JPH03130658A - Hardening-depth measuring method - Google Patents

Hardening-depth measuring method

Info

Publication number
JPH03130658A
JPH03130658A JP1270053A JP27005389A JPH03130658A JP H03130658 A JPH03130658 A JP H03130658A JP 1270053 A JP1270053 A JP 1270053A JP 27005389 A JP27005389 A JP 27005389A JP H03130658 A JPH03130658 A JP H03130658A
Authority
JP
Japan
Prior art keywords
probe
scattering pattern
pattern
measured
scattering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1270053A
Other languages
Japanese (ja)
Inventor
Kazuo Fujisawa
藤澤 和夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP1270053A priority Critical patent/JPH03130658A/en
Publication of JPH03130658A publication Critical patent/JPH03130658A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To perform precise hardening depth control by detecting backward scattersed waves based on the directivity of an ultrasonic wave beam, and reproducing the mea sured scattering pattern obtained by averaging the scattering wave. CONSTITUTION:A cylindrical sample 2 is mounted on a rotary table 1, and the entire body is submerged into the water. Under this state, the sample is rotated together with the table 1. As a probe 2, a contact piece having a converged structure wherein the thickness of the beam is approximately uniform is used. The probe is applied on the outer surface of the sample 2 under the state wherein the probe is inclined at a specified angle theta with respect to the axis of an axially symmetrical object 2. The probe 3 is moved in the axial direction of the object 2. The position of the probe 3 is shifted in the circumferential direction and the axial direction of the object 2. An ultrasonic wave is inputted into the object 2 through the probe 3 from an ultrasonic wave transceiver 4. Then, the backward scattering waves generated in the object 2 are detected in the receiver 4 and inputted into an operating and controlling device 6 through an A/D converter 5. The backward scattered waves are averaged for every specified number, and the counted scattering pattern is computed. The counted scatter ing pattern is operated, and the reproduced scattering pattern is obtained. Thus, the precise hardening depth control can be performed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、輪軸、圧延ロール、その他各種の部品等軸対
称物の硬化深度を非破壊的に測定する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for nondestructively measuring the hardening depth of axially symmetrical objects such as wheel sets, rolling rolls, and various other parts.

〔従来技術〕[Prior art]

一般に輪軸、圧延ロール等使用時に激しい摩耗を受ける
金属製軸対称物においては、摩耗を可及的に低減すべく
表面に高周波焼き入れ等を施し、表面近傍に硬化層を形
成することが行われているが、この硬化層の深度を正確
に把握することは軸対称物自体の品質保証上、また寿命
推定上の観点から極めて重要な管理項目となっている。
In general, for metal axially symmetrical objects that undergo severe wear during use, such as wheel sets and rolling rolls, induction hardening is performed on the surface to form a hardened layer near the surface in order to reduce wear as much as possible. However, accurately grasping the depth of this hardened layer is an extremely important control item from the viewpoint of quality assurance of the axially symmetrical object itself and estimation of life.

ところで従来における硬化深度の測定は、例えば製品た
る軸対称物を径方向に切断し、切断面を研磨した後エツ
チングを施してマクロ的に観察すると共に、その切断面
上の各部で硬度を検出し、硬化深度を測定する方法が一
般的であるが、この方法では測定に多大の手間を要し、
しかも破壊検査であるため抽出検査しか出来ない等の難
点があった。
By the way, in the conventional measurement of hardening depth, for example, an axially symmetrical product is cut in the radial direction, the cut surface is polished, etched, and macroscopically observed, and the hardness is detected at each part on the cut surface. The most common method is to measure the depth of hardening, but this method requires a lot of effort and
Moreover, since it is a destructive test, it has the disadvantage that only sampling tests can be performed.

