JPH04166761A - Ultrasonic probe - Google Patents

Ultrasonic probe

Info

Publication number
JPH04166761A
JPH04166761A JP2292455A JP29245590A JPH04166761A JP H04166761 A JPH04166761 A JP H04166761A JP 2292455 A JP2292455 A JP 2292455A JP 29245590 A JP29245590 A JP 29245590A JP H04166761 A JPH04166761 A JP H04166761A
Authority
JP
Japan
Prior art keywords
ultrasonic
piezoelectric vibrator
ultrasonic probe
vibrator
piezoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2292455A
Other languages
Japanese (ja)
Inventor
Hiroshi Watanabe
洋 渡辺
Hideo Kobayashi
秀夫 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Keiki Inc
Original Assignee
Tokimec Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokimec Inc filed Critical Tokimec Inc
Priority to JP2292455A priority Critical patent/JPH04166761A/en
Publication of JPH04166761A publication Critical patent/JPH04166761A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To obtain resolving power having flaw detection dimensions designated in two perpendicularly crossing directions within a material to be inspected by providing a piezoelectric vibrator of which the ultrasonic transmitting the receiving surface is spherical and the opening part is rectangular. CONSTITUTION:A square opening part 6 is provided in front of a case 2 emitting ultrasonic waves of an ultrasonic probe 1. A back plate 5 composed of material quality large in attenuation at the time of the propagation of ultrasonic waves is provided in the case 2 and the front thereof forms a concaved spherical surface. A piezoelectric vibrator 3 has high frequency and wide-band characteristics and is easily processed into an arbitrary shape and approximate to water in acoustic impedance and a polymer piezoelectric body of a small value is provided in front of the back plate 5 and electrodes 7, 8 are provided on both surfaces of the vibrator 3. The vibrator 3 has a radius R of curvature and the dimension of the opening part 6 is D and, when the wavelength of ultrasonic waves is lambda, predetermined ultrasonic beam is formed.

Description

【発明の詳細な説明】 ]産業上の利用分野] この発明は例えば液中において被検材の欠陥検出などに
用いられる超音波探触子、特に直交する方向の超音波ヒ
ームの形式に鴛するものである。
[Detailed Description of the Invention] ] Industrial Application] The present invention applies to an ultrasonic probe used, for example, in detecting defects in a test material in a liquid, particularly in the form of an ultrasonic beam in orthogonal directions. It is something.

I従来の技術[ 液中へ被検材と超音波探触子を隔離して配設し、超音波
を用いて被検材の欠陥検出か行われている。
I. Conventional technology: A specimen material and an ultrasonic probe are placed separately in a liquid, and ultrasonic waves are used to detect defects in the specimen material.

第5図は従来の圧電振動子による超音波ヒーム形式の一
例、 4は保護層、5は超音波を減衰させる背板、13は圧電
振動子、Rは圧電振動子13超音波放射゛面の曲率半径
、Dは圧電振動子13の開口寸法である。
Fig. 5 is an example of an ultrasonic beam type using a conventional piezoelectric vibrator, 4 is a protective layer, 5 is a back plate that attenuates ultrasonic waves, 13 is a piezoelectric vibrator, and R is the ultrasonic radiation surface of the piezoelectric vibrator 13. The radius of curvature, D, is the opening dimension of the piezoelectric vibrator 13.

従来の超音波探触子は上記のように構成され、超音波送
受波面か曲率半径Rの球面をなす円形状圧電振動子3は
、超音波送受波面には保護14がまた背面には背板5が
設けられている。圧電振動子3の開口寸法りを小ざくす
ると焦点位置におけるビーム巾が広い超音波ヒームが形
成される。
The conventional ultrasonic probe is constructed as described above, and the ultrasonic wave transmitting/receiving surface is a circular piezoelectric vibrator 3 having a spherical surface with a radius of curvature R, and the ultrasonic wave transmitting/receiving surface is provided with a protection 14 and the back plate is provided with a back plate. 5 is provided. When the aperture size of the piezoelectric vibrator 3 is made small, an ultrasonic beam with a wide beam width at the focal position is formed.

