JP2007085949A - Method and device for detecting texture change by ultrasonic wave - Google Patents

Method and device for detecting texture change by ultrasonic wave Download PDF

Info

Publication number
JP2007085949A
JP2007085949A JP2005276834A JP2005276834A JP2007085949A JP 2007085949 A JP2007085949 A JP 2007085949A JP 2005276834 A JP2005276834 A JP 2005276834A JP 2005276834 A JP2005276834 A JP 2005276834A JP 2007085949 A JP2007085949 A JP 2007085949A
Authority
JP
Japan
Prior art keywords
wave
detecting
ultrasonic waves
inspection
tissue change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005276834A
Other languages
Japanese (ja)
Other versions
JP4679319B2 (en
Inventor
Junichi Kitasaka
純一 北阪
Tatsuyuki Nagai
辰之 永井
Hideki Yabushita
秀記 薮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Non Destructive Inspection Co Ltd
Original Assignee
Non Destructive Inspection Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Non Destructive Inspection Co Ltd filed Critical Non Destructive Inspection Co Ltd
Priority to JP2005276834A priority Critical patent/JP4679319B2/en
Publication of JP2007085949A publication Critical patent/JP2007085949A/en
Application granted granted Critical
Publication of JP4679319B2 publication Critical patent/JP4679319B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • G01N29/0609Display arrangements, e.g. colour displays
    • G01N29/0645Display representation or displayed parameters, e.g. A-, B- or C-Scan
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/0289Internal structure, e.g. defects, grain size, texture

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and device for detecting a texture change by an ultrasonic wave, capable of detecting reliably and clearly, for example, the texture change in a welded part, and the texture change by heat treatment, surface modification or the like. <P>SOLUTION: The texture change is detected by transmitting the ultrasonic wave from a probe to a testing body and by receiving a back-scattered wave. A reference wave f1'(t) including the back-scattered wave is received in a reference part of the testing body. An inspecting wave g1(t) received in the inspection part of the testing body is normalized by dividing it with the reference wave f1'(t) or by finding a difference between the inspecting wave and the reference wave. The reference wave and the inspecting wave may be a function of a time and a frequency characteristic value other than a function of the time and an amplitude. Normalized display may serve as B-scope display of a cross section. The method/detector detects the texture change in the welded part, and the texture change by the heat treatment, the surface modification or the like. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、超音波による組織変化の検出方法及び検出装置に関する。さらに詳しくは、試験体に探触子から超音波を送信すると共に後方散乱波を受信することにより組織変化を検出する超音波による組織変化の検出方法及び検出装置に関する。   The present invention relates to a tissue change detection method and detection apparatus using ultrasonic waves. More specifically, the present invention relates to a detection method and a detection apparatus for tissue change by ultrasonic waves that detect a tissue change by transmitting ultrasonic waves from a probe to a test body and receiving backscattered waves.

超音波による組織変化の検出方法及び検出装置としては、例えば、次のものが知られている。
田中康明他、超音波による焼き入れ深さ非破壊計測技術の開発、トヨタテクニカルレビュー、1998年5月、Vol48 No.1、94−99ページ 三原毅他、組織散乱エコーによる硬化層深さの評価、音場と材料評価3、非破壊検査協会発行、平成6年秋季大会概要集、1994年、315−322ページ
For example, the following are known as a detection method and a detection apparatus for tissue change by ultrasonic waves.
Tanaka Yasuaki et al., Development of non-destructive measurement technique of ultrasonic hardening depth, Toyota Technical Review, May 1998, Vol. 1, pages 94-99 Mihara, et al., Hardened layer depth evaluation by tissue scattering echo, sound field and material evaluation 3, published by the Nondestructive Inspection Association, 1994 Fall Meeting Summary, 1994, pages 315-322

いずれの文献も散乱エコーにより焼き入れ深さを計測しようとするものである。
しかし、後方散乱波で金属組織変化を検出しても、信号が微量のため、明瞭な検出が不可能であった。また、探触子、試験配置や試験体の材質が変わると解析結果が異なり信頼性が不十分であった。
All of these documents are intended to measure the quenching depth by scattering echo.
However, even if a metal structure change is detected by a backscattered wave, a clear signal cannot be detected because the signal is very small. In addition, when the probe, test arrangement, and material of the test specimen were changed, the analysis results differed and the reliability was insufficient.

かかる従来の実情に鑑みて、本発明は、例えば、溶接部の組織変化、熱処理、表面改質等の組織変化を高い信頼性で明瞭に検出することの可能な超音波による組織変化の検出方法及び検出装置を提供することを目的とする。   In view of such a conventional situation, the present invention is, for example, a method for detecting a tissue change by ultrasonic waves capable of clearly and reliably detecting a structure change such as a structure change, heat treatment, and surface modification of a welded portion. And it aims at providing a detection apparatus.

上記目的を達成するため、本発明に係る超音波による組織変化の検出方法の特徴は、試験体に探触子から超音波を送信すると共に後方散乱波を受信することにより組織変化を検出する方法であって、
試験体の基準部において後方散乱波を含む基準波を受信し、試験体の検査部において受信した検査波を前記基準波で除し又は前記検査波と前記基準波との差分を求めることにより基準化することにある。
In order to achieve the above object, the feature of the tissue change detection method using ultrasonic waves according to the present invention is a method for detecting tissue changes by transmitting ultrasonic waves from a probe to a test body and receiving backscattered waves. Because
A reference wave including a backscattered wave is received at the reference part of the specimen, and the inspection wave received at the inspection part of the specimen is divided by the reference wave, or a reference is obtained by obtaining a difference between the inspection wave and the reference wave. It is to become.