この対策として本発明者等は軸対称物に入射した超音波
の後方散乱波強度は硬化領域と熱影響部等の非硬化領域
との境界部において段階的に変化することに着目し、軸
対称物の外周面にその軸長方向及び周方向の複数個所で
軸心線に対し斜めに超音波を入射せしめ、夫々の後方散
乱波を検出し、これを平均化して後方散乱パターン(計
測散乱パターンという)を求め、この計測散乱パターン
の段階的増加点に基づいて硬化深度を測定する方法を既
に提案しである。(特開昭60−205353号。
As a countermeasure to this problem, the present inventors focused on the fact that the backscattered wave intensity of ultrasonic waves incident on an axially symmetric object changes stepwise at the boundary between the hardened region and the non-hardened region such as the heat-affected zone. Ultrasonic waves are incident on the outer circumferential surface of an object at multiple locations in the axial direction and circumferential direction obliquely with respect to the axial center line, each backscattered wave is detected, and the backscattered waves are averaged to create a backscattering pattern (measured scattering pattern). ) and have already proposed a method for measuring the hardening depth based on the stepwise increasing points of this measured scattering pattern. (Unexamined Japanese Patent Publication No. 60-205353.

Nondestructive Testing Co
mmunications Vo4+131〜136頁
) 〔発明が解決しようとする課題〕 ところでこのような従来方法では組織が深さ方向におい
て明瞭に区分されているとき、換言すれば境界面が表面
と平行となっている場合においても、その後方散乱パタ
ーンは直線的に角張ったパターンとならず曲線的な変化
を示す。しかし、このような曲線的なパターンでは境界
面の深さ方向の構造を特定するのが難しいという難点が
あった。
Nonstructural Testing Co
(Problems to be Solved by the Invention) However, in such conventional methods, when the tissue is clearly divided in the depth direction, in other words, when the boundary surface is parallel to the surface, Even in this case, the backscattering pattern does not become a linearly angular pattern but shows a curved change. However, such a curved pattern has the disadvantage that it is difficult to specify the structure in the depth direction of the boundary surface.

第5図は深さ方向に重なった状態に形成されているA組
織とB組織との境界面が表面と平行にとなっている軸対
称物の模式的断面図を示しており、このような軸対称物
表面に対し、角度θで所定の直径を有する超音波ビーム
を入射せしめると、理想的には第6図(イ)に示す如き
直線的に角張ったパターンとなるべきところ、現実には
第6図(ロ)に示す如き曲線的でなだらかなパターンを
呈する。
Figure 5 shows a schematic cross-sectional view of an axially symmetrical object in which the interface between A and B tissues, which are formed overlapping in the depth direction, is parallel to the surface. When an ultrasonic beam with a predetermined diameter is incident on the surface of an axially symmetrical object at an angle θ, ideally it should form a linear and angular pattern as shown in Figure 6 (a), but in reality it It exhibits a curvilinear and gentle pattern as shown in FIG. 6(b).

その理由は主として、入射超音波ビームはある太さを有
しており、その波面が組iA、Bの境界面においてこれ
と非平行の状態となることに起因すると考えられる。
The main reason for this is thought to be that the incident ultrasonic beam has a certain thickness, and its wavefront is non-parallel to the boundary between the sets iA and B.

第7.8図は上述した本発明者等が提案した方法におい
て得た計測散乱パターンの例を示しており、横軸に深さ
(超音波を軸対称物に入射した時点からの時間を軸対称
物表面からの深さに変換した値)を、また縦軸には計測
散乱波の強度をとって示しである。
Figure 7.8 shows an example of a measured scattering pattern obtained using the method proposed by the present inventors as described above, in which the horizontal axis represents the depth (the time from the time when the ultrasonic wave was incident on the axially symmetrical object). The vertical axis shows the intensity of the measured scattered waves.

第7,8図は具体的に2種類の金属についてそれぞ異な
る熱処理を施して、4個の試料について前述した本発明
者等が提案した方法により検出して得た計測散乱パター
ンを示している。
Figures 7 and 8 specifically show measured scattering patterns obtained by performing different heat treatments on two types of metals and detecting four samples using the method proposed by the inventors as described above. .

第7図(イ)、第8図(イ)は2種類の試料について硬
化部と熱影響部とが略一致するような熱処理を施した場
合の計測散乱パターンを示しており、この図から明らか
な如く、組織の境界は矢印を付して示す如く強度の段階
的増加点が極めて明瞭に表われている。
Figures 7 (a) and 8 (a) show the measured scattering patterns when two types of samples were heat-treated so that the hardened zone and the heat-affected zone approximately coincided. As shown, the boundaries of the tissue clearly show points of gradual increase in intensity, as shown by arrows.

