JPH08211028A - Ultrasonic flaw detecting method and apparatus - Google Patents

Ultrasonic flaw detecting method and apparatus

Info

Publication number
JPH08211028A
JPH08211028A JP7017238A JP1723895A JPH08211028A JP H08211028 A JPH08211028 A JP H08211028A JP 7017238 A JP7017238 A JP 7017238A JP 1723895 A JP1723895 A JP 1723895A JP H08211028 A JPH08211028 A JP H08211028A
Authority
JP
Japan
Prior art keywords
welding member
ultrasonic
ultrasonic probe
received
reflected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7017238A
Other languages
Japanese (ja)
Inventor
Yasuo Hayakawa
泰夫 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP7017238A priority Critical patent/JPH08211028A/en
Publication of JPH08211028A publication Critical patent/JPH08211028A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/07Analysing solids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE: To discriminate the nugget part and corona bond part of a welding member from the outside. CONSTITUTION: A dummy welding member is scanned using an ultrasonic probe 1 having an aperture angle equal to or more than the critical angle of a vertical wave and the ratio or difference of the propagation times of horizontal and vertical waves at every scanning position is calculated. Next, the dummy welding member is cut and the area and position of the nugget part of the welding member are confirmed by using a microscope and a reference value is calculated on the basis of the confirmed result and the ratio or difference of the propagation times to be stored in a memory 8. Next, the welding member 3 is scanned and the ratio or difference of the propagation times of horizontal and vertical waves is calculated at every scanning position to be collated with the reference value stored in the memory 8 to discriminate whether the present scanning point is a nugget part A or a corona bond part B. Since inspection is performed noticing that the propagation times of the horizontal and vertical waves are different between the nugget part A and the corona bond part B, both parts A, B can be accurately and simply judged.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、鋼板等の溶接状態を検
出するための超音波探傷方法およびその装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic flaw detection method and apparatus for detecting the welding state of steel sheets and the like.

【0002】[0002]

【従来の技術】複数の鋼板をスポット溶接やシーム溶接
等のいわゆる抵抗溶接によって接合すると、図4に示す
ように、鋼板3同士が完全に溶着するナゲット部Aと、
鋼板同士が密着しているが完全には溶着していないコロ
ナボンド部Bと、鋼板同士が接合していない未接合部C
とが生じる。コロナボンド部Bは完全には溶着していな
いため、ナゲット部Aとコロナボンド部Bとを鋼板3の
外部から明確に識別できるようにするのが望ましい。
2. Description of the Related Art When a plurality of steel plates are joined by so-called resistance welding such as spot welding or seam welding, as shown in FIG. 4, a nugget portion A where the steel plates 3 are completely welded,
Corona bond portion B where the steel sheets are in close contact with each other but not completely welded and unjoined portion C where the steel sheets are not joined
And occur. Since the corona bond portion B is not completely welded, it is desirable that the nugget portion A and the corona bond portion B be clearly distinguishable from the outside of the steel sheet 3.

【0003】ナゲット部Aとコロナボンド部Bとを識別
する方法として、例えば溶接した鋼板3を切断してその
断面を顕微鏡で観察し、断面の形状によってナゲット部
Aとコロナボンド部Bとを識別する方法が考えられる。
あるいは、鋼板3に超音波を照射して鋼板の底面や溶接
箇所からの反射エコーを検出することでも、ある程度は
溶接状態を判断できる。
As a method for identifying the nugget portion A and the corona bond portion B, for example, the welded steel plate 3 is cut and its cross section is observed with a microscope, and the nugget portion A and the corona bond portion B are identified by the shape of the cross section. There are possible ways to do this.
Alternatively, the welding state can be determined to some extent by irradiating the steel sheet 3 with ultrasonic waves and detecting the reflection echo from the bottom surface of the steel sheet or the welded portion.