通常、探触子の収束型や平面型の違い、周波数、振動子径、減衰などの探触子特性、探触子と試験体との距離等の試験配置、試験体の材質の差異等によるベースノイズに信号が埋没する。しかし、検査波を前記基準波で除することにより基準化することで、これらベースノイズの影響を除去することができ、受信結果の信頼性を向上させると共に信号を明瞭に区別することが可能となる。検査波を前記基準波で除する替わりに前記検査波と基準波との差分を求めてもよい。除するか差分を求めるかは、実質的にベースノイズを除去できるか否かで選択すればよい。   Usually, due to differences in probe convergence type and flat type, probe characteristics such as frequency, transducer diameter, attenuation, test placement such as distance between probe and test specimen, and differences in test specimen material The signal is buried in the base noise. However, by standardizing the test wave by dividing it by the reference wave, the influence of these base noises can be removed, and the reliability of the reception result can be improved and the signal can be clearly distinguished. Become. Instead of dividing the inspection wave by the reference wave, a difference between the inspection wave and the reference wave may be obtained. Whether to divide or obtain the difference may be selected depending on whether the base noise can be substantially removed.

前記基準波及び前記検査波が時間と振幅との関数を用いることができ、また、時間と周波数特性値との関数を用いることもできる。周波数特性値として例えば一次モーメント等を利用することができる。   The reference wave and the inspection wave can use a function of time and amplitude, and can also use a function of time and a frequency characteristic value. For example, a first moment or the like can be used as the frequency characteristic value.

また、前記基準化された表示をある断面のBスコープ表示とすることができる。また、前記基準化された表示をある断面又は複数断面のBスコープ表示を平均化したものとすることで、表示をより明瞭に区別することが可能となる。   The standardized display can be a B-scope display of a certain cross section. Further, by making the standardized display an average of a B-scope display of a certain cross section or a plurality of cross sections, it becomes possible to distinguish the display more clearly.

前記検査部としては溶接部の組織変化を検出することができる。また、前記検査部が熱処理されていたり、表面改質されていてもよく、これらの深さを検出することができる。   The inspection section can detect a change in the structure of the weld. Moreover, the said test | inspection part may be heat-processed or surface-modified, and these depths can be detected.

前記試験体としては金属材料の他、セラミックス等、後方散乱波を発生することの可能なあらゆる材料を用いることができる。
また、斜角法を用いることで、表面エコーの影響を低減でき、計測結果がより明瞭となる。
As the test body, any material capable of generating a backscattered wave, such as ceramics, can be used in addition to a metal material.
Further, by using the oblique angle method, the influence of surface echo can be reduced, and the measurement result becomes clearer.

一方、上記いずれかの特徴に記載の超音波による組織変化の検出方法に用いる超音波による組織変化の検出装置の特徴は、試験体に超音波を送信すると共に後方散乱波を受信する探触子を設け、試験体の基準部において後方散乱波を含む基準波を受信し、試験体の検査部において受信した検査波を前記基準波で除することにより基準化することにある。   On the other hand, the feature of the tissue change detection apparatus using ultrasound used in the method for detecting tissue change using ultrasound described in any of the above features is that the probe transmits ultrasonic waves to the specimen and receives backscattered waves. And receiving a reference wave including a backscattered wave at the reference portion of the specimen, and standardizing the inspection wave received by the inspection portion of the specimen by dividing the reference wave by the reference wave.

このように、上記本発明に係る超音波による組織変化の検出方法及び検出装置の特徴によれば、ベースノイズの影響を除去することができ、組織変化を高い信頼性で明瞭に検出することが可能となった。   As described above, according to the feature of the tissue change detection method and detection apparatus using ultrasonic waves according to the present invention, it is possible to eliminate the influence of base noise, and to clearly detect the tissue change with high reliability. It has become possible.

本発明の他の目的、構成及び効果については、以下の発明の実施の形態の項から明らかになるであろう。   Other objects, configurations, and effects of the present invention will become apparent from the following embodiments of the present invention.

次に、適宜添付図面を参照しながら、本発明をさらに詳しく説明する。
図1、2に示すように、本発明に係る超音波による組織変化の検出装置1は、スキャナードライバー5,スキャナー6、探触子7により試験体100を走査すると共に検査結果を処理する処理装置2と、超音波の送受信を行うパルサーレシーバー4と、検査結果を表示するモニター3とを備えている。また、水浸法の場合は水槽10に満たされた水中に試験体100と探触子7とが配置される。本実施形態の試験体100は基準部110と溶接部120とを備えた鋼材であり、図示の場合は探触子7から垂直に試験体100表面へ超音波を送受信する。
Next, the present invention will be described in more detail with reference to the accompanying drawings as appropriate.
As shown in FIGS. 1 and 2, an ultrasonic tissue change detection apparatus 1 according to the present invention scans a test body 100 with a scanner driver 5, a scanner 6, and a probe 7 and processes an inspection result. 2, a pulsar receiver 4 that transmits and receives ultrasonic waves, and a monitor 3 that displays inspection results. In the case of the water immersion method, the test body 100 and the probe 7 are disposed in the water filled in the water tank 10. The test body 100 of the present embodiment is a steel material provided with a reference portion 110 and a welded portion 120. In the illustrated case, ultrasonic waves are transmitted and received from the probe 7 to the surface of the test body 100 vertically.

