JPH044220Y2 - - Google Patents

Info

Publication number
JPH044220Y2
JPH044220Y2 JP1984035894U JP3589484U JPH044220Y2 JP H044220 Y2 JPH044220 Y2 JP H044220Y2 JP 1984035894 U JP1984035894 U JP 1984035894U JP 3589484 U JP3589484 U JP 3589484U JP H044220 Y2 JPH044220 Y2 JP H044220Y2
Authority
JP
Japan
Prior art keywords
ultrasonic
inspected
flaw detection
conical surface
probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1984035894U
Other languages
Japanese (ja)
Other versions
JPS60146852U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP3589484U priority Critical patent/JPS60146852U/en
Publication of JPS60146852U publication Critical patent/JPS60146852U/en
Application granted granted Critical
Publication of JPH044220Y2 publication Critical patent/JPH044220Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Description

【考案の詳細な説明】[Detailed explanation of the idea] 【産業上の利用分野】[Industrial application field]

本考案は、超音波探傷用の斜角探触子に係り、
特に、管状の被検査材の傷等を超音波で探傷する
際に用いるのに好適な、超音波探傷用の斜角探触
子の改良に関する。
This invention relates to an angle probe for ultrasonic flaw detection.
In particular, the present invention relates to an improvement in an angle probe for ultrasonic flaw detection, which is suitable for use in ultrasonic flaw detection of flaws in tubular materials to be inspected.

【従来の技術】[Conventional technology]

一般に、管状の被検査材の傷等を超音波によつ
て検査する場合は、管軸方向の欠陥(以下L傷と
称する)及び管周方向の欠陥(以下T傷と称す
る)を検出するための斜角探傷と、いわゆる2枚
割れ状欠陥を検出すると共に管厚を測定するため
の垂直探傷とを、単独又は併用して実施するよう
にしている。 このうち、前記斜角探傷を行う場合は、一般に
探触子を第1図及び第2図に示すように配置して
探傷するのが通例である。 即ち、第1図は、主にL傷の検出を目的として
探触子を配置した様子を示すもので、探触子10
の振動子12から送信された超音波ビーム14
が、被検査材16の管周方向Xに伝搬するように
したものである。一方、第2図は、主にT傷の検
出を目的として探触子を配置した様子を示すもの
で、探触子10の振動子12から送信された超音
波ビーム14が、被検査材16の管軸方向Yに伝
搬するようにしたものである。 一般に超音波探傷は、鋭い指向性を一つの特徴
としているため、管周方向Xに超音波ビーム14
を伝搬させるようにしたL傷探傷においては管軸
方向Yにほぼ平行な欠陥が、管軸方向Yに超音波
ビーム14を伝搬させるようにしたT傷探傷にお
いては、管周方向Xにほぼ平行な欠陥がそれぞれ
検出可能である。
Generally, when inspecting flaws etc. on a tubular material to be inspected using ultrasonic waves, defects in the tube axis direction (hereinafter referred to as L flaws) and defects in the tube circumferential direction (hereinafter referred to as T flaws) are detected. The oblique flaw detection and the vertical flaw detection for detecting so-called double-crack defects and measuring the tube thickness are carried out singly or in combination. Among these methods, when performing the above-mentioned oblique angle flaw detection, it is customary to arrange the probes as shown in FIGS. 1 and 2 for flaw detection. That is, FIG. 1 shows how the probes are arranged mainly for the purpose of detecting L flaws, and the probe 10
The ultrasonic beam 14 transmitted from the transducer 12 of
is configured to propagate in the circumferential direction X of the material 16 to be inspected. On the other hand, FIG. 2 shows how the probes are arranged mainly for the purpose of detecting T flaws, and the ultrasonic beam 14 transmitted from the transducer 12 of the probe 10 is The beam propagates in the tube axis direction Y. Generally, one of the characteristics of ultrasonic flaw detection is sharp directivity, so the ultrasonic beam 14
In L flaw detection, in which the ultrasonic beam 14 is propagated in the tube axis direction, the defect is almost parallel to the tube axis direction Y, and in T flaw detection, in which the ultrasonic beam 14 is propagated in the tube axis direction Y, the defect is almost parallel to the tube circumferential direction X. Each defect can be detected.