【0004】そこで、従来は、内部に溶接箇所を有する
ダミー溶接部材を用意し、このダミー溶接部材に無集束
型の超音波探触子から超音波を照射してダミー溶接部材
の底面からの反射エコーを検出するとともに、ダミー溶
接部材を切断して顕微鏡によってナゲット部Aの範囲
(以下、ナゲット面積と呼ぶ)を検出し、両者の関係か
ら図5に示す検量線を予め作成していた。そして、この
検量線と、検査対象である溶接部材に超音波を照射して
反射エコーレベルを検出した結果とを照らし合わせて溶
接部材内部のナゲット面積を推定していた。なお、従来
の装置が主に無集束型の超音波探触子を使用するのは、
溶接部材の広い範囲を同時に検査できるからである。
Therefore, conventionally, a dummy welding member having a welding portion inside is prepared, and the dummy welding member is irradiated with ultrasonic waves from an ultrasonic probe of a non-focusing type and reflected from the bottom surface of the dummy welding member. While detecting the echo, the dummy welding member was cut and the range of the nugget portion A (hereinafter referred to as the nugget area) was detected by a microscope, and the calibration curve shown in FIG. 5 was created in advance from the relationship between the two. Then, the nugget area inside the welding member is estimated by collating this calibration curve with the result of detecting the reflected echo level by irradiating the welding member to be inspected with ultrasonic waves. In addition, the conventional apparatus mainly uses the unfocused ultrasonic probe,
This is because a wide range of welded members can be inspected at the same time.

【0005】[0005]

【発明が解決しようとする課題】一方、超音波探触子を
用いて超音波探傷試験を行うと、未接合部Cか否かの判
断は比較的正確かつ簡易に行えるのに対し、ナゲット部
Aかコロナボンド部Bかの判断は正確に行えないという
問題がある。これは、コロナボンド部Bは鋼板3同士が
密着しているため超音波はナゲット部Aと同程度に透過
され、反射エコーのレベルを検出するだけではナゲット
部Aとコロナボンド部Bとを正確に識別できないからで
あり、予め図5に示すような検量線を作成しても、識別
精度はそれほど上がらない。
On the other hand, when an ultrasonic flaw detection test is performed using an ultrasonic probe, it can be relatively accurately and easily determined whether or not the unbonded portion C is present, whereas the nugget portion is There is a problem in that it cannot be accurately determined whether it is A or the corona bond portion B. This is because the corona bond portion B has the steel plates 3 closely attached to each other, so that the ultrasonic waves are transmitted to the same extent as the nugget portion A, and the nugget portion A and the corona bond portion B are accurately detected only by detecting the level of the reflection echo. This is because the identification accuracy cannot be improved. Therefore, even if a calibration curve as shown in FIG. 5 is created in advance, the identification accuracy does not increase so much.

【0006】また、溶接を行うと溶接部材の表面が凹凸
になったり傾斜したりするため、反射エコーの信号レベ
ルや反射エコーが受信されるまでの時間が変動するおそ
れがあり、なおさらナゲット部Aとコロナボンド部Bと
を区別するのは難かしい。
Further, when welding is performed, the surface of the welding member becomes uneven or inclined, so that the signal level of the reflected echo and the time until the reflected echo is received may vary. It is difficult to distinguish between the corona bond part B and the corona bond part B.

【0007】本発明の目的は、溶接部材を切断すること
なく、溶接部材の外部からナゲット部とコロナボンド部
とを正確かつ簡易に識別できるようにした超音波探傷方
法および装置を提供することにある。
An object of the present invention is to provide an ultrasonic flaw detection method and apparatus capable of accurately and easily discriminating a nugget portion and a corona bond portion from the outside of the welding member without cutting the welding member. is there.

