JPH09274019A - Evaluation method for scale of defect by ultrasonic waves - Google Patents

Evaluation method for scale of defect by ultrasonic waves

Info

Publication number
JPH09274019A
JPH09274019A JP8083944A JP8394496A JPH09274019A JP H09274019 A JPH09274019 A JP H09274019A JP 8083944 A JP8083944 A JP 8083944A JP 8394496 A JP8394496 A JP 8394496A JP H09274019 A JPH09274019 A JP H09274019A
Authority
JP
Japan
Prior art keywords
defect
ultrasonic
size
peak
probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8083944A
Other languages
Japanese (ja)
Inventor
Yoshinori Takesute
義則 武捨
Yoshihiro Michiguchi
由博 道口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd, Hitachi Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP8083944A priority Critical patent/JPH09274019A/en
Publication of JPH09274019A publication Critical patent/JPH09274019A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/11Analysing solids by measuring attenuation of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an evaluation methods in which the size of a defect can be evaluated precisely even regarding a spherical defect which is larger than the width of a beam by a method wherein an ultrasonic probe is scanned and the scale of the defect is evaluated on the basis of the distance between peaks in the intensity distribution of reflected waves. SOLUTION: When an ultrasonic array probe 1 is scanned in the X-direction, the center line 4 of a focused beam at an angle of -θ is passed through the center pi of a defect on the left side of a perpendicular line N when it comes to a position A. At this time, an ultrasonic beam perpendicularly hits the outside of the defect 10, and the intensity of reflected waves indicates an intensity distribution in which a peak is situated in the scanning position A. In addition, the center line 5 of a beam at an angle of θ. is passed through the center p1 of the defect 10 on the right side of the perpendicular line N. At this time, the beam perpendicularly hits the outside of the defect 10, the intensity distribution of reflected waves becomes a peak in a position A', and the distance between peaks becomes X1 . On the other hand, in a large defect 20, the distance B-B' between peaks in the intensitity distribution of reflected waves becomes X2 . Naturally, X1 (X2 , the distance between the peaks is changed according to the size of a defect, and the size of the defect can be estimated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、超音波を照射して
受信した反射波によって欠陥の大きさを評価する超音波
による欠陥規模評価方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic defect size evaluation method for evaluating the size of a defect by a reflected wave received by irradiating an ultrasonic wave.

【0002】[0002]

【従来の技術】従来、被検査体内の欠陥の規模(幅、長
さ等)を評価する方法として、例えば以下に述べる二つ
の方法が知られている。一つは、欠陥からの反射波の強
度が、欠陥が大きくなるに連れて高くなる特性から推定
する方法であり、他の一つは、探触子を走査したとき
に、ある大きさ以上の反射波の強度で欠陥が検出された
走査幅から推定する方法(例えば6dBダウン法)であ
る。前者は、球状の欠陥をはじめとして、欠陥の大きさ
よりもビーム幅が大きい時に有効であり、また、後者は
平面状の欠陥が対象で、欠陥の大きさよりもビーム幅が
小さい時に有効である。
2. Description of the Related Art Conventionally, the following two methods, for example, are known as methods for evaluating the scale (width, length, etc.) of defects in an object to be inspected. One is a method of estimating the intensity of the reflected wave from the defect from the characteristic that the intensity increases as the defect becomes larger, and the other is that the intensity of the reflected wave is larger than a certain value when the probe is scanned. This is a method (for example, 6 dB down method) of estimating from the scanning width in which a defect is detected by the intensity of the reflected wave. The former is effective when the beam width is larger than the size of the defect, such as a spherical defect, and the latter is effective when the beam width is smaller than the size of the defect, which is targeted for the planar defect.

【0003】[0003]

【発明が解決しようとする課題】ところで、物体内部の
小さな欠陥を高分解能で検出する場合には、超音波ビー
ムを細く絞った集束ビームを使用することが多い。この
ようなビームを使用すると、集束ビーム幅より大きな球
状の欠陥については、前者の反射波の強度から欠陥規模
を推定する方法では、欠陥の大きさを正確に評価できな
いという問題がある。また、球状の欠陥は、反射の指向
性が欠陥の大小によらずほぼ同一になるので、探触子の
走査幅から評価することもできないという問題がある。
By the way, in the case of detecting a small defect inside an object with high resolution, a focused beam obtained by narrowing an ultrasonic beam is often used. When such a beam is used, for a spherical defect larger than the focused beam width, the defect size cannot be accurately evaluated by the former method of estimating the defect size from the intensity of the reflected wave. Further, since the spherical defect has almost the same directivity of reflection regardless of the size of the defect, there is a problem that it cannot be evaluated from the scanning width of the probe.