図3は受信波形を示し、(a)は原波形、(b)は整流波形、(c)は包絡線処理された包絡線波形である。いずれも表面エコーと底面エコーとの間に後方散乱波が確認されている。本発明はこの後方散乱波のベースノイズを除去することを主眼とする。後方散乱波振幅は、結晶粒が不均一等で金属組織が不均一なため、各位相が異なり、両振幅波形では基準化が困難である。そこで、瞬間振幅(強度)に変換した包絡線検波波形を用いることにより、母財部と溶接部の比較、基準化を行ってる。上記包絡線処理はヒルベルト変換を用いて解析的に推定した包絡線検波波形である。包絡線検波はアナログ回路を用いて直接変換してもよい。   FIG. 3 shows a received waveform, where (a) is an original waveform, (b) is a rectified waveform, and (c) is an envelope waveform that has been subjected to envelope processing. In both cases, a backscattered wave is confirmed between the surface echo and the bottom echo. The main object of the present invention is to remove the base noise of this backscattered wave. The backscattered wave amplitude is different from each other because the crystal grains are non-uniform and the metal structure is non-uniform, and it is difficult to standardize both amplitude waveforms. Therefore, by using the envelope detection waveform converted to the instantaneous amplitude (intensity), the parent portion and the welded portion are compared and standardized. The envelope processing is an envelope detection waveform estimated analytically using the Hilbert transform. The envelope detection may be directly converted using an analog circuit.

図4は、時間と振幅の関数で表現された包絡線波形の概略図を示す。図5も同様の包絡線波形を示し、表面エコーEaと底面エコーEb1との間のベースノイズEcの種類を示す。図5(a)は集束型探触子を用いた場合であり、探触子、試験配置によりベースノイズEc1の形状が変化する。図5(b)は平面型探触子のうち周波数特性の低いもの又は減衰係数の低いものを用いた場合である。ベースノイズEc2はなだらかな減衰曲線となる。さらに図5(c)は平面型探触子のうち周波数特性の高いもの又は減衰係数の高いものを用いた場合である。ベースノイズEc3は先のベースノイズEc2よりも急な減衰曲線となる。これらの考察より、ベースノイズにさらに表面エコーEaと底面エコーEb1とが加わり、特に底面エコーEb1の影響を除いたベースノイズは底面エコーEb1の部分を短絡させた曲線となることが理解される。   FIG. 4 shows a schematic diagram of an envelope waveform expressed as a function of time and amplitude. FIG. 5 also shows a similar envelope waveform and shows the type of base noise Ec between the surface echo Ea and the bottom echo Eb1. FIG. 5A shows a case where a focusing probe is used, and the shape of the base noise Ec1 changes depending on the probe and test arrangement. FIG. 5B shows a case where a flat probe having a low frequency characteristic or a low attenuation coefficient is used. The base noise Ec2 has a gentle attenuation curve. FIG. 5C shows a case where a flat probe having a high frequency characteristic or a high attenuation coefficient is used. The base noise Ec3 has a steeper attenuation curve than the base noise Ec2. From these considerations, it is understood that the surface noise Ea and the bottom surface echo Eb1 are further added to the base noise, and in particular, the base noise excluding the influence of the bottom surface echo Eb1 becomes a curve obtained by short-circuiting the portion of the bottom surface echo Eb1.

図4の(a)は基準波f1(t)を示しており、その底面エコーEb1の部分を短絡させることにより修正された基準波f1’(t)の波形がベースノイズを表現するものである。一方、図4(b)は、検査波g1(t)の波形である。図4(c)は、基準波f1(t)を修正された基準波f1’(t)で除した基準化波形f2(t)であり、ベースノイズを除けば基準化振幅は1であることが伺える。同様に、図4(d)に示すように、検査波g1(t)を修正された基準波f1’(t)で除して基準化波形g2(t)を求めることでベースノイズの影響を除去した後方散乱波である。このようにして基準化後方散乱波Edが明確に求められる。なお、検査波g1(t)と修正された基準波f1’(t)との差分求めることで基準化波形g2(t)を求めてもよく、表面的な加減乗除の形式とは異なり実質的な除算又は減算を行えばよい。   FIG. 4A shows the reference wave f1 (t), and the waveform of the reference wave f1 ′ (t) corrected by short-circuiting the bottom echo Eb1 portion expresses the base noise. . On the other hand, FIG. 4B shows the waveform of the inspection wave g1 (t). FIG. 4C shows a normalized waveform f2 (t) obtained by dividing the reference wave f1 (t) by the modified reference wave f1 ′ (t), and the normalized amplitude is 1 except for base noise. I can ask. Similarly, as shown in FIG. 4D, the influence of the base noise is obtained by dividing the inspection wave g1 (t) by the corrected reference wave f1 ′ (t) to obtain the normalized waveform g2 (t). It is the removed backscattered wave. In this way, the normalized backscattered wave Ed is clearly obtained. The normalized waveform g2 (t) may be obtained by obtaining the difference between the inspection wave g1 (t) and the corrected reference wave f1 ′ (t), which is substantially different from the form of superficial addition / subtraction / division / division. Division or subtraction may be performed.