【0008】[0008]

【課題を解決するための手段】実施例を示す図1に対応
づけて本発明を説明すると、本発明は、超音波探触子1
から溶接部材3に向けて集束超音波を放射し、溶接部材
3からの反射超音波を超音波探触子1で受信し、この受
信信号により溶接部材3内部の溶接状態を検出する超音
波探傷方法に適用され、溶接部材3内部を横波で伝搬す
る超音波が溶接部材3の底面で反射されて超音波探触子
1で受信されるまでの伝搬時間と、溶接部材3内部を縦
波で伝搬する超音波が溶接部材3の底面で反射されて超
音波探触子1で受信されるまでの伝搬時間との比に基づ
いて、溶接部材3内部に存在する完全に溶着しているナ
ゲット部Aと密着しているが完全には溶着していないコ
ロナボンド部Bとの識別を行うことにより、上記目的は
達成される。請求項2に記載の発明は、超音波探触子1
から溶接部材3に向けて集束超音波を放射し、溶接部材
3からの反射超音波を超音波探触子1で受信し、この受
信信号により溶接部材3内部の溶接状態を検出する超音
波探傷方法に適用され、溶接部材3内部を横波で伝搬す
る超音波が溶接部材3の底面で反射されて超音波探触子
1で受信されるまでの伝搬時間と、溶接部材3内部を縦
波で伝搬する超音波が溶接部材3の底面で反射されて超
音波探触子1で受信されるまでの伝搬時間との差に基づ
いて、溶接部材3内部に存在する完全に溶着しているナ
ゲット部Aと密着しているが完全には溶着していないコ
ロナボンド部Bとの識別を行うことにより、上記目的は
達成される。請求項3に記載の発明は、請求項1または
2に記載された超音波探傷方法において、超音波探触子
1の開口角を、溶接部材3内部を伝搬する縦波の臨界角
度以上の角度に設定するものである。請求項4に記載の
発明は、溶接部材3に対して集束超音波を放射するとと
もに、溶接部材3からの反射超音波を受信する超音波探
触子1を備え、超音波探触子1によって受信された反射
超音波に基づいて溶接部材3内部の溶接状態を検出する
超音波探傷装置に適用され、ダミー溶接部材の内部を横
波で伝搬する超音波がダミー溶接部材の底面で反射され
て超音波探触子1で受信されるまでの伝搬時間と、ダミ
ー溶接部材の内部を縦波で伝搬する超音波がダミー溶接
部材の底面で反射されて超音波探触子1で受信されるま
での伝搬時間との比に基づいて、ダミー溶接部材内部に
存在する完全に溶着しているナゲット部Aと密着してい
るが完全には溶着していないコロナボンド部Bとを識別
するための基準値を予め記憶する記憶手段8と、溶接部
材3内部を横波で伝搬する超音波が溶接部材3の底面で
反射されて超音波探触子1で受信されるまでの伝搬時間
と、溶接部材3内部を縦波で伝搬する超音波が溶接部材
3の底面で反射されて超音波探触子1で受信されるまで
の伝搬時間との比を求め、この比と記憶手段8に記憶さ
れている基準値とに基づいて溶接部材3内部のナゲット
部Aとコロナボンド部Bとを識別する識別手段7とを備
えることにより、上記目的は達成される。請求項5に記
載の発明は、請求項4に記載された超音波探傷装置にお
いて、超音波探触子1を溶接部材3の少なくとも一方向
に所定量ずつ走査させる走査制御手段を備え、超音波探
触子1の開口角を溶接部材3内部を伝搬する縦波の臨界
角度以上の角度に設定し、超音波探触子1の走査位置ご
とに比を求め、各走査位置ごとにナゲット部Aとコロナ
ボンド部Bとの識別を行うように識別手段7を構成する
ものである。請求項6に記載の発明は、溶接部材3に対
して集束超音波を放射するとともに、溶接部材3からの
反射超音波を受信する超音波探触子1を備え、超音波探
触子1によって受信された反射超音波に基づいて溶接部
材3内部の溶接状態を検出する超音波探傷装置に適用さ
れ、ダミー溶接部材の内部を横波で伝搬する超音波がダ
ミー溶接部材の底面で反射されて超音波探触子1で受信
されるまでの伝搬時間と、ダミー溶接部材の内部を縦波
で伝搬する超音波がダミー溶接部材の底面で反射されて
超音波探触子1で受信されるまでの伝搬時間との差に基
づいて、ダミー溶接部材内部に存在する完全に溶着して
いるナゲット部Aと密着しているが完全には溶着してい
ないコロナボンド部Bとを識別するための基準値を予め
記憶する記憶手段8と、溶接部材3内部を横波で伝搬す
る超音波が溶接部材3の底面で反射されて超音波探触子
1で受信されるまでの伝搬時間と、溶接部材3内部を縦
波で伝搬する超音波が溶接部材3の底面で反射されて超
音波探触子1で受信されるまでの伝搬時間との差を求
め、この差と記憶手段8に記憶されている基準値とに基
づいて溶接部材3内部のナゲット部Aとコロナボンド部
Bとを識別する識別手段7とを備えることにより、上記
目的は達成される。請求項7に記載の発明は、請求項6
に記載された超音波探傷装置において、超音波探触子1
を溶接部材3の少なくとも一方向に所定量ずつ走査させ
る走査制御手段を備え、超音波探触子1の開口角を溶接
部材3内部を伝搬する縦波の臨界角度以上の角度に設定
し、超音波探触子1の走査位置ごとに差を求めて各走査
位置ごとにナゲット部Aとコロナボンド部Bとの識別を
行うように識別手段7を構成するものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described with reference to FIG. 1 showing an embodiment.
Focused ultrasonic waves are radiated from the welding member 3 toward the welding member 3, the reflected ultrasonic waves from the welding member 3 are received by the ultrasonic probe 1, and the ultrasonic flaw detection detects the welding state inside the welding member 3 by this received signal. Applied to the method, the ultrasonic wave propagating in the transverse direction inside the welding member 3 is reflected by the bottom surface of the welding member 3 and is received by the ultrasonic probe 1, and the ultrasonic wave propagates in the longitudinal direction inside the welding member 3. A completely welded nugget portion existing inside the welding member 3 based on the ratio of the time it takes for the propagating ultrasonic waves to be reflected by the bottom surface of the welding member 3 and received by the ultrasonic probe 1. The above object is achieved by discriminating the corona bond portion B which is in close contact with A but is not completely welded. The invention according to claim 2 provides an ultrasonic probe 1