【0004】本発明はこのような従来技術の問題点に鑑
みてなされたもので、その目的は、集束ビーム幅より大
きな球状の欠陥についても、反射波の強度から欠陥の大
きさを正確に評価できる欠陥規模評価方法を提供するこ
とにある。
The present invention has been made in view of the above problems of the prior art, and an object thereof is to accurately evaluate the size of a defect even in a spherical defect larger than the focused beam width from the intensity of the reflected wave. It is to provide a defect size evaluation method that can be performed.

【0005】[0005]

【課題を解決するための手段】前記目的を達成するため
に、本発明は、欠陥に対して超音波探触子を走査して、
欠陥の左右異なる2方向から超音波ビームを当て、それ
ぞれ得られる欠陥からの反射波の強度分布におけるピー
ク間距離から欠陥の大きさを評価するようにした。
In order to achieve the above-mentioned object, the present invention scans an ultrasonic probe for a defect,
Ultrasonic beams were applied from two different left and right directions of the defect, and the size of the defect was evaluated from the peak-to-peak distance in the intensity distribution of the reflected wave from each defect obtained.

【0006】あるいは、あらかじめ欠陥から探傷面また
は超音波探触子走査面に向けた垂線を検出し、この垂線
に対して前記超音波探触子の走査方向の上流側および下
流側の一方で超音波探触子を走査して欠陥に対して超音
波ビームを当て、受信した超音波ビームの欠陥からの反
射波の強度分布を検出し、検出された反射波の強度分布
のピークと前記垂線間の距離から欠陥の大きさを評価す
るようにした。
Alternatively, a vertical line directed to the flaw detection surface or the ultrasonic probe scanning plane is detected in advance from the defect, and one of the two lines is detected on the upstream side and the downstream side in the scanning direction of the ultrasonic probe with respect to this vertical line. The ultrasonic probe is scanned to apply an ultrasonic beam to the defect, the intensity distribution of the reflected wave from the defect of the received ultrasonic beam is detected, and the peak of the intensity distribution of the detected reflected wave and the perpendicular line are detected. The size of the defect was evaluated from the distance.

【0007】これらの場合、超音波を細く絞った超音波
集束ビームが使用され、超音波ビームを発生する手段と
してアレイ探触子を使用することが好ましい。
In these cases, an ultrasonic focused beam in which the ultrasonic waves are narrowed down is used, and it is preferable to use an array probe as a means for generating the ultrasonic beam.

【0008】このように構成すると、被検査体内の欠陥
に対して探傷面からある角度で超音波ビームを放射しな
がら超音波探触子を走査した時に得られる反射波強度分
布のピーク位置の変動から欠陥の大きさを評価すること
ができる。すなわち、反射波強度分布のピーク位置は、
欠陥の中心と超音波ビームの中心線が合致した時、超音
波ビームが欠陥表面に垂直に当たることにより表れる。
従って、欠陥径が大きくなれば欠陥中心は深い方に移動
し、これに伴ってピーク位置も移動する。
With this configuration, fluctuations in the peak position of the reflected wave intensity distribution obtained when the ultrasonic probe is scanned while the ultrasonic beam is emitted at a certain angle from the flaw detection surface with respect to the defect inside the object to be inspected. Therefore, the size of the defect can be evaluated. That is, the peak position of the reflected wave intensity distribution is
When the center of the defect coincides with the center line of the ultrasonic beam, the ultrasonic beam impinges on the defect surface perpendicularly.
Therefore, as the defect diameter increases, the defect center moves deeper, and the peak position moves accordingly.

【0009】また、集束ビームは、その焦点を欠陥に合
わせることにより、反射波強度分布のピークが鋭くな
り、より正確にピーク位置を確認できる。
Further, by focusing the focused beam on the defect, the peak of the reflected wave intensity distribution becomes sharp, and the peak position can be confirmed more accurately.