第6図aは従来の圧電振動子の超音波ビーム形成の他の
一例、第6図すは第6図aの直交方向における超音波指
向持重の一例、 方形状の圧電振動子13は一方向に円柱状曲面をなして
おり、第6図aに示すように円柱状曲面によって超音波
ビームか形成される。また第6図すに示すとありこれと
直交する方向における圧電振動子13から放射される超
音波は集束されず圧電振動子13全而から均一に放射さ
れる。従って焦点位置における超音波ビームは直交する
2方向にラインフォーカスをなしている。
Fig. 6a is another example of ultrasonic beam formation of a conventional piezoelectric vibrator, Fig. 6 is an example of an ultrasonic directing load in a direction orthogonal to Fig. 6a, and the square piezoelectric vibrator 13 is unidirectional. The ultrasonic beam is formed by the cylindrical curved surface as shown in FIG. 6a. Further, as shown in FIG. 6, the ultrasonic waves emitted from the piezoelectric vibrator 13 in a direction perpendicular to this direction are not focused and are emitted uniformly from the entire piezoelectric vibrator 13. Therefore, the ultrasonic beam at the focal position is line focused in two orthogonal directions.

上記に示す超音波ビームを備えた超音波探触子が液中に
あける被検材の欠陥検出に供されている。
The ultrasonic probe equipped with the ultrasonic beam described above is used to detect defects in a test material that is immersed in a liquid.

1発明が解決しようとする課題1 上記のような従来の超音波探触子ては、超音波送受波面
が球面をなす円形状圧電振動子13から放射される超音
波ビームは集束され、直交する2方向に関しては同一の
指向特性を示している。
1 Problem to be Solved by the Invention 1 In the conventional ultrasonic probe as described above, the ultrasonic beams emitted from the circular piezoelectric vibrator 13 whose ultrasonic wave transmitting/receiving surface is spherical are focused and orthogonal to each other. The same directional characteristics are shown in the two directions.

従って例えば水中にて旋回送り機構により搬送される管
または棒の欠陥検出において、径方向と長さ方向で欠陥
検出寸法が異なるとき、上記要件に適合した分解能にて
感度良く欠陥検出が行えない。さらに被検材の移動ピッ
チか小さくなり検査に時間を要する。
Therefore, for example, when detecting defects in a tube or rod conveyed by a rotating feed mechanism underwater, when the defect detection dimensions differ in the radial direction and the length direction, the defect cannot be detected with high sensitivity at a resolution that meets the above requirements. Furthermore, the moving pitch of the material to be inspected becomes smaller, and inspection takes more time.

また一方向か円柱状曲面をなす方形状の圧電振動子13
から放射される超音波ビームは、−方向においては集束
されるがこれと直交する方向の超音波は集束されないの
で、従って直交する2方向について被検材は指定された
欠陥寸法即ち分解能にて欠陥検出が行えず、更に欠陥信
号対雑音比(S/凡)も小さくなる。
Also, a rectangular piezoelectric vibrator 13 having a unidirectional or cylindrical curved surface
The ultrasonic beam emitted from the - direction is focused in the - direction, but the ultrasonic beam in the direction perpendicular to this is not focused. Therefore, in the two orthogonal directions, the specimen is defective with the specified defect size, that is, resolution. Detection cannot be performed, and the defect signal-to-noise ratio (S/normal) also becomes smaller.

被検材搬送方向に所定巾の超音波ビームか得られないと
、被検材の移動ピッチと整合できないので全表面にnり
欠陥検出か効率良く行えないという問題点がめった。
Unless an ultrasonic beam of a predetermined width is obtained in the direction of conveyance of the material to be inspected, it is impossible to match the moving pitch of the material to be inspected, so defects often cannot be detected efficiently over the entire surface.