Focused ultrasonic waves are radiated from the welding member 3 toward the welding member 3, the reflected ultrasonic waves from the welding member 3 are received by the ultrasonic probe 1, and the ultrasonic flaw detection detects the welding state inside the welding member 3 by this received signal. Applied to the method, the ultrasonic wave propagating in the transverse direction inside the welding member 3 is reflected by the bottom surface of the welding member 3 and is received by the ultrasonic probe 1, and the ultrasonic wave propagates in the longitudinal direction inside the welding member 3. A completely welded nugget portion existing inside the welding member 3 based on the difference between the propagation time of the propagating ultrasonic wave being reflected by the bottom surface of the welding member 3 and being received by the ultrasonic probe 1. The above object is achieved by discriminating the corona bond portion B which is in close contact with A but is not completely welded. The invention according to claim 3 is the ultrasonic flaw detection method according to claim 1 or 2, wherein the opening angle of the ultrasonic probe 1 is an angle equal to or greater than a critical angle of a longitudinal wave propagating inside the welding member 3. To be set to. The invention according to claim 4 is provided with an ultrasonic probe 1 that emits focused ultrasonic waves to the welding member 3 and receives reflected ultrasonic waves from the welding member 3. It is applied to an ultrasonic flaw detector that detects the welding state inside the welding member 3 based on the received reflected ultrasonic waves, and ultrasonic waves propagating as transverse waves inside the dummy welding member are reflected by the bottom surface of the dummy welding member and The propagation time until the ultrasonic probe 1 receives the ultrasonic wave and the ultrasonic waves propagating in the dummy welding member as longitudinal waves until the ultrasonic wave is reflected by the bottom surface of the dummy welding member and received by the ultrasonic probe 1. A reference value for discriminating between a completely welded nugget portion A existing inside the dummy welding member and a corona bond portion B which is in close contact but not completely welded, based on the ratio to the propagation time. Storage means 8 for storing in advance, and a welding part 3 the ultrasonic wave propagating in the transverse wave inside the welding member 3 until it is reflected by the bottom surface of the welding member 3 and received by the ultrasonic probe 1, and the ultrasonic wave propagating in the longitudinal direction inside the welding member 3 is the welding member. The ratio of the propagation time until the ultrasonic wave is reflected by the bottom surface of the ultrasonic probe 3 and received by the ultrasonic probe 1, and the nugget inside the welding member 3 is calculated based on this ratio and the reference value stored in the storage means 8. The above object is achieved by providing the identification means 7 for identifying the part A and the corona