【0010】また、アレイ探触子は、電子的に超音波ビ
ームの切り替えを行うため、超音波ビームの走査速度を
高速にでき、超音波ビームの角度も遅延時間の変更によ
り自由に設定できる。
Further, since the array probe electronically switches the ultrasonic beam, the scanning speed of the ultrasonic beam can be made high and the angle of the ultrasonic beam can be freely set by changing the delay time.

【0011】[0011]

【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0012】図1は本発明の一実施形態に係る超音波探
傷の原理を示す説明図である。同図からも分かるよう
に、今、検査体15の内部にp1を中心とする直径d1
の球状欠陥10と、p2を中心とする直径d2の球状欠
陥20があるとする。このような欠陥を有する検査体1
5の探傷面3に沿って超音波探触子、この場合には、ア
レイ探触子1をX方向に走査する。ここで、便宜上、欠
陥10の中心から探傷面3に垂直に伸ばした垂線をNと
しておく。このようにしたときに、欠陥10から前記垂
線Nの左側では角度−θで、また右側では角度+θで超
音波を送出する。
FIG. 1 is an explanatory view showing the principle of ultrasonic flaw detection according to an embodiment of the present invention. As can be seen from the figure, the diameter d1 centered on p1 is now inside the inspection body 15.
It is assumed that there are a spherical defect 10 and a spherical defect 20 having a diameter d2 centered on p2. Inspection body 1 having such a defect
The ultrasonic probe, in this case, the array probe 1 is scanned in the X direction along the flaw detection surface 3 of 5. Here, for convenience, a perpendicular line extending from the center of the defect 10 to the flaw detection surface 3 perpendicularly is set as N. In this case, ultrasonic waves are emitted from the defect 10 at an angle −θ on the left side of the perpendicular N and at an angle + θ on the right side.

【0013】まず、探傷面3から欠陥表面までの深さが
Fで、直径がd1の小さな欠陥10について説明する。
アレイ探触子1をX方向に走査すると、垂線Nの左側で
は、アレイ探触子1から送出する角度−θの集束ビーム
の中心線4は位置Aにきた時、欠陥10の中心p1を通
る。この時、欠陥の外面に超音波ビームが垂直に当たる
ことになり、反射波強度は、図2に示すように走査位置
Aでピークになる強度分布を示す。また、垂線Nの右側
では、アレイ探触子1から送出する角度+θの集束ビー
ムの中心線5は位置A’にきた時、欠陥10の中心p1
を通る。この時、欠陥10の外面に超音波ビームが垂直
にあたることになり、反射波強度は、図2に示すように
走査位置A’でピークになる強度分布を示す。この時の
ピーク間距離A−A’はX1となる。
First, a small defect 10 having a depth F from the flaw detection surface 3 to the defect surface and a diameter d1 will be described.
When the array probe 1 is scanned in the X direction, on the left side of the vertical line N, the center line 4 of the focused beam of the angle −θ sent from the array probe 1 passes through the center p1 of the defect 10 when it reaches the position A. . At this time, the ultrasonic beam hits the outer surface of the defect vertically, and the reflected wave intensity shows an intensity distribution that peaks at the scanning position A as shown in FIG. Further, on the right side of the vertical line N, when the center line 5 of the focused beam of the angle + θ sent from the array probe 1 comes to the position A ′, the center p1 of the defect 10
Pass through. At this time, the ultrasonic beam hits the outer surface of the defect 10 vertically, and the reflected wave intensity shows an intensity distribution that peaks at the scanning position A ′ as shown in FIG. The peak-to-peak distance AA ′ at this time is X1.