【考案が解決しようとする課題】[Problem that the idea aims to solve]

しかしながら、被検査材16に発生する自然欠
陥の中には、管周方向X又は管軸方向Yに対して
ある程度傾いているものも多く存在する。ところ
が、従来の探触子を備えた探傷装置にあつては、
こうした管周方向X又は管軸方向Yに対してある
程度傾いている欠陥を検出することが、上記鋭い
指向性の故に極めて困難であるという問題があつ
た。 この問題に対しては、被検査材上に多数の探触
子を等ピツチずつ角度をずらして配置し、各探触
子の振動子から照射される超音波ビームの入射方
向が若干ずつずれるようにすれば、ある角度だけ
傾いている欠陥でも該多数の探触子のいずれかか
ら照射された超音波ビームによつて必ず検出でき
るように対処できる。 しかしながら、このように多数の探触子を等ピ
ツチずつ角度をずらして配置するのはそのセツテ
ングが繁雑になるだけでなく、探傷装置全体が非
常に大型となり、経済上及び保守上好ましくない
結果になるという問題がある。 本考案は、上記従来の問題点に鑑みてなされた
ものであつて、多数の探触子を配置することな
く、L傷〜傾いた傷〜T傷の種々の欠陥を検出で
きるような超音波探傷用の斜角探触子を提供する
ことを目的とする。
However, among the natural defects that occur in the inspected material 16, there are many that are inclined to some extent with respect to the tube circumferential direction X or the tube axis direction Y. However, in the case of flaw detection equipment equipped with conventional probes,
There has been a problem in that it is extremely difficult to detect defects that are inclined to some extent with respect to the circumferential direction X or the tube axis direction Y due to the sharp directivity. To solve this problem, a large number of probes are arranged on the material to be inspected at equal pitches and shifted at angles, so that the incident direction of the ultrasonic beam emitted from the transducer of each probe is slightly shifted. By doing so, it is possible to ensure that even a defect that is tilted at a certain angle can be detected by the ultrasonic beam irradiated from one of the plurality of probes. However, arranging a large number of probes at equal intervals at different angles not only complicates the setup, but also makes the entire flaw detection device extremely large, which is unfavorable from an economical and maintenance standpoint. There is a problem with becoming. The present invention was developed in view of the above-mentioned conventional problems, and uses ultrasonic waves that can detect various defects such as L scratches, tilted scratches, and T scratches without arranging a large number of probes. The purpose of this invention is to provide an angle probe for flaw detection.

【課題を解決するための手段】[Means to solve the problem]

本考案は、超音波探傷用の斜角探触子におい
て、軸線が被検査材の表面と直行するような円錐
面、又は円錐面の一部を備えた超音波伝播体と、
該超音波伝播体の前記円錐面上に周方向に並置さ
れると共に、各々の超音波ビームの照射方向が前
記円錐面の軸線が被検査材の表面と交わる定点に
向うようにされた複数の振動子と、を備えたこと
によつて上記目的を達成したものである。
The present invention provides an angle probe for ultrasonic flaw detection, including an ultrasonic propagating body having a conical surface or a part of a conical surface whose axis is perpendicular to the surface of the material to be inspected;
A plurality of ultrasonic beams are juxtaposed in the circumferential direction on the conical surface of the ultrasonic propagator, and the irradiation direction of each ultrasonic beam is directed toward a fixed point where the axis of the conical surface intersects with the surface of the material to be inspected. The above object has been achieved by including a vibrator.

【作用】[Effect]

本考案は、単一の探触子に複数の振動子を備え
るようにし、且つ、各振動子からの超音波ビーム
が、被検査材上の特定の点に対して複数の方向か
ら同一入射角度で入射するようにしたため、多数
の探触子を配置することなく、種々の方向から被
検査材に入射する超音波ビームを容易に得ること
ができる。
In the present invention, a single probe is equipped with multiple transducers, and the ultrasonic beam from each transducer is directed at a specific point on the material to be inspected from multiple directions at the same incident angle. Therefore, it is possible to easily obtain ultrasonic beams that are incident on the inspected material from various directions without arranging a large number of probes.