ところが一方試料について硬化部と熱影響部とが深さ方
向において異なって表われる場合(矢符で示す位置が硬
化層、白抜矢符で示す位置が熱形V層)であるが、計測
散乱パターンが全体として変化がなだらかとなり、その
区別は極めて難しくなることが解る。
However, when the hardened zone and the heat-affected zone of the sample appear differently in the depth direction (the position indicated by the arrow is the hardened layer, and the position indicated by the open arrow is the heated V layer), the measurement scattering It can be seen that the pattern as a whole changes gradually, making it extremely difficult to distinguish between them.

なお硬化深度りは、軸対称物表面への坦音波の入射時点
から計測散乱パターンが急増する迄の時間をT、また超
音波に入射したときの屈折角をθ。
The hardening depth is defined as T, which is the time from the time when a flat wave is incident on the surface of an axially symmetrical object until the measured scattering pattern rapidly increases, and θ, which is the refraction angle when the ultrasonic wave is incident.

とすると下式によって求められる。Then, it can be obtained by the following formula.

D=%T−Vt cos a。D=%T-Vt cos a.

但し、■、二軸対称物中の音速 本発明は斯かる事情に鑑みなされたものであって、その
目的とするところは超音波ビームの太さによる影響を解
消し得、明瞭な散乱パターンが得られ、正確な硬化深度
の検出が可能な硬化深度測定方法を提供するにある。
However, (2) the speed of sound in biaxially symmetrical objects.The present invention was made in view of the above circumstances, and its purpose is to eliminate the influence of the thickness of the ultrasonic beam and to produce a clear scattering pattern. It is an object of the present invention to provide a curing depth measuring method capable of accurately detecting the curing depth.

〔課題を解決するための手段〕[Means to solve the problem]

本発明に係る硬化深度測定方法は、軸対称物の複数個所
について、夫々軸方向に対し斜めに探触子から超音波を
入射し、軸対称物内部組織で生ずる後方散乱波の強度を
検出し、検出した複数の測定値を平均化して計測散乱パ
ターンを求め、該計測散乱パターンの段階的増加点に基
づき硬化深度を測定する方法において、探触子として集
束型探触子を使用し、該集束型探触子による超音波ビー
ムの太さが略一定とみなし得る深さ範囲での計測散乱パ
ターンを求め、該計測散乱パターンと、予め求めた超音
波ビームの材料深さ方向に対する指向特性とに基づき再
生散乱パターンを得る過程を含むことを特徴とする。
The hardening depth measuring method according to the present invention involves injecting ultrasonic waves from a probe obliquely to the axial direction into multiple locations of an axially symmetrical object, and detecting the intensity of backscattered waves generated in the internal tissue of the axially symmetrical object. , a method in which a measured scattering pattern is obtained by averaging a plurality of detected measured values, and the curing depth is measured based on the stepwise increasing points of the measured scattering pattern, using a focusing probe as the probe, A measured scattering pattern is obtained in a depth range in which the thickness of the ultrasonic beam by the focusing probe can be considered to be approximately constant, and the measured scattering pattern and the directional characteristic of the ultrasonic beam obtained in advance in the material depth direction are calculated. The method is characterized in that it includes a process of obtaining a reproduced scattering pattern based on the method.

〔作用〕[Effect]

本発明はこれによって、硬化層と熱影響部とが深さ方向
においてその位置が異なっている場合も夫々の明確な判
別が可能となる。
According to the present invention, it is thereby possible to clearly distinguish between the hardened layer and the heat-affected zone even when the positions of the hardened layer and the heat-affected zone are different in the depth direction.

〔実施例〕〔Example〕

以下本発明を図面に基づき具体的に説明する。 The present invention will be specifically explained below based on the drawings.