図6は試験体における溶接部断面のマクロ組織とミクロ組織を示す。溶接部の金属組織は溶接時に熱の影響を受けるため、溶接金属、熱影響部(HAZ)、母材に至るまで金属組織(結晶粒の大きさ、組織形態等)が不均一である。先の図4の結果は図6の裏面からのスキャニングによるものであり、基準化後方散乱波EdはHAZ細粒Ed1,HAZ粗粒Ed2,溶接金属Ed3の3区域に対応し、基準化後方散乱波により基準値1からの変動により組織変化を検出できることが明かとなった。なお、一般には結晶粒が大きいと後方散乱波は大きく、結晶粒が小さいと後方散乱波は小さくなる傾向にある。   FIG. 6 shows a macrostructure and a microstructure of a cross section of the welded portion in the test body. Since the metal structure of the welded part is affected by heat at the time of welding, the metal structure (the size of crystal grains, the structure form, etc.) is not uniform up to the weld metal, the heat affected part (HAZ), and the base material. The result of FIG. 4 is based on scanning from the back surface of FIG. 6, and the normalized backscattered wave Ed corresponds to three areas of HAZ fine grain Ed1, HAZ coarse grain Ed2, and weld metal Ed3. It became clear that the tissue change can be detected by the fluctuation from the reference value 1 by the wave. In general, when the crystal grains are large, the back scattered wave tends to be large, and when the crystal grains are small, the back scattered wave tends to be small.

ライン走査を行いBスキャン画像で表示することにより、可視化が可能となる。図7(a)はある断面のBスキャン画像、(b)はある断面の複数信号を平均化したBスキャン画像である。(b)は溶接状態に変化がないと思われる範囲の複数断面でBスキャン走査を行い、それらのデータの空間平均を行うことにより、さらにS/Nの向上したデータが得られ、明快となる。   Visualization is possible by performing line scanning and displaying a B-scan image. FIG. 7A is a B-scan image of a certain section, and FIG. 7B is a B-scan image obtained by averaging a plurality of signals of a certain section. In (b), B-scan scanning is performed on a plurality of cross-sections in a range where it is considered that there is no change in the welding state, and by performing spatial averaging of these data, data with further improved S / N is obtained, which is clear. .

次に、本発明の他の実施形態について言及する。なお、上記実施形態と同様の部材には同符合を附してある。
図8は、斜角探傷のバリエーションを示す断面図であって,(a)は水浸法、(b)はウォーターバッグ20を用いた局部水浸法、(c)はエンコーダー30により位置を検出可能な直接接触法、(d)は入射角を変更可能な探触子7を用いたフェーズドアレイ法をそれぞれ示す。試験体の基準部において後方散乱波を含む基準波を受信し、試験体の検査部において受信した検査波を用いる点は斜角探傷でも同様である。
Next, other embodiments of the present invention will be described. In addition, the same sign is attached | subjected to the member similar to the said embodiment.
8A and 8B are cross-sectional views showing variations of oblique flaw detection, where FIG. 8A shows a water immersion method, FIG. 8B shows a local water immersion method using a water bag 20, and FIG. 8C shows a position detected by an encoder 30. Possible direct contact methods, (d) respectively show a phased array method using a probe 7 capable of changing the incident angle. The same applies to oblique flaw detection in that a reference wave including a backscattered wave is received at the reference portion of the specimen and the inspection wave received at the inspection portion of the specimen is used.

図9は斜角探傷法の一例を示す図であり、図10は図9のBスキャン画像である。斜角探触子を用いることにより余盛り等の凹凸直下の溶接部金属組織の検出が可能となる点が理解される。   FIG. 9 is a diagram showing an example of the oblique flaw detection method, and FIG. 10 is a B-scan image of FIG. It will be understood that the use of the oblique angle probe makes it possible to detect the weld metal structure immediately below the irregularities such as extras.

溶接部120の余盛り部直下部分を画像化するには、図11の如く溶接部120の両側から検査を行ったり、図12の如く探触子7の屈折角を大きくするとよい。試験体100が薄板の場合は図13のように複数回超音波を反射させてもよい。図14のように突き合わせ溶接の溶込み不良部130の検出を行うことも可能である。さらに、余盛り部側から垂直探傷法を実施するには、余盛り部の表面を水平に加工するとより精度の高い計測が可能である。   In order to image the portion immediately below the surplus portion of the welded portion 120, inspection may be performed from both sides of the welded portion 120 as shown in FIG. 11, or the refraction angle of the probe 7 may be increased as shown in FIG. When the test body 100 is a thin plate, ultrasonic waves may be reflected a plurality of times as shown in FIG. As shown in FIG. 14, it is also possible to detect a penetration defect portion 130 in butt welding. Furthermore, in order to carry out the vertical flaw detection method from the side of the extra portion, more accurate measurement is possible by processing the surface of the extra portion horizontally.