この発明はかかる問題点を解決するためになされたもの
で、被検材内の直交する2方向に亙り指定された欠陥検
出寸法による分解能が得られ且つ効率良く欠陥検出か行
える超音波探触子を冑ることを目的とする。
This invention was made to solve these problems, and is an ultrasonic probe that can obtain resolution according to specified defect detection dimensions in two orthogonal directions within a material to be inspected, and can efficiently detect defects. The purpose is to heal.

]課題を解決するための手段二 この発明Iこ係る超音波探触子は、超音波送受波面か球
面状で且つ開口部が長方形をなす圧電振動子を設けたも
のである。
] Means for Solving the Problems 2 This Invention I This ultrasonic probe is provided with a piezoelectric vibrator having a spherical ultrasonic wave transmitting/receiving surface and a rectangular opening.

1作用] この発明においては、超音波送受波面が球面状をなし且
つ周波数の高い圧電振動子が用いられた超音波探触子は
、開口部を方形状にすると形成される超音波ビームは開
口寸法に依存する。
1 Effect] In the present invention, an ultrasonic probe in which the ultrasonic wave transmitting/receiving surface has a spherical shape and uses a high-frequency piezoelectric vibrator has a rectangular aperture so that the formed ultrasonic beam is Depends on dimensions.

即ち開口寸法が大きくなるとビームは集束されてビーム
巾が細くなる。しかし開口寸法が小さくなるに従いビー
ム巾は広くなる。
That is, as the aperture size increases, the beam is focused and the beam width becomes narrower. However, as the aperture size becomes smaller, the beam width becomes wider.

従って開口部か長方形をなす超音波探触子がらは直交す
る2方向についてそれぞれビーム巾の具なる超音波が放
射される。ご−ムは広がりをもっているので直交する2
方向の焦点位置において長さの異なるライシンを一カス
が形成される。
Therefore, the ultrasonic probe, which has a rectangular opening, emits ultrasonic waves having beam widths in two orthogonal directions. Since the goal has a spread, two orthogonal
A slough of lysin with different lengths is formed at the focal position in the direction.

上記のとあり変形自在な高分子圧電体またはセラミック
圧電体を用いて、球面の曲率半径ならびに開口部の寸法
を選定することにより、上記ラインフォーカスの寸法を
欠陥検出寸法と整合させることかでき、被検材の欠陥検
出寸法に適合した超音波じ−ムを形成させ信号対雑音化
かすぐれた適正な検査か行える。
By selecting the radius of curvature of the spherical surface and the dimensions of the opening using the above-mentioned deformable polymer piezoelectric material or ceramic piezoelectric material, the dimension of the line focus can be matched with the defect detection dimension, By forming an ultrasonic beam that matches the defect detection dimensions of the material to be inspected, proper inspection with excellent signal-to-noise conversion can be performed.

また被検材の移動ピッチと超音波ビームの整合により検
査効率か向上できる。
In addition, inspection efficiency can be improved by matching the movement pitch of the specimen to be inspected and the ultrasonic beam.

「実施例] この発明の一実施例を添付図面を参照して詳細に説明す
るg 第1図aはこの発明の一実施例を示す正面図、第1図す
は第1図aのA−A断面図である。
``Embodiment'' An embodiment of the present invention will be described in detail with reference to the accompanying drawings.g Fig. 1a is a front view showing an embodiment of the invention; It is an A sectional view.

図において、4.5は上記従来探触子と同一て必り、1
は超音波探触子、2はケース、3は高分子圧電体などが
用いられる圧電振動子、6tよ超音波を放射する開口部
、7は圧電振動子3の一方の面に付設された第1電極、
8は圧電振動子3の他方の面に付設された第2電極、9
は・ソート線、10はケーブルを示している。
In the figure, 4.5 is the same as the conventional probe mentioned above, and 1
2 is an ultrasonic probe, 2 is a case, 3 is a piezoelectric vibrator using a polymeric piezoelectric material, 6t is an opening for emitting ultrasonic waves, and 7 is an opening attached to one side of the piezoelectric vibrator 3. 1 electrode,
8 is a second electrode attached to the other surface of the piezoelectric vibrator 3; 9
10 indicates a sorting line, and 10 indicates a cable.