第1図は本発明方法の実施状態を示す模式図であり、図
中1は回転テーブル、2は試料たる軸対称物、3は超音
波の送、受信を行うプローブを示している。円柱状の試
料2は回転テーブル1上に同心状に立設載置されており
、全体を水中に沈めた状態で回転テーブル1と共に回転
せしめられるようになっている。プローブ3にはビーム
太さが所定の範囲内で略−様とみなし得る集束型構造の
探触子を用い、これを軸対称物2の軸心線に対し所定の
角度θだけ傾斜させた状態で試料2の周面に臨ませてあ
り、軸対称物2の軸心線方向に対し移動せしめられるよ
うになっている。
FIG. 1 is a schematic diagram showing the implementation state of the method of the present invention, in which reference numeral 1 indicates a rotary table, 2 indicates an axially symmetrical object as a sample, and 3 indicates a probe for transmitting and receiving ultrasonic waves. A cylindrical sample 2 is placed upright concentrically on a rotary table 1, and can be rotated together with the rotary table 1 while being entirely submerged in water. For the probe 3, a probe with a focusing type structure whose beam thickness can be regarded as approximately -like within a predetermined range is used, and the probe is tilted by a predetermined angle θ with respect to the axis of the axially symmetrical object 2. It faces the circumferential surface of the sample 2 and can be moved in the axial direction of the axially symmetrical object 2.

4は超音波の送、受信器であり、軸対称物2の周方向、
軸心線方向に位置をずらしつつ所定のタイミングで超音
波発振信号をプローブ3へ出力し、プローブ3から軸対
称物2へ超音波を発振せしめる一方、その都度後方散乱
波を検出し、A/D変換器5を経て演算制御装置6へ取
り込み、検出した後方散乱波を所定数毎に平均化して後
方散乱パターン(計測散乱パターンという)を算出し、
次いでこの計測散乱パターンに演算処理を施して再生散
乱パターンを求め、これを出力するようになっている。
4 is an ultrasonic transmitter and receiver, and the circumferential direction of the axially symmetrical object 2;
While shifting the position in the axial direction, an ultrasonic oscillation signal is output to the probe 3 at a predetermined timing, causing the probe 3 to oscillate an ultrasonic wave to the axially symmetrical object 2, while detecting backscattered waves each time, The backscattered waves are taken into the arithmetic and control unit 6 via the D converter 5, and the detected backscattered waves are averaged every predetermined number to calculate a backscattering pattern (referred to as a measured scattering pattern).
Next, this measured scattering pattern is subjected to arithmetic processing to obtain a reproduced scattering pattern, which is then output.

また演算制御装置6はスキャン制御器7に制御信号を出
力し、該スキャン制御器7から回転テーブル1の駆動源
、プローブ3の軸長方向移動用駆動源を制御し、回転テ
ーブルの回転角φ、プローブ3の軸長方向位置Yを設定
調節するようになっている。
The arithmetic and control unit 6 also outputs a control signal to the scan controller 7, which controls the drive source for the rotary table 1 and the drive source for moving the probe 3 in the axial direction, and controls the rotation angle φ of the rotary table. , the axial position Y of the probe 3 is set and adjusted.

計測散乱パターンからの再生散乱パターンを求める過程
は次の如くに行われる。
The process of obtaining a reproduced scattering pattern from a measured scattering pattern is performed as follows.

いま屈折角θで無限に細い超音波ビームを使用して得た
ときの後方散乱パターン(再生散乱パターンという) 
 s  (z)と、屈折角θで一定の太さを有する超音
波ビームを使用して得たときの後方散乱パターンをi 
 (z)との間には下記(11式の関係が成立する。
The backscattering pattern obtained using an infinitely narrow ultrasound beam at the refraction angle θ (referred to as the reproduced scattering pattern)
s (z) and the backscattering pattern obtained using an ultrasound beam with a constant thickness at a refraction angle θ is i
(z), the following relationship (Equation 11) holds true.

但しb” (y・):超音波ビームの深さ方向の指向性
、超音波ビームと直 交する方向の値y・ (第5 図参照)の関数として示し である。
However, b'' (y·): Directivity of the ultrasonic beam in the depth direction, expressed as a function of the value y· (see FIG. 5) in the direction orthogonal to the ultrasonic beam.

y’si浄θ=Yと置くと(1)式は下記(2)式の如
くに書き直せる 計測散乱パターン1(z)のフーリエ変換式T (f)
を、深さ方向の超音波ビームの指向性を示す関数b (
y)のフーリエ変換式B (f)で除算してS (f)
を求め、その逆フーリエ変換によって目的とする再生散
乱パターンs (2)を得る。
By setting y'si = Y, equation (1) can be rewritten as equation (2) below.Fourier transform equation T (f) of measured scattering pattern 1(z)
is a function b (
y) divided by the Fourier transform formula B (f) and S (f)
is obtained, and the desired reproduced scattering pattern s (2) is obtained by its inverse Fourier transform.