bond part B. According to a fifth aspect of the present invention, in the ultrasonic flaw detection apparatus according to the fourth aspect, the ultrasonic flaw detection device includes a scanning control unit that scans the ultrasonic probe 1 in at least one direction of the welding member 3 by a predetermined amount at a time. The opening angle of the probe 1 is set to an angle equal to or more than the critical angle of the longitudinal wave propagating inside the welding member 3, the ratio is obtained for each scanning position of the ultrasonic probe 1, and the nugget part A is obtained for each scanning position. The identifying means 7 is configured to identify the corona bond portion B and the corona bond portion B. The invention according to claim 6 is provided with an ultrasonic probe 1 that emits focused ultrasonic waves to the welding member 3 and receives reflected ultrasonic waves from the welding member 3. It is applied to an ultrasonic flaw detector that detects the welding state inside the welding member 3 based on the received reflected ultrasonic waves, and ultrasonic waves propagating as transverse waves inside the dummy welding member are reflected by the bottom surface of the dummy welding member and The propagation time until the ultrasonic probe 1 receives the ultrasonic wave and the ultrasonic waves propagating in the dummy welding member as longitudinal waves until the ultrasonic wave is reflected by the bottom surface of the dummy welding member and received by the ultrasonic probe 1. A reference value for discriminating between the completely welded nugget portion A existing inside the dummy welding member and the corona bond portion B which is in close contact but not completely welded, based on the difference from the propagation time. Storage means 8 for storing in advance, and a welding part 3 the ultrasonic wave propagating in the transverse wave inside the welding member 3 until it is reflected by the bottom surface of the welding member 3 and received by the ultrasonic probe 1, and the ultrasonic wave propagating in the longitudinal direction inside the welding member 3 is the welding member. The difference between the propagation time until the ultrasonic wave is reflected by the bottom surface of the ultrasonic probe 3 and received by the ultrasonic probe 1, and based on this difference and the reference value stored in the storage unit 8, the nugget inside the welding member 3 is obtained. The above object is achieved by providing the identification means 7 for identifying the part A and the corona bond part B. The invention according to claim 7 is the invention according to claim 6.
In the ultrasonic flaw detector described in 1 above, the ultrasonic probe 1
Is provided with scanning control means for scanning the welding member 3 in at least one direction by a predetermined amount, and the opening angle of the ultrasonic probe 1 is set to an angle equal to or greater than a critical angle of a longitudinal wave propagating inside the welding member 3. The discriminating means 7 is configured to obtain the difference for each scanning position of the acoustic probe 1 and discriminate between the nugget portion A and the corona bond portion B for each scanning position.