【0014】一方、探傷面3から欠陥表面までの深さが
Fで、直径がd2の大きな欠陥20では、垂線Nの左側
では、アレイ探触子1から送出する角度−θの集束ビー
ムの中心線6は位置Bにきた時、欠陥20の中心p2を
通る。この時、欠陥20の外面に超音波ビームが垂直に
あたることになり、反射波強度は、図2に示すように走
査位置Bでピークになる強度分布を示す。また、垂線N
の右側では、アレイ探触子1から送出する角度+θの集
束ビームの中心線7は位置B’にきた時、欠陥20の中
心p2を通る。この時、欠陥20の外面に超音波ビーム
が垂直にあたることになり、反射波強度は、図2に示す
ように走査位置B’でピークになる強度分布を示す。こ
の時のピーク間距離B−B’はX2となる。当然、X1
<X2となり、欠陥の大きさに応じてピーク間距離は変
化する。
On the other hand, in the case of a large defect 20 having a depth F from the flaw detection surface 3 to the defect surface and a diameter of d2, the center of the focused beam of the angle −θ sent from the array probe 1 on the left side of the normal line N. When the line 6 comes to the position B, it passes through the center p2 of the defect 20. At this time, the ultrasonic beam perpendicularly hits the outer surface of the defect 20, and the reflected wave intensity shows an intensity distribution that peaks at the scanning position B as shown in FIG. Also, the vertical line N
On the right side of, the center line 7 of the focused beam of the angle + θ emitted from the array probe 1 passes through the center p2 of the defect 20 when it reaches the position B ′. At this time, the ultrasonic beam hits the outer surface of the defect 20 vertically, and the reflected wave intensity shows an intensity distribution that peaks at the scanning position B ′ as shown in FIG. The peak-to-peak distance BB ′ at this time is X2. Of course, X1
<X2, and the peak-to-peak distance changes depending on the size of the defect.

【0015】以上のように、ある一定の角度で超音波ビ
ームを走査すると、欠陥10,20の大きさによってそ
の反射波強度のピーク位置が異なる。従って、ピーク間
距離Xを測定すれば、逆に欠陥の大きさdが推定できる
ことになる。
As described above, when the ultrasonic beam is scanned at a certain angle, the peak position of the reflected wave intensity varies depending on the size of the defects 10 and 20. Therefore, if the peak-to-peak distance X is measured, on the contrary, the defect size d can be estimated.

【0016】すなわち、欠陥の直径dは、Xをピーク間
距離、Fを欠陥深さ、θを超音波ビーム角度として、 d=(X−2Ftanθ)/tanθ ・・・(1) で計算でき、ピーク間距離Xと欠陥の大きさdとは図3
に示すような関係となる。
That is, the diameter d of a defect can be calculated by d = (X-2Ftan θ) / tan θ (1), where X is the peak-to-peak distance, F is the defect depth, and θ is the ultrasonic beam angle. The peak-to-peak distance X and the defect size d are shown in FIG.
The relationship is as shown in.

【0017】図4は、実際にアレイ探触子1を用いて、
深さ20.14mmの鋼中に直径1mmのドリルで空け
た空孔30を探傷している状態を示す図である。この場
合、超音波ビームの角度は約±20度で、空孔30の表
面付近で集束している。最初、空孔30の真上より左側
では−20度の超音波ビームを放射しながらアレイ探触
子1を機械的に走査して、空孔30からの反射波を受信
する。また、空孔30の真上より右側では、+20度の
超音波ビームを放射しながら同様に空孔30からの反射
波を受信する。図5は、この時の反射波の強度をプロッ
トした図である。縦軸は受信強度、横軸はアレイ探触子
の走査位置である。図5から、それぞれのピーク間の距
離を測定すると、14.5mmとなる。前記(1)式に
これらの値を代入して空孔の直径dを評価すると0.9
8mmとなる。
FIG. 4 shows that the array probe 1 is actually used.
It is a figure which shows the state which has carried out the flaw detection of the hole 30 opened with the drill of 1 mm in diameter in the steel of depth 20.14 mm. In this case, the ultrasonic beam has an angle of about ± 20 degrees and is focused near the surface of the hole 30. First, the array probe 1 is mechanically scanned while radiating an ultrasonic beam of -20 degrees right above the holes 30, and the reflected waves from the holes 30 are received. On the right side of the hole 30, the reflected wave from the hole 30 is similarly received while radiating the ultrasonic beam of +20 degrees. FIG. 5 is a diagram in which the intensities of the reflected waves at this time are plotted. The vertical axis represents the reception intensity, and the horizontal axis represents the scanning position of the array probe. From FIG. 5, the distance between the respective peaks is 14.5 mm. By substituting these values into the equation (1) and evaluating the diameter d of the holes, the value is 0.9.
8 mm.

【0018】図6は、直径が1〜3mm、深さが30m
m以下の4種類の空孔に対して評価を行った結果であ
り、この結果から±20%の誤差で評価が可能である。
FIG. 6 shows a diameter of 1 to 3 mm and a depth of 30 m.
These are the results of the evaluation of four types of holes of m or less, and from this result, the evaluation can be performed with an error of ± 20%.