なお実際の計算ではFFTを使用し、またB (f)=
0となるのを避けるため(4)式の代わりに下記(5)
式を用いる。
Note that in the actual calculation, FFT is used, and B (f)=
To avoid 0, use the following (5) instead of formula (4).
Use the formula.

(2)式中のi  (zLs  (zLb (z)のフ
ーリエ変換式をI (f)、 S (f)、 B (f
)とすると下記(3)、 (41弐の関係が成立する。
(2) The Fourier transform formula of i (zLs (zLb (z)) is I (f), S (f), B (f
), the following relationships (3) and (412) hold true.

但し ε:定数であって、 B(f)  ”>>εB”
 Cf): B(f)の共約複素数次に上述した本発明
方法についてのシュミレーション結果について説明する
However, ε: constant, B(f) ”>>εB”
Cf): common complex number of B(f) Next, simulation results for the above-mentioned method of the present invention will be explained.

第2.3図は第5図に示す如く組織間の境界が表面と平
行になっている場合について、無限に細い超音波ビーム
を使用して得たときの理想散乱パターン(第2図(イ)
、第3図(イ))、夫々太さ0.5 m (−6aB)
、1.On (−6dB)の超音波ビームを用いたとき
の計測散乱パターン(第2図(ロ)、第3図(ロ))、
上述の方法での夫々の場合の再生散乱パターン(第2図
(ハ)、第3図(ハ))を示している。
Figure 2.3 shows the ideal scattering pattern (Figure 2 (Illustrated)) obtained using an infinitely thin ultrasonic beam when the boundary between tissues is parallel to the surface as shown in Figure 5. )
, Fig. 3 (a)), each thickness 0.5 m (-6aB)
, 1. Measured scattering pattern when using an On (-6 dB) ultrasound beam (Fig. 2 (b), Fig. 3 (b)),
The reproduced scattering patterns (FIGS. 2(C) and 3(C)) in each case of the above method are shown.

第2,3図から明らかなように、使用する超音波ビーム
の太さは細い方が計測散乱パターン、再生散乱パターン
ともにより理想散乱パターンに近い形状が得られている
こと、また第2図(ロ)、第3図(ロ)に示す計測散乱
パターン(第2図(ロ)、第3図(ロ))よりも第2図
(ハ)、第3図(ハ)に示す再生散乱パターンを用いる
のがより第2図(イ)、第3図(イ)に示す理想散乱パ
ターンに近い形状が得られていることが解る。
As is clear from Figures 2 and 3, the smaller the thickness of the ultrasonic beam used, the more closely the ideal scattering pattern is obtained for both the measured scattering pattern and the reproduced scattering pattern. The reproduced scattering patterns shown in Figures 2 (C) and 3 (C) are better than the measured scattering patterns (Figures 2 (B) and 3 (B)) shown in Figures 2 (B) and 3 (B). It can be seen that the shape that is used is closer to the ideal scattering pattern shown in FIGS. 2(A) and 3(A).

次に第7図(ロ)を求めたときの試料と同じ試料を用い
て本発明方法により計測散乱パターン、再生散乱パター
ンを求めた試験結果について説明する。
Next, a description will be given of the test results in which the measured scattering pattern and the reproduced scattering pattern were obtained by the method of the present invention using the same sample as that used to obtain FIG. 7(b).

試験条件は表1に示すとおりである。The test conditions are as shown in Table 1.

(以下余白) 表1 表1に示す試験条件で得た第4図(イ)に示す如き計測
散乱パターンi  (z)を深さ4nのところで測定し
た超音波ビームの指向性b (z)を用いて(2)式に
従って再生した散乱パターンを第4図に示している。
(Space below) Table 1 The directivity b (z) of the ultrasonic beam measured at a depth of 4n with the measured scattering pattern i (z) as shown in Figure 4 (a) obtained under the test conditions shown in Table 1. FIG. 4 shows the scattering pattern reproduced according to equation (2).