上記実施形態では、試験体を金属材料に限定した。しかし、試験体は超音波後方散乱波を発生するものであればよく、例えばセラミックス等の組織変化計測にも本発明を用いることができる。また、溶接部のみならず、熱処理深さ、表面改質深さの検出にも適用することができる。   In the said embodiment, the test body was limited to the metal material. However, the test body only needs to generate an ultrasonic backscattered wave, and the present invention can be used for, for example, measuring a change in structure of ceramics or the like. Moreover, it can be applied not only to the welded portion, but also to detection of heat treatment depth and surface modification depth.

上記実施形態では、検査波g1(t)を修正された基準波f1’(t)で除して基準化波形g2(t)を求めることでベースノイズの影響を除去した。しかし、底面エコーEb1の部分の解析を行わないのなら、検査波g1(t)を未修正の基準波f1(t)で除して基準化波形g2(t)を求めてもよい。基準波f1(t)を底面エコーEb1及び/又は表面エコーの部分で上述のように短絡して修正された基準波f1’(t)を求める処理を短絡処理と称する。本発明では、基準化処理に用いる基準波は短絡処理を必要に応じて行えばよい。   In the above embodiment, the influence of the base noise is removed by dividing the inspection wave g1 (t) by the corrected reference wave f1 '(t) to obtain the standardized waveform g2 (t). However, if the analysis of the bottom echo Eb1 is not performed, the normalized waveform g2 (t) may be obtained by dividing the inspection wave g1 (t) by the uncorrected reference wave f1 (t). The process of obtaining the corrected reference wave f1 '(t) by short-circuiting the reference wave f1 (t) at the bottom echo Eb1 and / or the surface echo as described above is referred to as a short-circuit process. In the present invention, the reference wave used for the standardization process may be short-circuited as necessary.

上記実施形態では時間と振幅の関数を用いたが、時間と周波数特性値の関数を用いることも可能である。ここで、周波数特性値(形状パラメータ)とは、各時刻毎の周波数スペクトルにおいて、次の式(1)〜(6)により表示される如きものをいう。式(1)〜(4)は、代表的な周波数特性値の例である((1)は一次モーメント)。式(5)(6)は、それぞれ原点周りのn次積率(モーメント)、算術平均周りのn次積率(モーメント)である。   In the above embodiment, a function of time and amplitude is used, but a function of time and frequency characteristic value can also be used. Here, the frequency characteristic value (shape parameter) means a value displayed by the following equations (1) to (6) in the frequency spectrum at each time. Expressions (1) to (4) are examples of typical frequency characteristic values ((1) is a primary moment). Equations (5) and (6) are the nth order moment (moment) around the origin and the nth order moment (moment) around the arithmetic mean, respectively.

Figure 2007085949
Figure 2007085949

本発明は、超音波による組織変化の検出方法及び検出装置として利用することができる。本発明によれば、溶接部の組織変化、熱処理、表面改質等の組織変化を高い信頼性で明瞭に検出することが可能である。   INDUSTRIAL APPLICABILITY The present invention can be used as a tissue change detection method and detection apparatus using ultrasonic waves. According to the present invention, it is possible to clearly detect a structural change such as a structural change of a welded portion, a heat treatment, and a surface modification with high reliability.

本発明に係る超音波による組織変化の検出装置の概略図である。It is the schematic of the detection apparatus of the tissue change by the ultrasonic wave which concerns on this invention. 溶接鋼材である試験体の断面と探触子との関係を示す図である。It is a figure which shows the relationship between the cross section of the test body which is welding steel materials, and a probe. 受信波の波形を示し、(a)は原波形、(b)は整流波形、(c)は包絡線処理された包絡線波形である。The waveform of a received wave is shown, (a) is an original waveform, (b) is a rectified waveform, and (c) is an envelope waveform subjected to envelope processing. 時間と振幅の関数で表現された包絡線波形の概略図を示し、(a)は基準波f1(t)及び修正された基準波f1’(t)の波形、(b)は検査波g1(t)の波形、(c)は基準波f1(t)を修正された基準波f1’(t)で除した基準化波形f2(t)、(d)は検査波g1(t)を修正された基準波f1’(t)で除した基準化波形g2(t)である。FIG. 5 shows a schematic diagram of an envelope waveform expressed as a function of time and amplitude, where (a) shows the waveform of the reference wave f1 (t) and the corrected reference wave f1 ′ (t), and (b) shows the inspection wave g1 ( t), (c) is a normalized waveform f2 (t) obtained by dividing the reference wave f1 (t) by a modified reference wave f1 ′ (t), and (d) is a modified inspection wave g1 (t). The normalized waveform g2 (t) divided by the reference wave f1 ′ (t). 表面エコーEaと底面エコーEb1との間のベースノイズの種類を示す図である。It is a figure which shows the kind of base noise between the surface echo Ea and the bottom face echo Eb1. 溶接試験片である鋼材の溶接部における断面と各部位の顕微鏡写真を示す図である。It is a figure which shows the cross section in the welding part of the steel materials which are welding test pieces, and the microscope picture of each site | part. (a)はある断面のBスキャン画像、(b)はある断面の複数信号を平均化したBスキャン画像である。(A) is a B-scan image of a certain section, and (b) is a B-scan image obtained by averaging a plurality of signals of a certain section. 斜角探傷のバリエーションを示す断面図であって,(a)は水浸法、(b)は局部水浸法、(c)は直接接触法、(d)はフェーズドアレイ法をそれぞれ示す。It is sectional drawing which shows the variation of oblique flaw detection, Comprising: (a) shows a water immersion method, (b) shows a local water immersion method, (c) shows a direct contact method, (d) shows a phased array method, respectively. 斜角探傷法の一例を示す図である。It is a figure which shows an example of an oblique inspection method. 図9のBスキャン画像である。10 is a B-scan image of FIG. 斜角探傷法の他の経路図例を示す図である。It is a figure which shows the other example of a path | route diagram of the bevel flaw detection method. 斜角探傷法のさらに他の経路図例を示す図である。It is a figure which shows the further another path | route diagram example of the bevel flaw detection method. 斜角探傷法のさらに他の経路図例を示す図である。It is a figure which shows the further another path | route diagram example of the bevel flaw detection method. 溶込み不良部の検出例を示す図である。It is a figure which shows the example of a detection of a penetration defect part. 垂直探傷法の一例を示す図である。It is a figure which shows an example of the vertical flaw detection method.