上記のように構成された超音波探触子においては、超音
波探触子ユの超音波を放射するケース2正而には方形状
の開口部6か設けられている。ケース2内部には超音波
伝搬時減衰の大きな材質よりなる背板5を設は前面は凹
面状の球面をなしている。
In the ultrasonic probe configured as described above, a rectangular opening 6 is provided in the case 2 for emitting ultrasonic waves of the ultrasonic probe. Inside the case 2 is a back plate 5 made of a material that exhibits large attenuation during ultrasonic propagation, and the front surface of the case 2 has a concave spherical surface.

圧電振動子3は高周波且つ広帯域特性を備え任意形状の
加工か容易で音響インピーダンスは水に近似して小さい
値の高分子圧電体が上記背板5前面に設けられ、圧電振
動子3の両面には第1電恒7ならびに第2電極8か付設
されている。更に圧電振動子3前面には防水構造ならび
に水との音響インピーダンス整合のため、例えばポリエ
チレン、ポリイミド、ポリエステル、ポリプロピレンな
とのフィルムを用いた保護葡4か設けられている。上記
球面状の圧電振動子3の開口部6は方形状をなしている
The piezoelectric vibrator 3 has high-frequency and wide-band characteristics, can be easily processed into any shape, and has a small acoustic impedance similar to that of water. A first electrode 7 and a second electrode 8 are attached. Further, on the front surface of the piezoelectric vibrator 3, a protective cover 4 made of, for example, polyethylene, polyimide, polyester, or polypropylene film is provided for waterproof construction and acoustic impedance matching with water. The opening 6 of the spherical piezoelectric vibrator 3 has a rectangular shape.

リード線8とケーブル10を介して圧電振動子3への付
勢ならびに圧電振動子3がらの信号伝達か行われている
Via the lead wire 8 and cable 10, the piezoelectric vibrator 3 is energized and signals are transmitted from the piezoelectric vibrator 3.

第2図は第]図aのA−A要部甑面図を示し、高周波圧
電振動子3は曲率半径R1開口部6の開口寸法りて且つ
超音波の波長か人のとき、これを用いた超音波探触子ユ
か形成する焦点位置にあける一3dbの超音波ビーム巾
d−3はにて示される。
FIG. 2 shows an A-A main part diagram of FIG. The ultrasonic beam width d-3 of 13 dB formed at the focal position formed by the ultrasonic probe 1 is shown as d-3.

周波数ならびに球面の曲率半径Rか一定のときは焦点位
置にあける超音波ビーム巾は開口部6の開口寸法りの関
数となる。
When the frequency and the radius of curvature R of the spherical surface are constant, the width of the ultrasonic beam formed at the focal position is a function of the aperture size of the aperture 6.

第3図は第1図aのB−8要部断面図を示し、A−A断
面とB−8断面は直交しており、圧電振動子3の開口部
6の開口寸法りか異なる他は同一構成をなしている。
FIG. 3 shows a cross-sectional view of the main part at B-8 in FIG. It is composed of

上記において開口部6の開口寸法りか小さくなると超音
波ビーム巾CL3は広くなる。開口部6か方形状をなす
超音波探触子ユか形成する超音波ビームは直交する2方
向についてそれぞれ異なる。
In the above, when the aperture size of the aperture 6 becomes smaller, the ultrasonic beam width CL3 becomes wider. The ultrasonic beams formed by the ultrasonic probe unit having six rectangular openings are different in two orthogonal directions.

また高周波且つ広帯載持[生を備えた高分子圧電体(ユ
パルス巾の短い信号にて付勢てきるので、被@材表面近
1労ならびに深さ方向の欠陥検出の分解能か向上できる
In addition, since the polymer piezoelectric material (with high frequency and wide band loading) is energized by a signal with a short pulse width, the resolution of defect detection near the surface of the workpiece and in the depth direction can be improved.