第4(イ)、(ロ)図はいずれも横軸に深さ(1鳳)を
、また縦軸に強度をとって示してあり、第4図(イ)は
計測散乱パターンを、また第4図(ロ)は再生散乱パタ
ーンをとって示しである。
Both figures 4(a) and 4(b) show the depth (100) on the horizontal axis and the intensity on the vertical axis. Figure 4 (b) shows the reproduced scattering pattern.

なお第4図(イ)において示す点線はFFTでの連続性
を保つために用いた表面エコー付近の波形である。
Note that the dotted line shown in FIG. 4(a) is a waveform near the surface echo used to maintain continuity in FFT.

この第4図(イ)、(ロ)に示すパターンを比較すれば
明らかなように、立上り特性が改善され、また散乱パタ
ーンの段階的増加点が第4図(ロ)においてより明確に
なっていることが解る。
As is clear from comparing the patterns shown in Figure 4 (a) and (b), the rise characteristics have been improved, and the gradual increase points of the scattering pattern have become clearer in Figure 4 (b). I understand that there is.

〔効果〕 以上の如く本発明方法にあっては、超音波ビームの指向
性を用いて、検出した後方散乱波の平均化により求めた
計測散乱パターンを再生することによって、より段階的
増加点が明瞭となり、硬化深度をより正確に測定するこ
とが可能となり、精細な硬化深度管理を行い得るなど本
発明は優れた効果を奏するものである。
[Effect] As described above, in the method of the present invention, by using the directivity of the ultrasonic beam to reproduce the measured scattering pattern obtained by averaging the detected backscattered waves, a more gradual increase in points can be achieved. The present invention has excellent effects such as clarity, making it possible to measure the hardening depth more accurately, and enabling precise hardening depth management.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の実施状態を示す模式図、第2,3
図は本発明方法のシュミレーション結果を示す理想、計
測、再生の各後方散乱パターン図、第4図(イ)、(ロ
)は本発明方法の試験結果を示す計測、再生の各後方散
乱パターン図、第5図は繊維間の界面が表面と平行にな
っている場合の模式図、第6図(イ)、(ロ)は第5図
に示す如き試料についての理想散乱パターンと計測散乱
パターンとの比較説明図、第7.8図は従来方法によっ
て得た計測散乱パターン図である。 1・・・回転テーブル   2・・・試料3・・・プロ
ーブ     4・・・超音波の送、受信器6・・・演
算制御装置
Figure 1 is a schematic diagram showing the implementation state of the method of the present invention, Figures 2 and 3
The figure is an ideal, measurement, and reproduction backscattering pattern diagram showing the simulation results of the method of the present invention, and Figures 4 (a) and (b) are measurement and reproduction backscattering pattern diagrams showing the test results of the method of the present invention. , Fig. 5 is a schematic diagram when the interface between fibers is parallel to the surface, and Fig. 6 (a) and (b) show the ideal scattering pattern and measured scattering pattern for the sample shown in Fig. 5. 7.8 is a diagram showing a measured scattering pattern obtained by the conventional method. 1... Rotary table 2... Sample 3... Probe 4... Ultrasonic transmission, receiver 6... Arithmetic control device

Claims (1)

【特許請求の範囲】 1、軸対称物の複数個所について、夫々軸方向に対し斜
めに探触子から超音波を入射し、軸対称物内部組織で生
ずる後方散乱波の強度を検出し、検出した複数の測定値
を平均化して計測散乱パターンを求め、該計測散乱パタ
ーンの段階的増加点に基づき硬化深度を測定する方法に
おいて、 探触子として集束型探触子を使用し、該集束型探触子に
よる超音波ビームの太さが略一定とみなし得る深さ範囲
での計測散乱パターンを求め、該計測散乱パターンと、
予め求めた超音波ビームの材料深さ方向に対する指向特
性とに基づき再生散乱パターンを得る過程を含むことを
特徴とする硬化深度測定方法。
[Claims] 1. Ultrasonic waves are incident on multiple locations of an axially symmetrical object from a probe obliquely with respect to the axial direction, and the intensity of backscattered waves generated in the internal tissue of the axially symmetrical object is detected. In this method, a measured scattering pattern is obtained by averaging a plurality of measured values, and the curing depth is measured based on the stepwise increasing points of the measured scattering pattern. Obtain a measured scattering pattern in a depth range in which the thickness of the ultrasonic beam from the probe can be considered to be approximately constant, and combine the measured scattering pattern with
1. A hardening depth measuring method comprising the step of obtaining a reproduced scattering pattern based on a predetermined directivity characteristic of an ultrasonic beam in the material depth direction.
JP1270053A 1989-10-16 1989-10-16 Hardening-depth measuring method Pending JPH03130658A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1270053A JPH03130658A (en) 1989-10-16 1989-10-16 Hardening-depth measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1270053A JPH03130658A (en) 1989-10-16 1989-10-16 Hardening-depth measuring method