符号の説明Explanation of symbols

1:検査装置、2:処理装置、3:モニター、4:パルサーレシーバー、5:スキャナードライバー、6:スキャナー、7:探触子、100:試験体,110:基準部、120:溶接部(検査部)
1: inspection device, 2: processing device, 3: monitor, 4: pulser receiver, 5: scanner driver, 6: scanner, 7: probe, 100: specimen, 110: reference part, 120: welded part (inspection) Part)

Claims (11)

試験体に探触子から超音波を送信すると共に後方散乱波を受信することにより組織変化を検出する超音波による組織変化の検出方法であって、
試験体の基準部において後方散乱波を含む基準波を受信し、試験体の検査部において受信した検査波を前記基準波で除し又は前記検査波と前記基準波との差分を求めることにより基準化することを特徴とする超音波による組織変化の検出方法。
A method for detecting a tissue change by ultrasonic waves in which a tissue change is detected by transmitting an ultrasonic wave from a probe to the test body and receiving a backscattered wave,
A reference wave including a backscattered wave is received at the reference part of the specimen, and the inspection wave received at the inspection part of the specimen is divided by the reference wave, or a reference is obtained by obtaining a difference between the inspection wave and the reference wave. A method for detecting a tissue change by ultrasonic waves, characterized by comprising:
前記基準波及び前記検査波が時間と振幅との関数であることを特徴とする請求項1記載の超音波による組織変化の検出方法。 The method of detecting tissue change by ultrasonic waves according to claim 1, wherein the reference wave and the inspection wave are functions of time and amplitude. 前記基準波及び前記検査波が時間と周波数特性値との関数であることを特徴とする請求項1記載の超音波による組織変化の検出方法。 2. The method for detecting a tissue change by ultrasonic waves according to claim 1, wherein the reference wave and the inspection wave are functions of time and a frequency characteristic value. 前記基準化された表示がある断面のBスコープ表示であることを特徴とする請求項1〜3のいずれかに記載の超音波による組織変化の検出方法。 The method for detecting a tissue change by ultrasonic waves according to any one of claims 1 to 3, wherein the normalized display is a B-scope display of a section. 前記基準化された表示がある断面又は複数断面のBスコープ表示を平均化したものであることを特徴とする請求項1〜3のいずれかに記載の超音波による組織変化の検出方法。 The method for detecting a tissue change by ultrasonic waves according to any one of claims 1 to 3, wherein the normalized display is an average of a B scope display of a cross section or a plurality of cross sections. 前記検査部が溶接部であることを特徴とする請求項1〜5のいずれかに記載の超音波による組織変化の検出方法。 The method for detecting a tissue change by ultrasonic waves according to claim 1, wherein the inspection part is a welded part. 前記検査部が熱処理されていることを特徴とする請求項1〜5のいずれかに記載の超音波による組織変化の検出方法。 The method for detecting a tissue change by ultrasonic waves according to any one of claims 1 to 5, wherein the inspection section is heat-treated. 前記検査部が表面改質されていることを特徴とする請求項1〜5のいずれかに記載の超音波による組織変化の検出方法。 The method for detecting a tissue change by ultrasonic waves according to any one of claims 1 to 5, wherein the inspection section is surface-modified. 前記試験体が金属材料であることを特徴とする請求項1〜8のいずれかに記載の超音波による組織変化の検出方法。 The method for detecting a tissue change by ultrasonic waves according to any one of claims 1 to 8, wherein the test body is a metal material. 斜角法を用いることを特徴とする請求項1〜9のいずれかに記載の超音波による組織変化の検出方法。 The method for detecting a tissue change by ultrasonic waves according to any one of claims 1 to 9, wherein an oblique angle method is used. 請求項1〜10のいずれかに記載の超音波による組織変化の検出方法に用いる超音波による組織変化の検出装置であって、試験体に超音波を送信すると共に後方散乱波を受信する探触子を設け、
試験体の基準部において後方散乱波を含む基準波を受信し、試験体の検査部において受信した検査波を前記基準波で除することにより基準化することを特徴とする超音波による組織変化の検出装置。
11. An apparatus for detecting tissue change using ultrasonic waves used in the method for detecting tissue change using ultrasonic waves according to claim 1, wherein the probe transmits ultrasonic waves to a specimen and receives backscattered waves. Set up a child,
A reference wave including a backscattered wave is received at the reference part of the test body, and the inspection wave received at the inspection part of the test body is normalized by dividing the reference wave by the reference wave. Detection device.
JP2005276834A 2005-09-22 2005-09-22 Method and apparatus for detecting tissue change by ultrasound Active JP4679319B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005276834A JP4679319B2 (en) 2005-09-22 2005-09-22 Method and apparatus for detecting tissue change by ultrasound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005276834A JP4679319B2 (en) 2005-09-22 2005-09-22 Method and apparatus for detecting tissue change by ultrasound