【0019】以上は、アレイ探触子1を機械的に走査し
て超音波の送受信を行ったが、長いアレイ探触子1を使
用して、超音波ビームの電子制御により、アレイ探触子
を動かさないで送受信を行い、欠陥規模評価を行うこと
もできる。すなわち、欠陥を検出するまで、アレイ探触
子1を機械的に移動(走査)させ、欠陥を検出した位置
で、アレイ探触子1自体は機械的には移動させないで、
アレイ探触子1を電気的に走査し、送受信を行うように
することもできる。
In the above, the array probe 1 is mechanically scanned to transmit and receive ultrasonic waves. However, the long array probe 1 is used, and the array probe is electronically controlled by the ultrasonic beam. It is also possible to carry out transmission / reception without moving and to perform defect size evaluation. That is, the array probe 1 is mechanically moved (scanned) until a defect is detected, and the array probe 1 itself is not mechanically moved at the position where the defect is detected.
It is also possible to electrically scan the array probe 1 for transmission and reception.

【0020】なお、上記実施形態では、上記のようにピ
ーク間距離を検出して、欠陥の大きさを評価している
が、一方のピークと垂線との距離を測定しても同様に欠
陥の大きさを評価することができる。この場合には、例
えば超音波ビームの入射角θを0にしてアレイ探触子1
を機械的に走査し、ピーク位置を検出する。このピーク
位置は入射角が0なので前記垂線Nの位置にほぼ相当す
る。このようにして垂線Nの位置を検出すると、検出し
たピーク位置にアレイ探触子1を固定して、あらかじめ
設定した入射角θo で電気的に走査し、入射角θo にお
けるピーク位置を検出する。このときの垂線Nからピー
クまでの距離をXo 、Fを欠陥深さ、θoを超音波ビー
ムの入射角度とすると、欠陥の直径は、 d=2(Xo −Ftanθo )/tanθo ・・・(2) としても計算することができる。
In the above embodiment, the size of the defect is evaluated by detecting the peak-to-peak distance as described above. However, even if the distance between one peak and the perpendicular is measured, the defect The size can be evaluated. In this case, for example, the incident angle θ of the ultrasonic beam is set to 0 and the array probe 1
Is mechanically scanned to detect the peak position. Since this incident angle is 0, this peak position almost corresponds to the position of the perpendicular line N. When the position of the vertical line N is detected in this way, the array probe 1 is fixed to the detected peak position and electrically scanned at a preset incident angle θo to detect the peak position at the incident angle θo. When the distance from the perpendicular N to the peak at this time is Xo, F is the defect depth, and θo is the incident angle of the ultrasonic beam, the defect diameter is d = 2 (Xo-Ftanθo) / tanθo (2 ) Can also be calculated as

【0021】この実施形態では、垂線Nの位置を検出す
るときに、アレイ探触子1から照射される超音波ビーム
の入射角θを0として走査しているが、これは、1つの
例であって、公知の超音波探傷によって欠陥位置を特定
して垂線Nの位置を検出してもよいことは言うまでもな
い。
In this embodiment, when detecting the position of the vertical line N, scanning is performed with the incident angle θ of the ultrasonic beam emitted from the array probe 1 set to 0, but this is one example. It goes without saying that the position of the vertical line N may be detected by specifying the defect position by known ultrasonic flaw detection.

【0022】また、この実施形態ではアレイ探触子を使
用しているが、送受信ユニットが単数である通常の超音
波探触子を使用することもできることは言うまでもな
い。
Although the array probe is used in this embodiment, it goes without saying that a normal ultrasonic probe having a single transmitting / receiving unit can also be used.

【0023】[0023]

【発明の効果】これまでの説明で明らかように、本発明
によれば、欠陥に超音波ビームを当て、その反射波の強
度分布のピーク間距離、もしくは欠陥から探傷面もしく
は超音波探触子走査面に向けた垂線とピークとの距離か
ら欠陥の大きさを評価できるので、超音波ビーム径より
大きな球状または円柱状の欠陥に対してその直径を直接
評価することができる。
As is apparent from the above description, according to the present invention, an ultrasonic beam is applied to a defect and the peak-to-peak distance of the intensity distribution of the reflected wave thereof, or the flaw surface or the ultrasonic probe from the defect. Since the size of the defect can be evaluated from the distance between the perpendicular to the scanning surface and the peak, it is possible to directly evaluate the diameter of a spherical or cylindrical defect larger than the ultrasonic beam diameter.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の評価原理を示す説明図である。FIG. 1 is an explanatory diagram showing an evaluation principle of the present invention.