例えば水中(音速1500m  s)にあ(ブる、開口
部6の開口寸法D 5.1mmX 1Qmm、周波数2
0\・IH2、の圧電振動子3か焦点距離10mmにて
形成する超音波ビーム(よ、水平方向ビーム巾d1=0
. 15mm垂直方向ヒームビーム巾0.077mmと
なり、水浸探@【こおいて直交する2方向の欠陥検出寸
法か80μmX150μmの超音波探触子ユか得られる
For example, under water (velocity of sound 1500 m s), opening size D of opening 6 is 5.1 mm x 1 Q mm, frequency 2
Ultrasonic beam formed by piezoelectric vibrator 3 of 0\IH2 with a focal length of 10 mm (horizontal beam width d1 = 0
.. The beam width in the vertical direction is 15 mm, and the width of the beam in the vertical direction is 0.077 mm, and an ultrasonic probe measuring 80 μm x 150 μm can be obtained with defect detection dimensions in two orthogonal directions.

第4図aは水浸探傷の一例を示す側面図、第4区すは第
4図aの正面図を示し、 水漕9内水中に焦点距離F隔てて超音波探触子ユと被検
材10としての管または丸棒か浸漬され、被検材10は
回転しつつ矢示の方向へ搬送される。
Fig. 4a is a side view showing an example of water immersion flaw detection, and the fourth section is a front view of Fig. 4a. A tube or a round bar as the material 10 is immersed, and the material 10 to be tested is conveyed in the direction of the arrow while rotating.

超音波探触子ユからむ2射される超音波ビーム(は、焦
・点距離Fに1之置する被検材10の搬送方向のビーム
巾d1、これと直交する方向のビーム巾d2とし且つa
=波パルスのパルス巾か珀いとき、搬送される被検材1
Qの全面検査に際し移動ピンチをじ一ムFi] (j 
1 寸法と等しくなし、且つ搬送方向ならび(ここれと
直交する方向のビーム巾寸法を欠陥検出寸法と整合させ
ると、被検材10の検査効率か向上できると共に信号対
雑音比か改良され欠陥検ま能も向上できる。
The two ultrasonic beams emitted from the ultrasonic probe unit (are the beam width d1 in the transport direction of the specimen 10 placed at the focal point distance F, the beam width d2 in the direction orthogonal to this, and a
= When the pulse width of the wave pulse varies, the specimen 1 to be transported
When inspecting the entire surface of Q, the moving pinch is the same as Fi] (j
1, and by matching the beam width dimension in the transport direction (orthogonal to this) with the defect detection dimension, the inspection efficiency of the inspected material 10 can be improved, and the signal-to-noise ratio is improved, making defect detection easier. You can also improve your manpower.

更に深さ方向については表面近傍から分解能のすくれた
欠陥検出か行える。
Furthermore, in the depth direction, defects with low resolution can be detected from near the surface.

上記のとあり、任意形状への適合か容易な高周波高分子
圧電体は超音波送受波面か球面状で且つ開口部6か方形
状をなしているので、球面の曲率半径ならひに方形状の
開口を所定の寸法とすることにより、直交する2方向の
それぞれのビーム中部ちラインフォーカスの寸法を欠陥
検出寸法に整合できる。
As mentioned above, the high-frequency polymer piezoelectric material, which can be easily adapted to any shape, has a spherical ultrasonic wave transmitting/receiving surface and a rectangular opening 6, so if the radius of curvature of the spherical surface is By setting the aperture to a predetermined size, it is possible to match the dimensions of the mid-beam center line focus in two orthogonal directions to the defect detection dimensions.

併せてパルス巾の囲い超音波パルスを用いて細径管など
において信号対雑音比か改良された微小欠陥検出か容易
に行える。
In addition, the signal-to-noise ratio and improved detection of micro-defects in small-diameter pipes and the like can be easily achieved using pulse-width ultrasonic pulses.

また圧電振動子3にセラミック圧電1本を用いても同等
の動作か行える。
Further, even if one ceramic piezoelectric is used as the piezoelectric vibrator 3, the same operation can be performed.