Publications (2)

Publication Number Publication Date
JP2007085949A true JP2007085949A (en) 2007-04-05
JP4679319B2 JP4679319B2 (en) 2011-04-27

Family

ID=37973065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005276834A Active JP4679319B2 (en) 2005-09-22 2005-09-22 Method and apparatus for detecting tissue change by ultrasound

Country Status (1)

Country Link
JP (1) JP4679319B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008261765A (en) * 2007-04-13 2008-10-30 Non-Destructive Inspection Co Ltd Feature amount measuring method of texture variation section by ultrasonic wave, and feature amount measuring device using the same
JP2011516897A (en) * 2008-04-15 2011-05-26 ザ・ボーイング・カンパニー Anomaly imaging using backscattered waves
WO2011142474A1 (en) * 2010-05-10 2011-11-17 Jfeスチール株式会社 Method for subjecting structure form of weld to imaging and device therefor
JP2012159400A (en) * 2011-02-01 2012-08-23 Nippon Telegraph & Telephone East Corp Diagnostic device and diagnostic method
JP2012170512A (en) * 2011-02-17 2012-09-10 Chiba Univ Ultrasonic diagnostic apparatus, and program for ultrasonic diagnosis
FR3075947A1 (en) * 2017-12-21 2019-06-28 Centre Technique Des Industries Mecaniques METHOD AND DEVICE FOR DETERMINING THE THICKNESS OF A TREATED LAYER OF A METAL PIECE
JP2020201057A (en) * 2019-06-06 2020-12-17 一般財団法人電力中央研究所 Damage evaluation device for metal weld zone
CN114544445A (en) * 2022-02-24 2022-05-27 北京领示科技有限公司 Elongated crystal grain size determination method based on phased array ultrasonic and back scattering method

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63222260A (en) * 1987-03-12 1988-09-16 Sumitomo Metal Ind Ltd Distance/amplitude corrector for ultrasonic flaw detection
JPH03130658A (en) * 1989-10-16 1991-06-04 Sumitomo Metal Ind Ltd Hardening-depth measuring method
JPH0495870A (en) * 1990-08-13 1992-03-27 Ishikawajima Harima Heavy Ind Co Ltd Measuring method for grain size
JPH04177160A (en) * 1990-11-09 1992-06-24 Kawasaki Steel Corp Method for measuring grain size of material
JPH0634611A (en) * 1992-07-16 1994-02-10 Nkk Corp Ultrasonic flaw detector
JPH10288608A (en) * 1997-04-14 1998-10-27 Shimizu Corp Evaluation for defect in inside of concrete
JP2000180421A (en) * 1998-12-14 2000-06-30 Nkk Corp Method and apparatus for inspecting thin plate lap seam welded part
JP2000180422A (en) * 1998-12-14 2000-06-30 Nkk Corp Method and apparatus for inspecting thin plate lap seam welded part
JP2001183352A (en) * 1999-12-22 2001-07-06 Daido Steel Co Ltd Inspection method for jointed quality of metal pipe
JP2001330594A (en) * 2000-05-18 2001-11-30 Daido Steel Co Ltd Inspection method of metal pipe bonded body
JP2002174627A (en) * 2000-12-07 2002-06-21 Non-Destructive Inspection Co Ltd Ultrasonic wave damping coefficient measuring method

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63222260A (en) * 1987-03-12 1988-09-16 Sumitomo Metal Ind Ltd Distance/amplitude corrector for ultrasonic flaw detection
JPH03130658A (en) * 1989-10-16 1991-06-04 Sumitomo Metal Ind Ltd Hardening-depth measuring method
JPH0495870A (en) * 1990-08-13 1992-03-27 Ishikawajima Harima Heavy Ind Co Ltd Measuring method for grain size
JPH04177160A (en) * 1990-11-09 1992-06-24 Kawasaki Steel Corp Method for measuring grain size of material
JPH0634611A (en) * 1992-07-16 1994-02-10 Nkk Corp Ultrasonic flaw detector
JPH10288608A (en) * 1997-04-14 1998-10-27 Shimizu Corp Evaluation for defect in inside of concrete
JP2000180421A (en) * 1998-12-14 2000-06-30 Nkk Corp Method and apparatus for inspecting thin plate lap seam welded part
JP2000180422A (en) * 1998-12-14 2000-06-30 Nkk Corp Method and apparatus for inspecting thin plate lap seam welded part
JP2001183352A (en) * 1999-12-22 2001-07-06 Daido Steel Co Ltd Inspection method for jointed quality of metal pipe
JP2001330594A (en) * 2000-05-18 2001-11-30 Daido Steel Co Ltd Inspection method of metal pipe bonded body
JP2002174627A (en) * 2000-12-07 2002-06-21 Non-Destructive Inspection Co Ltd Ultrasonic wave damping coefficient measuring method