【図2】欠陥からの反射波の強度分布の状態を示す図で
ある。
FIG. 2 is a diagram showing a state of intensity distribution of a reflected wave from a defect.

【図3】ピーク間距離と欠陥寸法の関係を示す図であ
る。
FIG. 3 is a diagram showing a relationship between a peak distance and a defect size.

【図4】本発明の一実施形態における探傷の状態を示す
図である。
FIG. 4 is a diagram showing a flaw detection state in the embodiment of the present invention.

【図5】本発明の一実施形態における反射波の強度分布
を示す図である。
FIG. 5 is a diagram showing an intensity distribution of a reflected wave in the embodiment of the present invention.

【図6】本発明の一実施形態における実験結果を示す図
である。
FIG. 6 is a diagram showing an experimental result in one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 アレイ探触子 3 探傷面 4,5,6,7 超音波ビームの中心線 10,20 球状欠陥 15 検査体 30 空孔 F 欠陥深さ N 垂線 d1,d2 欠陥の直径 p1,p2 欠陥の中心位置 X1,X2 ピーク間距離 θ,θo 超音波ビームの入射角 1 array probe 3 flaw detection surface 4,5,6,7 center line of ultrasonic beam 10,20 spherical defect 15 inspection object 30 hole F defect depth N perpendicular d1, d2 defect diameter p1, p2 defect center Position X1, X2 Peak distance θ, θo Incident angle of ultrasonic beam

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 被検査体表面を超音波探触子で走査しな
がら被検査体内の欠陥に対して超音波を照射し、受信し
た欠陥からの反射波の状態から欠陥の規模を評価する超
音波による欠陥規模評価方法において、 前記欠陥から探傷面または超音波探触子走査面に向けた
垂線に対して前記超音波探触子の走査方向の上流側およ
び下流側で超音波探触子を走査して欠陥に対して超音波
ビームを照射し、 受信した超音波ビームの欠陥からの反射波の強度分布を
求め、 求められた反射波の強度分布のピーク間距離から欠陥の
規模を評価すること、を特徴とする超音波による欠陥規
模評価方法。
1. A method for irradiating ultrasonic waves to a defect in the inspection object while scanning the surface of the inspection object with an ultrasonic probe, and evaluating the scale of the defect from the state of reflected waves from the received defect. In the defect scale evaluation method by sound waves, the ultrasonic probe on the upstream side and the downstream side in the scanning direction of the ultrasonic probe with respect to the perpendicular from the defect toward the flaw detection surface or the ultrasonic probe scanning surface. Scan and irradiate the defect with an ultrasonic beam, calculate the intensity distribution of the reflected wave from the defect of the received ultrasonic beam, and evaluate the defect size from the peak-to-peak distance of the obtained reflected wave intensity distribution. A method for evaluating defect size by ultrasonic waves, characterized by:
【請求項2】 被検査体表面を超音波探触子で走査しな
がら被検査体内の欠陥に対して超音波を照射し、受信し
た欠陥からの反射波の状態から欠陥の規模を評価する超
音波による欠陥規模評価方法において、 前記欠陥から探傷面または超音波探触子走査面に向けた
垂線を検出し、 この垂線に対して前記超音波探触子の走査方向の上流側
および下流側の一方で超音波探触子を走査して欠陥に対
して超音波ビームを照射し、 受信した超音波ビームの欠陥からの反射波の強度分布を
求め、 求められた反射波の強度分布のピークと前記垂線間の距
離から欠陥の規模を評価すること、を特徴とする超音波
による欠陥規模評価方法。
2. A method of irradiating ultrasonic waves to a defect in an object to be inspected while scanning the surface of the object to be inspected with an ultrasonic probe, and evaluating the scale of the defect from the state of reflected waves from the received defect. In the defect scale evaluation method using sound waves, a perpendicular line to the flaw detection surface or the ultrasonic probe scanning plane is detected from the defect, and an upstream side and a downstream side in the scanning direction of the ultrasonic probe with respect to this perpendicular line. On the other hand, the ultrasonic probe is scanned to irradiate the defect with the ultrasonic beam, and the intensity distribution of the reflected wave from the defect of the received ultrasonic beam is calculated. An ultrasonic defect size evaluation method, characterized in that the defect size is evaluated from the distance between the perpendiculars.
【請求項3】 前記照射される超音波ビームは、集束ビ
ームであることを特徴とする請求項1または2記載の超
音波による欠陥規模評価方法。
3. The ultrasonic defect scale evaluation method according to claim 1, wherein the ultrasonic beam to be irradiated is a focused beam.
【請求項4】 前記超音波探触子は、アレイ探触子であ
ることを特徴とする請求項1ないし3のいずれか1項に
記載の超音波による欠陥規模評価方法。
4. The ultrasonic defect size evaluation method according to claim 1, wherein the ultrasonic probe is an array probe.
JP8083944A 1996-04-05 1996-04-05 Evaluation method for scale of defect by ultrasonic waves Pending JPH09274019A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8083944A JPH09274019A (en) 1996-04-05 1996-04-05 Evaluation method for scale of defect by ultrasonic waves

