from a measurement waveform of a specimen. 前記第一層又は前記第二層のいずれかのみからなる試験体における測定波形である基準波形をあらかじめ求め、前記測定波形から前記基準波形を減ずることにより前記画像処理を行うことを特徴とする請求項4に記載の境界面位置検出方法。 A reference waveform, which is a measurement waveform in a test body composed of only the first layer or the second layer, is obtained in advance, and the image processing is performed by subtracting the reference waveform from the measurement waveform. Item 5. The boundary surface position detection method according to Item 4. 試験体が金属性材料であり、前記第一層、第二層がそれぞれ健全層、材質変化層であり、健全層側に前記探触子を載置することを特徴とする請求項1〜6のいずれかに記載の境界面位置検出方法。 The test body is a metallic material, the first layer and the second layer are a sound layer and a material change layer, respectively, and the probe is placed on the sound layer side. The boundary surface position detection method according to any one of the above. 請求項1〜7のいずれかに記載の境界面位置検出方法に用いる境界面位置検出装置であって、
超音波を送受信可能な一対の斜角探触子を電気的に並列に接続すると共に、前記一対の斜角探触子を前記試験体の表面に相対させて載置し、前記一対の斜角探触子から超音波をそれぞれ送信し、かつ前記境界面及び試験体底面から反射される各反射信号を前記一対の斜角探触子にてそれぞれ受信することにより境界面位置を検出することを特徴とする境界面位置検出装置。
It is a boundary surface position detection apparatus used for the boundary surface position detection method in any one of Claims 1-7,
A pair of oblique probes capable of transmitting and receiving ultrasonic waves are electrically connected in parallel, and the pair of oblique probes are placed relative to the surface of the test body, and the pair of oblique probes Detecting the position of the boundary surface by transmitting ultrasonic waves from the probe and receiving each reflection signal reflected from the boundary surface and the bottom surface of the test body by the pair of oblique angle probes. A characteristic boundary surface position detection device.
JP2006007659A 2006-01-16 2006-01-16 Boundary surface position detection method and boundary surface position detection device Active JP5132886B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006007659A JP5132886B2 (en) 2006-01-16 2006-01-16 Boundary surface position detection method and boundary surface position detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006007659A JP5132886B2 (en) 2006-01-16 2006-01-16 Boundary surface position detection method and boundary surface position detection device

Publications (2)

Publication Number Publication Date
JP2007187631A true JP2007187631A (en) 2007-07-26
JP5132886B2 JP5132886B2 (en) 2013-01-30

Family

ID=38342887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006007659A Active JP5132886B2 (en) 2006-01-16 2006-01-16 Boundary surface position detection method and boundary surface position detection device

Country Status (1)

Country Link
JP (1) JP5132886B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009139225A (en) * 2007-12-06 2009-06-25 Non-Destructive Inspection Co Ltd Method of detecting end of defect or the like and detection device for detecting end of defect or the like
JP2010256279A (en) * 2009-04-28 2010-11-11 Ihi Corp Method and apparatus for measuring carburized depth
JP2011058980A (en) * 2009-09-10 2011-03-24 Sankyu Inc Method and device for measuring carburized layer of tubular body
JP2011516897A (en) * 2008-04-15 2011-05-26 ザ・ボーイング・カンパニー Anomaly imaging using backscattered waves
JP2017142148A (en) * 2016-02-10 2017-08-17 株式会社Ihi Ultrasonic flaw detection device and ultrasonic flaw detection method
CN113358072A (en) * 2021-06-03 2021-09-07 河南科技大学 Ultrasonic measurement equipment and method for number of layers of plate
CN113686967A (en) * 2021-09-03 2021-11-23 中国电建集团华东勘测设计研究院有限公司 Method for reducing influence of boundary reflection effect on stress wave propagation test data