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008261765A (en) * 2007-04-13 2008-10-30 Non-Destructive Inspection Co Ltd Feature amount measuring method of texture variation section by ultrasonic wave, and feature amount measuring device using the same
JP2011516897A (en) * 2008-04-15 2011-05-26 ザ・ボーイング・カンパニー Anomaly imaging using backscattered waves
CN104132997A (en) * 2010-05-10 2014-11-05 杰富意钢铁株式会社 Method for subjecting structure form of welding area to imaging and device therefor
KR101391493B1 (en) * 2010-05-10 2014-05-07 제이에프이 스틸 가부시키가이샤 Method for subjecting structure form of weld to imaging and device therefor
EP3054291A1 (en) * 2010-05-10 2016-08-10 JFE Steel Corporation Method and apparatus for imaging welding area
WO2011142474A1 (en) * 2010-05-10 2011-11-17 Jfeスチール株式会社 Method for subjecting structure form of weld to imaging and device therefor
CN102893145A (en) * 2010-05-10 2013-01-23 杰富意钢铁株式会社 Method for subjecting structure form of weld to imaging and device therefor
KR101391520B1 (en) 2010-05-10 2014-05-07 제이에프이 스틸 가부시키가이샤 Method for subjecting structure form of weld to imaging and device therefor
KR101391516B1 (en) 2010-05-10 2014-05-07 제이에프이 스틸 가부시키가이샤 Method for subjecting structure form of weld to imaging and device therefor
JP2011257384A (en) * 2010-05-10 2011-12-22 Jfe Steel Corp Method for imaging structure shape in welded part and device therefor
RU2521720C1 (en) * 2010-05-10 2014-07-10 ДжФЕ СТИЛ КОРПОРЕЙШН Method and device for welding zone imaging
CN104111285A (en) * 2010-05-10 2014-10-22 杰富意钢铁株式会社 Method for subjecting structure form of weld to imaging and device therefor
JP2012159400A (en) * 2011-02-01 2012-08-23 Nippon Telegraph & Telephone East Corp Diagnostic device and diagnostic method
JP2012170512A (en) * 2011-02-17 2012-09-10 Chiba Univ Ultrasonic diagnostic apparatus, and program for ultrasonic diagnosis
FR3075947A1 (en) * 2017-12-21 2019-06-28 Centre Technique Des Industries Mecaniques METHOD AND DEVICE FOR DETERMINING THE THICKNESS OF A TREATED LAYER OF A METAL PIECE
JP2020201057A (en) * 2019-06-06 2020-12-17 一般財団法人電力中央研究所 Damage evaluation device for metal weld zone
JP7261093B2 (en) 2019-06-06 2023-04-19 一般財団法人電力中央研究所 Damage evaluation equipment for metal welds
CN114544445A (en) * 2022-02-24 2022-05-27 北京领示科技有限公司 Elongated crystal grain size determination method based on phased array ultrasonic and back scattering method

Also Published As

Publication number Publication date
JP4679319B2 (en) 2011-04-27

Similar Documents

Publication Publication Date Title
KR101391516B1 (en) Method for subjecting structure form of weld to imaging and device therefor
US7775415B2 (en) Method and apparatus for assessing the quality of spot welds
JP4679319B2 (en) Method and apparatus for detecting tissue change by ultrasound
EP2053392A1 (en) Ultrasonic scanning device and method
JP4166222B2 (en) Ultrasonic flaw detection method and apparatus
JP2005156305A (en) Evaluation method of internal defect
JP7233853B2 (en) ULTRASOUND INSPECTION APPARATUS, METHOD, PROGRAM AND ULTRASOUND INSPECTION SYSTEM
JP2010276465A (en) Ultrasonic flaw detector and method therefor
CN109196350B (en) Method for detecting defects in materials by ultrasound
JP4437656B2 (en) Ultrasonic flaw detector
JP4364031B2 (en) Ultrasonic flaw detection image processing apparatus and processing method thereof
JP5178038B2 (en) Method for measuring feature amount of tissue changing portion by ultrasonic wave and feature amount measuring apparatus used therefor
Potter et al. Sub-wavelength resolution in air-coupled ultrasound images of spot welds
JP5061891B2 (en) Crack depth measurement method
JP2006162321A (en) Method and apparatus for discriminating flaw by ultrasonic flaw inspection
JP2006162321A5 (en)
JP2011085392A (en) Ultrasonic imaging apparatus
JP2008111742A (en) Method and apparatus for non-destructive inspection of wheel welded part
JP2007263956A (en) Ultrasonic flaw detection method and apparatus
RU2644438C1 (en) Method of ultrasonic controlling surface and subsurface defects of metal products and device for its implementation
JP4135512B2 (en) Ultrasonic signal processing method and ultrasonic measurement apparatus
JP7072432B2 (en) Non-destructive inspection method for high manganese cast steel
JP2761928B2 (en) Non-destructive inspection method and device
JPH0587784A (en) Method and apparatus for estimation for quantification of defect
Stepinski et al. Ultrasonic technique for imaging welds in copper

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20100831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110201

R150 Certificate of patent or registration of utility model

Ref document number: 4679319

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250