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8083944A JPH09274019A (en) 1996-04-05 1996-04-05 Evaluation method for scale of defect by ultrasonic waves

Publications (1)

Publication Number Publication Date
JPH09274019A true JPH09274019A (en) 1997-10-21

Family

ID=13816703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8083944A Pending JPH09274019A (en) 1996-04-05 1996-04-05 Evaluation method for scale of defect by ultrasonic waves

Country Status (1)

Country Link
JP (1) JPH09274019A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001194348A (en) * 2000-01-06 2001-07-19 Nikko Kensa Service Kk Roll separation inspection method
JP2014041067A (en) * 2012-08-23 2014-03-06 Hitachi Ltd Ultrasonic flaw detection method and device
FR3027384A3 (en) * 2014-10-21 2016-04-22 Renault Sa METHOD OF ESTIMATING THE DIAMETER OF A WELD

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001194348A (en) * 2000-01-06 2001-07-19 Nikko Kensa Service Kk Roll separation inspection method
JP2014041067A (en) * 2012-08-23 2014-03-06 Hitachi Ltd Ultrasonic flaw detection method and device
FR3027384A3 (en) * 2014-10-21 2016-04-22 Renault Sa METHOD OF ESTIMATING THE DIAMETER OF A WELD

Similar Documents

Publication Publication Date Title
CA2626026C (en) Ultrasonic testing system and ultrasonic testing technique for pipe member
JP4910770B2 (en) Tubular ultrasonic inspection apparatus and ultrasonic inspection method
JP2005274557A (en) Ultrasonic flaw detecting method and device
JP3861833B2 (en) Ultrasonic inspection method and apparatus
JP6348508B2 (en) Apparatus and method for non-destructive control of metal profiles
JP4600335B2 (en) Ultrasonic inspection method and apparatus
JPH09274019A (en) Evaluation method for scale of defect by ultrasonic waves
Gebhardt Improvement of ultrasonic testing by phased arrays
JP3778004B2 (en) Inspection equipment that can transmit radio waves
JP3165888B2 (en) Ultrasonic flaw detection method and ultrasonic flaw detection apparatus
JP3609975B2 (en) Sizing ultrasonic flaw detector and sizing flaw detection method
JP2020524797A (en) Non-destructive inspection of tubular products with complex shapes
JP2008286639A (en) Coupling check method of ultrasonic oblique angle flaw detector
JP2018136252A (en) Ultrasonic inspection device, ultrasonic inspection system including the same, and ultrasonic inspection method and program
CA2188705A1 (en) Method and apparatus for exciting bulk acoustic wave
JP2966515B2 (en) Ultrasonic inspection method and ultrasonic inspection device
KR20020011662A (en) Method of Detecting Internal Cracks of Steel Products using Laser-Ultrasonic
JP2020159884A (en) Ultrasonic flaw detector and ultrasonic flaw detection method
Lam et al. Flaw characterization based on diffraction of ultrasonic waves
JPH08211028A (en) Ultrasonic flaw detecting method and apparatus
Uchida et al. Availability study of a phased array ultrasonic technique
US11986908B1 (en) System and apparatus for inspecting welds in normal and transverse directions
KR20050022585A (en) System for defect-detection in plate using a laser excitation typed lamb wave
JP2002071648A (en) Method and device for ultrasonic flaw detection
JPH04166761A (en) Ultrasonic probe