【0009】[0009]

【作用】請求項1に記載の発明では、溶接部材3内部の
ナゲット部Aの組織はコロナボンド部Bの組織に比べて
肥大化していることに着目し、また組織の大きさの違い
によって横波および縦波の伝搬時間に差が生じることを
考慮し、横波の伝搬時間と縦波の伝搬時間の比によって
ナゲット部Aとコロナボンド部Bとを識別する。請求項
2に記載の発明では、溶接部材3内部のナゲット部Aの
組織はコロナボンド部Bの組織に比べて肥大化している
ことに着目し、また組織の大きさの違いによって横波お
よび縦波の伝搬時間に差が生じることを考慮し、横波の
伝搬時間と縦波の伝搬時間の差によってナゲット部Aと
コロナボンド部Bとを識別する。請求項3に記載の発明
では、超音波探触子1の開口角を溶接部材3内部を伝搬
する縦波の臨界角度以上の角度にすることで、縦波の臨
界角度以内の全範囲からの超音波を溶接部材3に入射す
る。これにより、溶接部材3内部に横波および縦波が最
も効率よく発生する。請求項4に記載の発明では、検査
対象である溶接部材3の検査を行う前に、ダミー溶接部
材を用いて横波の伝搬時間と縦波の伝搬時間との比を求
め、この比に基づいてナゲット部Aとコロナボンド部B
とを識別するための基準値を記憶手段8に記憶してお
く。次に、検査対象である溶接部材3を用いて横波の伝
搬時間と縦波の伝搬時間との比を求め、この比と記憶手
段8に記憶されている基準値とに基づいてナゲット部A
とコロナボンド部Bとの識別を行う。請求項5に記載の
発明では、超音波探触子1によって溶接部材3を所定量
ずつ走査し、各走査位置ごとに横波の伝搬時間と縦波の
伝搬時間との比を求め、各走査位置ごとにナゲット部A
とコロナボンド部Bとの識別を行う。請求項6に記載の
発明では、検査対象である溶接部材3の検査を行う前
に、ダミー溶接部材を用いて横波の伝搬時間と縦波の伝
搬時間との差を求め、この差に基づいてナゲット部Aと
コロナボンド部Bとを識別するための基準値を記憶手段
8に記憶しておく。次に、検査対象である溶接部材3を
用いて横波の伝搬時間と縦波の伝搬時間の差を求め、こ
の差と記憶手段8に記憶されている基準値とに基づいて
ナゲット部Aとコロナボンド部Bとの識別を行う。請求
項7に記載の発明では、超音波探触子1によって溶接部
材3を所定量ずつ走査し、各走査位置ごとに横波の伝搬
時間と縦波の伝搬時間の差を求め、各走査位置ごとにナ
ゲット部Aとコロナボンド部Bとの識別を行う。
In the invention described in claim 1, attention is paid to the fact that the structure of the nugget portion A inside the welding member 3 is enlarged as compared with the structure of the corona bond portion B, and the transverse wave is caused by the difference in the size of the structure. In consideration of the difference in the propagation time of the longitudinal wave and the propagation time of the longitudinal wave, the nugget part A and the corona bond part B are identified by the ratio of the propagation time of the transverse wave and the propagation time of the longitudinal wave. In the invention described in claim 2, attention is paid to the fact that the structure of the nugget part A inside the welding member 3 is enlarged compared to the structure of the corona bond part B, and the transverse wave and the longitudinal wave are different due to the difference in the size of the structure. The nugget portion A and the corona bond portion B are identified by the difference between the propagation time of the transverse wave and the propagation time of the longitudinal wave in consideration of the difference in the propagation time of the wave. In the invention according to claim 3, the opening angle of the ultrasonic probe 1 is set to an angle equal to or more than the critical angle of the longitudinal wave propagating inside the welding member 3, so that the ultrasonic wave from the entire range within the critical angle of the longitudinal wave is increased. Ultrasonic waves are incident on the welding member 3. As a result, the transverse wave and the longitudinal wave are generated most efficiently inside the welding member 3. In the invention according to claim 4, before inspecting the welding member 3 to be inspected, a dummy welding member is used to obtain the ratio of the transverse wave propagation time and the longitudinal wave propagation time, and based on this ratio Nugget part A and corona bond part B
A reference value for discriminating between and is stored in the storage means 8. Next, the ratio of the propagation time of the transverse wave to the propagation time of the longitudinal wave is obtained using the welding member 3 to be inspected, and the nugget portion A is calculated based on this ratio and the reference value stored in the storage means 8.
And corona bond part B are identified. In the invention according to claim 5, the ultrasonic probe 1 scans the welding member 3 by a predetermined amount, obtains the ratio of the propagation time of the transverse wave and the propagation time of the longitudinal wave at each scanning position, and obtains each scanning position. Nugget part A for each
And corona bond part B are identified. In the invention according to claim 6, before inspecting the welding member 3 to be inspected, the difference between the propagation time of the transverse wave and the propagation time of the longitudinal wave is obtained using the dummy welding member, and based on this difference A reference value for identifying the nugget portion A and the corona bond portion B is stored in the storage means 8. Next, the difference between the propagation time of the transverse wave and the propagation time of the longitudinal wave is obtained using the welding member 3 to be inspected, and based on this difference and the reference value stored in the storage means 8, the nugget portion A and the corona The bond portion B is identified. In the invention according to claim 7, the welding member 3 is scanned by the ultrasonic probe 1 by a predetermined amount, the difference between the propagation time of the transverse wave and the propagation time of the longitudinal wave is obtained for each scanning position, and each scanning position is obtained. Then, the nugget portion A and the corona bond portion B are identified.