【実施例】【Example】

以下図面に基づいて本考案の実施例を詳細に説
明する。 この第1実施例は、第3図及び第4図に示され
るように、軸線Cが被検査材16の表面と直交す
るような円錐面22を備えた超音波伝播体(音響
遅延材)20と、該超音波伝播体20の前記円錐
面22上で周方向Zに並置されると共に、各々の
超音波ビーム28a〜28p(28e,28mの
み図示)の照射方向が前記円錐面22の軸線Cが
被検査材16の表面と交わる定点Pに向うように
された16個の振動子24a〜24pと、を備え
たものである。 従つて、超音波伝播体20の円錐面22は、各
振動子24a〜24pから送信された超音波ビー
ム28a〜28pが所定の入射角θiを保ちつつ、
同一の入射定点Pを通過できるように加工されて
いる。又、各振動子24a〜24pは、この円錐
面上に22.5°の等間隔で配置されている。 なお、各振動子24a〜24pの構成、及び該
振動子24a〜24pを超音波伝播体20に固着
するための手法等については、従来と同様な手法
が採用されている。 次にこの第1実施例の作用を説明する。 各振動子24a〜24pから超音波ビーム28
a〜28pを送信すると、各超音波ビーム28a
〜28pは、それぞれ同一の入射定点Pを通過す
る。この定点Pは、円錐面22の軸線C上に設け
られるため、結局各超音波ビーム28a〜28p
は同一の入射角度θiで該定点Pを通過することに
なる。この結果、管状の被検査材16において
も、各振動子24a〜24pから送信された超音
波ビーム28a〜28pがそれぞれ一定の入射角
θiで入射してゆくことになる。 従つて、振動子24a〜24pを順次励振させ
ることにより、入射定点Pを中心に順次放射状に
超音波ビーム28a〜28pが被検査材16内に
送信されることになり、L傷、T傷はもとより、
管周方向X又は管軸方向Yに対して種々の傾きを
持つた欠陥であつてもいずれかの超音波ビーム2
8a〜28pによつて検出可能となる。 次に、第5図及び第6図に本考案の第2実施例
を示す。 この第2実施例は、円錐面の一部(図示の例で
は1/4)を有する超音波伝播体30と、該超音波
伝播体30の円錐面(の一部)32上で周方向Z
に並置されると共に、各々の超音波ビーム38a
〜38e(38eのみ図示)の照射方向が前記円
錐面32の中心を通る軸線Cが被検査材16の表
面と交わる定点Qに向うようにされた5個の振動
子34a〜34eと、を備えたものである。図に
おいて40は吸音材である。 この実施例にあつても、各振動子34a〜34
eから送信された超音波ビーム38a〜38e
は、同一の入射角θjで同一の入射定点Qを通過す
ることになり、振動子34a〜34eを順次励振
させることにより入射定点Qを中心に放射状に超
音波ビーム38a〜38eが被検査材16へと入
射されることになる。 従つて、この第2実施例に示す斜角探触子を、
その配置方向を90°異ならせて4個被検査材16
上に配置するようにすれば、第1実施例と同様に
L傷、T傷はもとより管周方向X又は管軸方向Y
に種々の傾きを持つ欠陥の検出も可能になる。 なお、上記第1、第2実施例においては、振動
子24a〜24p,34a〜34eを22.5°の等
ピツチで配置していたが、要求される品質によつ
ては必ずしも等ピツチにする必要はなく、又、等
ピツチにする場合であつても、他のピツチ、例え
ば45°,30°,18°,15°等にて配置するようにして
もよい。 又、上記第1、第2実施例では、1個の探触子
での検出可能範囲がそれぞれ、360°,90°に設定
されていたが、これを例えば180°、あるいは120°
に設定するようにしてもよい。なお、この場合、
360°の適宜の約数となるようにしておくと、組合
わせて全周方向の探傷を行う場合に合理的な配置
が可能である。
Embodiments of the present invention will be described in detail below based on the drawings. In this first embodiment, as shown in FIGS. 3 and 4, an ultrasonic propagation body (acoustic delay material) 20 is provided with a conical surface 22 such that an axis C is perpendicular to the surface of a material 16 to be inspected. are juxtaposed in the circumferential direction Z on the conical surface 22 of the ultrasonic propagation body 20, and the irradiation direction of each of the ultrasonic beams 28a to 28p (only 28e and 28m are shown) is aligned with the axis C of the conical surface 22. 16 vibrators 24a to 24p which are directed toward a fixed point P where the cross section intersects with the surface of the material 16 to be inspected. Therefore, the conical surface 22 of the ultrasonic propagator 20 allows the ultrasonic beams 28a to 28p transmitted from each of the transducers 24a to 24p to maintain a predetermined incident angle θi.
It is processed so that it can pass through the same fixed incident point P. Further, each of the vibrators 24a to 24p is arranged at equal intervals of 22.5° on this conical surface. Note that the configuration of each of the transducers 24a to 24p and the method for fixing the transducers 24a to 24p to the ultrasonic propagation body 20 are the same as conventional methods. Next, the operation of this first embodiment will be explained. Ultrasonic beam 28 from each transducer 24a to 24p
When transmitting a to 28p, each ultrasonic beam 28a
.about.28p pass through the same fixed incident point P, respectively. Since this fixed point P is provided on the axis C of the conical surface 22, each of the ultrasonic beams 28a to 28p
will pass through the fixed point P at the same angle of incidence θi. As a result, the ultrasonic beams 28a to 28p transmitted from the respective transducers 24a to 24p enter the tubular inspected material 16 at fixed incident angles θi. Therefore, by sequentially exciting the transducers 24a to 24p, the ultrasonic beams 28a to 28p are sequentially transmitted radially into the inspected material 16 centering on the fixed incident point P, and the L flaws and T flaws are eliminated. Of course,
Even if the defect has various inclinations with respect to the tube circumferential direction X or the tube axis direction Y, any ultrasonic beam 2
8a to 28p. Next, FIG. 5 and FIG. 6 show a second embodiment of the present invention. This second embodiment includes an ultrasonic propagator 30 having a part (1/4 in the illustrated example) of a conical surface, and a circumferential direction Z on (a part of) the conical surface 32 of the ultrasonic propagator 30.
and each ultrasonic beam 38a
- 38e (only 38e is shown) irradiation direction is directed toward a fixed point Q where an axis C passing through the center of the conical surface 32 intersects with the surface of the inspected material 16. It is something that In the figure, 40 is a sound absorbing material. Even in this embodiment, each vibrator 34a to 34
Ultrasonic beams 38a to 38e transmitted from e
pass through the same fixed point of incidence Q at the same angle of incidence θj, and by sequentially exciting the transducers 34a to 34e, the ultrasonic beams 38a to 38e radiate from the fixed point of incidence Q to the inspected material 16. It will be injected into the Therefore, the angle probe shown in this second embodiment is
4 pieces of inspected material 16 with their arrangement directions different by 90°
By arranging it on the top, not only L scratches and T scratches can be removed in the tube circumferential direction X or tube axial direction Y as in the first embodiment.
It is also possible to detect defects with various slopes. In the first and second embodiments, the vibrators 24a to 24p and 34a to 34e are arranged at equal pitches of 22.5 degrees, but depending on the quality required, it is not always necessary to arrange them at equal pitches. Alternatively, even if they are arranged at equal pitches, they may be arranged at other pitches, such as 45°, 30°, 18°, 15°, etc. Furthermore, in the first and second embodiments, the detectable range of one probe was set to 360° and 90°, respectively, but this could be changed to, for example, 180° or 120°.
You may also set it to . In this case,
If it is set to an appropriate divisor of 360°, a rational arrangement can be made when performing flaw detection in the entire circumferential direction in combination.