1発明の効果] この発明は以上説明したとあり、曲面形状をなす高周波
圧電振動子の開口部を方形状とする簡単な構造により、 直交する2方向について超音波ビーム巾を被検材の欠陥
検出寸法に整合できる。
1. Effects of the invention] As described above, this invention uses a simple structure in which the aperture of a high-frequency piezoelectric vibrator having a curved surface shape is rectangular. Can be matched to detection dimensions.

被検材の移動ピッチと超音波ビーム巾を整合させ全表面
に亙る検査が効率良く行える。
By matching the movement pitch of the material to be inspected and the ultrasonic beam width, inspection over the entire surface can be performed efficiently.

更に改良された信号対雑音比による微小欠陥検出かでき
Furthermore, the improved signal-to-noise ratio enables the detection of small defects.

パルス巾の短い超音波パルスを用いて被検材の深さ方向
の欠陥検出の分解能か向上できるという効果かある。
This method has the effect of improving the resolution of defect detection in the depth direction of the test material by using ultrasonic pulses with a short pulse width.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの説明の一実施例を示す正面図、第2図は第
1図のA−A断面図、第2図は第1図のA−A要部断面
図、第3図(よ第1図aのB−B要部石面図、第4図a
は水浸探傷の一例を示す側面図、第4図b1は第4区a
の正面図、第5図は従来の圧電振動子による超音波ビー
ム形成の一例、第6図aは従来の圧電振動子による超音
波ビーム形成の他の一例、第6図すは第6図aの直交方
向の超音波パルス[生の一例である。 図において3は圧電振動子、4は保護層、5は背板、6
は開口部、Rは曲率半径、Dは開口寸法である。 なあ、各区中同−符号は同一または相当部分を示す。 特許出願人   株式会社  トキメツクBL=− 3、圧電膜(重力子 4 保護層 5  背板 6 開口部 巳゛曲率手径 D゛開口寸)去 第2図 第3図 第4図す 、8 )    \ 第6図a        第6図b
Fig. 1 is a front view showing an example of this explanation, Fig. 2 is a sectional view taken along the line A-A in Fig. 1, Fig. 2 is a sectional view taken along the line A-A in Fig. B-B main part stone plan of Figure 1a, Figure 4a
is a side view showing an example of water immersion flaw detection, and Fig. 4 b1 is the 4th section a.
5 is an example of ultrasonic beam formation using a conventional piezoelectric vibrator. FIG. 6a is another example of ultrasonic beam formation using a conventional piezoelectric vibrator. Ultrasonic pulses in the orthogonal direction [This is a raw example. In the figure, 3 is a piezoelectric vibrator, 4 is a protective layer, 5 is a back plate, and 6
is the opening, R is the radius of curvature, and D is the opening dimension. Note that the same symbols in each section indicate the same or corresponding parts. Patent applicant: Tokimetsuku Co., Ltd. BL=- 3, Piezoelectric film (gravitational force 4, protective layer 5, back plate 6, opening width, curvature radius D, opening size), Figure 2, Figure 3, Figure 4, Figure 8) \ Figure 6a Figure 6b

Claims (4)

【特許請求の範囲】[Claims] (1)超音波の送受波を行う圧電振動子前面に保護層を
また後面に超音波を減衰させる背板を備えた超音波探触
子において、 超音波送受波面が球面状で且つ開口部が長方形をなす圧
電振動子を備えたことを特徴とする超音波探触子。
(1) In an ultrasound probe equipped with a protective layer on the front surface of a piezoelectric vibrator that transmits and receives ultrasound waves and a back plate that attenuates ultrasound waves on the back surface, the ultrasonic wave transmission and reception surface is spherical and the opening is An ultrasonic probe characterized by being equipped with a rectangular piezoelectric vibrator.
(2)圧電振動子は高分子圧電体である請求項1記載の
超音波探触子。
(2) The ultrasonic probe according to claim 1, wherein the piezoelectric vibrator is a polymeric piezoelectric material.
(3)圧電振動子はセラミック圧電体である請求項1記
載の超音波探触子。
(3) The ultrasonic probe according to claim 1, wherein the piezoelectric vibrator is a ceramic piezoelectric body.
(4)球面は凹面である請求項1記載の超音波探触子。(4) The ultrasonic probe according to claim 1, wherein the spherical surface is a concave surface.
JP2292455A 1990-10-30 1990-10-30 Ultrasonic probe Pending JPH04166761A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2292455A JPH04166761A (en) 1990-10-30 1990-10-30 Ultrasonic probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2292455A JPH04166761A (en) 1990-10-30 1990-10-30 Ultrasonic probe