【0010】なお、本発明の構成を説明する上記課題を
解決するための手段と作用の項では、本発明を分かり易
くするために実施例の図を用いたが、これにより本発明
が実施例に限定されるものではない。
Incidentally, in the section of means and action for solving the above problems for explaining the constitution of the present invention, the drawings of the embodiments are used for the purpose of making the present invention easy to understand. It is not limited to.

【0011】[0011]

【実施例】以下、図1〜3に基づいて本発明による超音
波探傷装置の一実施例について説明する。図1は本発明
による超音波探傷装置の一実施例を示すブロック図であ
る。この図において、1は超音波探触子であり、送信器
2から出力されるパルス状電圧により励振されて所定の
焦点位置に集束する超音波を溶接部材3に向けて照射す
るとともに、溶接部材3で反射された超音波エコーを受
信して電気信号に変換する。本実施例では、方位分解能
の向上を図るため、焦点集束型の超音波探触子1を用い
る。超音波探触子1の先端部には音響レンズ1aが設け
られており、この音響レンズ1aの形状により、超音波
探触子1の開口角が定まる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the ultrasonic flaw detector according to the present invention will be described below with reference to FIGS. FIG. 1 is a block diagram showing an embodiment of an ultrasonic flaw detector according to the present invention. In this figure, reference numeral 1 denotes an ultrasonic probe, which irradiates the welding member 3 with ultrasonic waves which are excited by a pulsed voltage output from the transmitter 2 and are focused at a predetermined focal position, The ultrasonic echo reflected at 3 is received and converted into an electric signal. In this embodiment, the focus focusing type ultrasonic probe 1 is used in order to improve the lateral resolution. An acoustic lens 1a is provided at the tip of the ultrasonic probe 1, and the opening angle of the ultrasonic probe 1 is determined by the shape of the acoustic lens 1a.

【0012】4は超音波探触子1をX,Y,Z軸の3軸
方向に移動させる走査制御装置、5は超音波探触子1で
変換された電気信号を増幅する増幅器、6は増幅器5で
増幅された受信信号のピーク値を検出するピーク検出器
である。7は超音波探傷装置全体の制御を行う制御回
路、8は制御回路7による処理結果等を格納するメモ
リ、9は超音波探傷結果を表示する表示装置である。
Reference numeral 4 is a scanning control device for moving the ultrasonic probe 1 in the three directions of X, Y and Z axes, 5 is an amplifier for amplifying the electric signal converted by the ultrasonic probe 1, and 6 is an amplifier. It is a peak detector that detects the peak value of the received signal amplified by the amplifier 5. Reference numeral 7 is a control circuit for controlling the entire ultrasonic flaw detection apparatus, 8 is a memory for storing processing results by the control circuit 7, and 9 is a display device for displaying the ultrasonic flaw detection result.