【考案の効果】 以上説明してきた如く、本考案によれば、1個
の探触子を取付けるだけで、被検査材に種々の方
向からの超音波ビームを入射させることができる
という優れた効果が得られる。 その結果、入射方向の数に合わせて探触子を多
数配置するという工程を省くことができ、セツテ
ングのための手間と時間を省略できるのみなら
ず、探傷装置自体を小形化でき、経済上及び保守
上良好な結果を得ることができる。
[Effects of the invention] As explained above, the present invention has the excellent effect of allowing ultrasonic beams to be incident on the inspected material from various directions just by attaching one probe. is obtained. As a result, it is possible to omit the process of arranging a large number of probes according to the number of incident directions, which not only saves time and effort for setting up, but also allows the flaw detection device itself to be miniaturized, which is economical and Good maintenance results can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図A,Bは、従来の探触子を用いてL傷の
超音波探傷を行う際の正面図及び側面図、第2図
A,Bは、同じくT傷の超音波探傷を行う際の正
面図及び側面図、第3図は、本考案に係る超音波
探傷用の斜角探触子の実施例を示す平面図、第4
図は、第3図−線に沿う断面図、第5図は、
本考案の第2実施例を示す第3図相当の平面図、
第6図は、第5図の−線に沿う断面図であ
る。 20,30……超音波伝播体、22,32……
円錐面、24a〜24p,34a〜34e……振
動子、26,36……底面、28a〜28p,3
8a〜38e……超音波ビーム、X……管周方
向、Y……管軸方向、C……円錐の軸線。
Figures 1A and B are front and side views when performing ultrasonic flaw detection for L flaws using a conventional probe, and Figures 2A and B are for ultrasonic flaw detection for T flaws using a conventional probe. FIG. 3 is a plan view showing an embodiment of the bevel probe for ultrasonic flaw detection according to the present invention, and FIG.
The figure is a sectional view along the line of Fig. 3, and Fig. 5 is a sectional view taken along the line of Fig. 3.
A plan view corresponding to FIG. 3 showing a second embodiment of the present invention,
FIG. 6 is a sectional view taken along the - line in FIG. 5. 20, 30... Ultrasonic propagator, 22, 32...
Conical surface, 24a to 24p, 34a to 34e... Vibrator, 26, 36... Bottom surface, 28a to 28p, 3
8a to 38e...Ultrasonic beam, X...tube circumferential direction, Y...tube axial direction, C...cone axis.