Publications (1)

Publication Number Publication Date
JPH04166761A true JPH04166761A (en) 1992-06-12

Family

ID=17782025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2292455A Pending JPH04166761A (en) 1990-10-30 1990-10-30 Ultrasonic probe

Country Status (1)

Country Link
JP (1) JPH04166761A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010133856A (en) * 2008-12-05 2010-06-17 Sanyo Special Steel Co Ltd Method for detecting and evaluating flaw of center part of round-bar steel
JP2012093246A (en) * 2010-10-27 2012-05-17 Jfe Steel Corp Ultrasonic probe and method for detecting defect
JP2012093247A (en) * 2010-10-27 2012-05-17 Jfe Steel Corp Method for detecting defect using leakage surface acoustic wave, and defect detecting device
JP2013242220A (en) * 2012-05-21 2013-12-05 Sanyo Special Steel Co Ltd Array probe, immersion ultrasonic test equipment having the array probe, and method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010133856A (en) * 2008-12-05 2010-06-17 Sanyo Special Steel Co Ltd Method for detecting and evaluating flaw of center part of round-bar steel
JP2012093246A (en) * 2010-10-27 2012-05-17 Jfe Steel Corp Ultrasonic probe and method for detecting defect
JP2012093247A (en) * 2010-10-27 2012-05-17 Jfe Steel Corp Method for detecting defect using leakage surface acoustic wave, and defect detecting device
JP2013242220A (en) * 2012-05-21 2013-12-05 Sanyo Special Steel Co Ltd Array probe, immersion ultrasonic test equipment having the array probe, and method thereof

Similar Documents

Publication Publication Date Title
US4297886A (en) Ultrasonic flaw detector for immersion testing of articles
EP0139867B1 (en) Near surface inspection system
US3262307A (en) Omnidirectional ultrasonic search system
JP2009097942A (en) Noncontact-type array probe, and ultrasonic flaw detection apparatus and method using same
JPH04166761A (en) Ultrasonic probe
JP3671819B2 (en) Ultrasonic flaw detector for welded steel pipe
JP5345096B2 (en) Array ultrasonic flaw detector
JPH07244028A (en) Apparatus and method for ultrasonically detecting flaw on spherical body to be detected
JP2002044773A (en) Acoustic lens and ultrasonic transmitter
US6952967B2 (en) Ultrasonic transducer
JPH04157360A (en) Supersonic probe
JP2019174239A (en) Ultrasonic flaw detection method
JPH05180807A (en) Method for selecting ultrasonic-wave probe and probe selected by method thereof
JP4636967B2 (en) Ultrasonic flaw detection method
JP3298085B2 (en) Ultrasonic flaw detection method and device
JP2005221371A (en) Ultrasonic probe
JP2006003150A (en) Oblique probe and ultrasonic flaw detector
JPH1151911A (en) Line focus type ultrasonic flaw detecting method and device
SU1762224A1 (en) Meter for determination of direction diagram of ultrasound flaw detector converters
JPH044220Y2 (en)
JPS6327748A (en) Ultrasonic probe
JPH1082769A (en) Adjustable focusing probe
JPS5926898B2 (en) Ultrasonic transducer
RU1824574C (en) Method for ultrasonic testing of pipeline surface
JPH08220079A (en) Ultrasonic probe