Publications (1)

Publication Number Publication Date
JPH03130658A true JPH03130658A (en) 1991-06-04

Family

ID=17480868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1270053A Pending JPH03130658A (en) 1989-10-16 1989-10-16 Hardening-depth measuring method

Country Status (1)

Country Link
JP (1) JPH03130658A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0694757A2 (en) 1994-07-26 1996-01-31 Shinkokensa Service Kabushiki Kaisha An apparatus for measuring a layer thickness using transverse waves of ultrasonic waves
JP2007085949A (en) * 2005-09-22 2007-04-05 Non-Destructive Inspection Co Ltd Method and device for detecting texture change by ultrasonic wave

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0694757A2 (en) 1994-07-26 1996-01-31 Shinkokensa Service Kabushiki Kaisha An apparatus for measuring a layer thickness using transverse waves of ultrasonic waves
JP2007085949A (en) * 2005-09-22 2007-04-05 Non-Destructive Inspection Co Ltd Method and device for detecting texture change by ultrasonic wave
JP4679319B2 (en) * 2005-09-22 2011-04-27 非破壊検査株式会社 Method and apparatus for detecting tissue change by ultrasound

Similar Documents

Publication Publication Date Title
JP5094963B2 (en) Nondestructive material inspection method and apparatus for inspection object using ultrasonic wave
JPS63243751A (en) Method, jig and apparatus for ultrasonic flaw detection of rotary body for bearing
JPH04348275A (en) Ultrasonic flaw detection
JPH03130658A (en) Hardening-depth measuring method
CN108802191A (en) A kind of water logging defect detection on ultrasonic basis of rolled steel defect
JPH08210953A (en) Standard sample for ultrasonic inspection device evaluation, and its manufacture
US3808878A (en) Method for sensing the depth of cellular pits formed in a material layer
US4763528A (en) Non-destructive method for determining at least one point of a crack front in a part and an apparatus for the implementation of the method
CN107966493A (en) A kind of ultrasonic examination decision method of rolled steel defect
JP2006084447A (en) Ultrasonic nondestructive measuring method and ultrasonic nondestructive measuring apparatus used therefor
JP3206489B2 (en) Non-destructive inspection method of internal organization
JP2019109107A (en) Ultrasonic flaw detection method, ultrasonic flaw detection device, manufacturing equipment row of steel material, manufacturing method of steel material, and quality assurance of steel material
JPH07244028A (en) Apparatus and method for ultrasonically detecting flaw on spherical body to be detected
Yönak et al. Photoacoustic detection and localization of small gas leaks
JPH0614026B2 (en) Ultrasonic measurement of the depth of the hardened layer
Douville et al. Critical evaluation of continuous‐wave Doppler probes for carotid studies
JPH04274754A (en) Ultrasonic flaw detector for turbine rotor blade base
JPH01145565A (en) Ultrasonic flaw detector
JP2019211215A (en) Ultrasonic flaw detection method, ultrasonic flaw detector, steel material manufacturing equipment row, steel material manufacturing method, and steel material quality assurance method
JP3463729B2 (en) Non-destructive inspection method of internal organization
JP3159143B2 (en) Non-destructive inspection method of internal organization
JPH01107149A (en) Standard test piece for ultrasonic flaw detector
JP2000065804A (en) Laser ultrasonic inspecting device and method therefor
JPH04194745A (en) Ultrasonic inspection
JPH09274019A (en) Evaluation method for scale of defect by ultrasonic waves