Claims (1)

【実用新案登録請求の範囲】 軸線が被検査材の表面と直行するような円錐
面、又は円錐面の一部を備えた超音波伝播体と、 該超音波伝播体の前記円錐面上に周方向に並置
されると共に、各々の超音波ビームの照射方向が
前記円錐面の軸線が被検査材の表面と交わる定点
に向うようにされた複数の振動子と、 を備えたことを特徴とする超音波探傷用の斜角探
触子。
[Claims for Utility Model Registration] An ultrasonic propagator having a conical surface or a part of a conical surface whose axis is perpendicular to the surface of a material to be inspected; A plurality of transducers are arranged in parallel in the same direction, and the irradiation direction of each ultrasonic beam is directed toward a fixed point where the axis of the conical surface intersects with the surface of the material to be inspected. Angle angle probe for ultrasonic flaw detection.
JP3589484U 1984-03-12 1984-03-12 Angle angle probe for ultrasonic flaw detection Granted JPS60146852U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3589484U JPS60146852U (en) 1984-03-12 1984-03-12 Angle angle probe for ultrasonic flaw detection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3589484U JPS60146852U (en) 1984-03-12 1984-03-12 Angle angle probe for ultrasonic flaw detection

Publications (2)

Publication Number Publication Date
JPS60146852U JPS60146852U (en) 1985-09-30
JPH044220Y2 true JPH044220Y2 (en) 1992-02-07

Family

ID=30540587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3589484U Granted JPS60146852U (en) 1984-03-12 1984-03-12 Angle angle probe for ultrasonic flaw detection

Country Status (1)

Country Link
JP (1) JPS60146852U (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54150188A (en) * 1978-05-17 1979-11-26 Hitachi Ltd Cracking inspecting apparatus by ultrasonic waves

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54150188A (en) * 1978-05-17 1979-11-26 Hitachi Ltd Cracking inspecting apparatus by ultrasonic waves

Also Published As

Publication number Publication date
JPS60146852U (en) 1985-09-30

Similar Documents

Publication Publication Date Title
JP5574731B2 (en) Ultrasonic flaw detection test method
CN103512953B (en) Adopt multi-probe supersonic testing method
JP2002062281A (en) Flaw depth measuring method and its device
JP2007132789A (en) Ultrasonic oblique angle probe
JP2019078558A (en) Reference test piece and supersonic phased array flaw testing method
JPH044220Y2 (en)
JPH07244028A (en) Apparatus and method for ultrasonically detecting flaw on spherical body to be detected
JP4098070B2 (en) Ultrasonic flaw detector
JPH11316215A (en) Ultrasonic flaw detection apparatus and method
Long et al. Further development of a conformable phased array device for inspection over irregular surfaces
JP2019174239A (en) Ultrasonic flaw detection method
JPS6262287B2 (en)
JPH0627091A (en) Ultrasonic probe
JPS62278445A (en) Multiple ultrasonic probe
JPS6264949A (en) Method for ultrasonic flaw detection
JPH04166761A (en) Ultrasonic probe
JPS6066159A (en) Electronic scanning type transverse wave diagonal angle probe and non-destructive inspecting method using said probe
JPH1090239A (en) Slanted probe
JPS6319795Y2 (en)
JPH0328375Y2 (en)
JPS5825344Y2 (en) ultrasonic probe
JPS6228862B2 (en)
SU1201752A1 (en) Ultrasound transducer
JPH01187447A (en) Two-split type vertical probe
JPH08201352A (en) Ultrasonic probe for oblique flaw detection