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62156558A (en) * 1985-12-27 1987-07-11 Ishikawajima Harima Heavy Ind Co Ltd Ultrasonic flaw detector
JPH0242355A (en) * 1988-08-02 1990-02-13 Hitachi Constr Mach Co Ltd Ultrasonic inspecting device
JPH06308105A (en) * 1993-04-21 1994-11-04 Hitachi Constr Mach Co Ltd Ultrasonic inspecting method and apparatus
JPH10288608A (en) * 1997-04-14 1998-10-27 Shimizu Corp Evaluation for defect in inside of concrete
JP2000321041A (en) * 1999-05-07 2000-11-24 Nichizou Tec:Kk Method for detecting carburizing layer and method for its thickness
JP2001208527A (en) * 1999-11-15 2001-08-03 Just Method of measuring carbon fiber cover layer
JP2003254942A (en) * 2002-02-28 2003-09-10 Toshiba Corp Pipe inspection device and pipe inspection method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62156558A (en) * 1985-12-27 1987-07-11 Ishikawajima Harima Heavy Ind Co Ltd Ultrasonic flaw detector
JPH0242355A (en) * 1988-08-02 1990-02-13 Hitachi Constr Mach Co Ltd Ultrasonic inspecting device
JPH06308105A (en) * 1993-04-21 1994-11-04 Hitachi Constr Mach Co Ltd Ultrasonic inspecting method and apparatus
JPH10288608A (en) * 1997-04-14 1998-10-27 Shimizu Corp Evaluation for defect in inside of concrete
JP2000321041A (en) * 1999-05-07 2000-11-24 Nichizou Tec:Kk Method for detecting carburizing layer and method for its thickness
JP2001208527A (en) * 1999-11-15 2001-08-03 Just Method of measuring carbon fiber cover layer
JP2003254942A (en) * 2002-02-28 2003-09-10 Toshiba Corp Pipe inspection device and pipe inspection method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009139225A (en) * 2007-12-06 2009-06-25 Non-Destructive Inspection Co Ltd Method of detecting end of defect or the like and detection device for detecting end of defect or the like
JP2011516897A (en) * 2008-04-15 2011-05-26 ザ・ボーイング・カンパニー Anomaly imaging using backscattered waves
JP2010256279A (en) * 2009-04-28 2010-11-11 Ihi Corp Method and apparatus for measuring carburized depth
JP2011058980A (en) * 2009-09-10 2011-03-24 Sankyu Inc Method and device for measuring carburized layer of tubular body
JP2017142148A (en) * 2016-02-10 2017-08-17 株式会社Ihi Ultrasonic flaw detection device and ultrasonic flaw detection method
US10877002B2 (en) 2016-02-10 2020-12-29 Ihi Corporation Ultrasonic flaw detection device and ultrasonic flaw detection method
CN113358072A (en) * 2021-06-03 2021-09-07 河南科技大学 Ultrasonic measurement equipment and method for number of layers of plate
CN113358072B (en) * 2021-06-03 2024-02-06 河南科技大学 Ultrasonic measuring equipment and method for number of layers of plates
CN113686967A (en) * 2021-09-03 2021-11-23 中国电建集团华东勘测设计研究院有限公司 Method for reducing influence of boundary reflection effect on stress wave propagation test data
CN113686967B (en) * 2021-09-03 2024-02-27 中国电建集团华东勘测设计研究院有限公司 Method for reducing influence of boundary reflection effect on stress wave propagation test data

Also Published As

Publication number Publication date
JP5132886B2 (en) 2013-01-30

Similar Documents

Publication Publication Date Title
Petcher et al. Weld defect detection using PPM EMAT generated shear horizontal ultrasound
JP5132886B2 (en) Boundary surface position detection method and boundary surface position detection device
CN109196350B (en) Method for detecting defects in materials by ultrasound
CA2708387A1 (en) Pipeline inspection tool
JP2007085949A (en) Method and device for detecting texture change by ultrasonic wave
JP4117366B2 (en) Electromagnetic ultrasonic flaw detection / measurement method and apparatus
JP5558666B2 (en) Surface defect evaluation apparatus and method for round bar steel by water immersion ultrasonic flaw detection using an electronic scanning array probe
JP4144703B2 (en) Tube inspection method using SH waves
JP2008164396A (en) Flaw detection method and flaw detector used therefor
JP2009058238A (en) Method and device for defect inspection
JP4364031B2 (en) Ultrasonic flaw detection image processing apparatus and processing method thereof
Norli et al. Ultrasonic detection of stress corrosion cracks in pipe samples in gaseous atmosphere
JP2008164397A (en) Flaw detection method and flaw detector used therein
RU2394235C1 (en) Method for ultrasonic inspection of welded joints of small-diametre pipes
JP2004077292A (en) Method and device for inspecting stress corrosion cracking
CN103207240B (en) The measuring method of the longitudinal acoustic pressure distribution of a kind of angle probe ultrasonic field
JP2006162321A (en) Method and apparatus for discriminating flaw by ultrasonic flaw inspection
Edwards et al. Detection of corrosion in offshore risers using guided ultrasonic waves
JP2008111742A (en) Method and apparatus for non-destructive inspection of wheel welded part
JP2006162321A5 (en)
Aanes et al. Inline-inspection crack detection for gas pipelines using a novel technology
JP2006220477A (en) Nondestructive inspection method of metal piping
Hesse et al. Defect detection in rails using ultrasonic surface waves
Vos et al. Application of Wide-Band Ultrasound for the Detection of Angled Crack Features in Oil and Gas Pipelines
Puchot et al. Inspection technique for above ground storage tank floors using MsS technology

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121009

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121107

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5132886

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250