【0013】次に、超音波探触子1の開口角の設定につ
いて説明する。溶接部材3に入射した超音波は一般に縦
波と横波に分かれて伝搬するが、縦波と横波とが発生さ
れる割合は超音波の入射角度によって異なる。例えば、
縦波の臨界角度より大きい角度から入射された超音波
は、溶接部材3内部に進行せずに全反射され、逆に臨界
角度以内の角度から入射された超音波は、反射されるこ
となく溶接部材3の表面または内部を進行する。このた
め、図2に示すように、超音波探触子1の開口角を縦波
の臨界角度以上とすると、縦波の臨界角度以内の全範囲
からの超音波が溶接部材3に入射されるため、最も効率
よく縦波および横波を発生させることができる。そこ
で、本実施例では、超音波探触子1の開口角を、溶接部
材3を伝搬する縦波の臨界角度以上の角度とする。
Next, the setting of the opening angle of the ultrasonic probe 1 will be described. The ultrasonic waves that have entered the welding member 3 are generally propagated while being divided into longitudinal waves and transverse waves, but the ratio of generation of longitudinal waves and transverse waves differs depending on the incident angle of the ultrasonic waves. For example,
Ultrasonic waves incident from an angle larger than the critical angle of the longitudinal wave are totally reflected without traveling inside the welding member 3, and conversely, ultrasonic waves incident from an angle within the critical angle are welded without being reflected. It proceeds on the surface or inside of the member 3. Therefore, as shown in FIG. 2, when the opening angle of the ultrasonic probe 1 is equal to or greater than the critical angle of the longitudinal wave, ultrasonic waves from all ranges within the critical angle of the longitudinal wave are incident on the welding member 3. Therefore, the longitudinal wave and the transverse wave can be generated most efficiently. Therefore, in this embodiment, the opening angle of the ultrasonic probe 1 is set to an angle equal to or greater than the critical angle of the longitudinal wave propagating in the welding member 3.

【0014】なお、図2では、溶接部材3の内部を伝搬
する縦波を実線で、横波を一点鎖線で示している。図示
のように、横波の方が縦波に比べて伝搬速度が遅いた
め、横波の方が縦波よりも焦点距離が長くなる。。
In FIG. 2, the longitudinal wave propagating inside the welding member 3 is shown by a solid line and the transverse wave is shown by a one-dot chain line. As shown, the transverse wave has a slower propagation speed than the longitudinal wave, and therefore the transverse wave has a longer focal length than the longitudinal wave. .

【0015】次に、本実施例における溶接状態の検査方
法の概要について説明する。本出願人が溶接部材3内部
の溶接箇所を顕微鏡で観察した結果、ナゲット部Aの組
織は図3(a)に示すように粗大化しているのに対し、
コロナボンド部Bの組織は図3(b)のように緻密化し
ていることがわかった。縦波は超音波の進行方向に平行
に振動する疎密波であるため、組織の大きさによる影響
を受けにくく、横波は超音波の進行方向に直角な方向に
振動するため、組織の大きさによる影響を受けやすいと
考えられる。このため、本実施例では、この性質を利用
してナゲット部Aとコロナボンド部Bの識別を行うよう
にした。具体的には、溶接部材3の内部を伝搬する超音
波の横波と縦波の各伝搬時間の比または差の値によっ
て、ナゲット部Aとコロナボンド部Bとの識別を行う。
Next, an outline of the welding state inspection method in this embodiment will be described. As a result of observing the welded part inside the welded member 3 with a microscope, the applicant has found that the structure of the nugget part A is coarse as shown in FIG.
It was found that the structure of the corona bond part B was densified as shown in FIG. Longitudinal waves are compressional waves that oscillate parallel to the direction of travel of ultrasonic waves, so they are unlikely to be affected by the size of tissue, and transverse waves oscillate in a direction perpendicular to the direction of travel of ultrasonic waves. It is considered to be easily affected. Therefore, in this embodiment, the nugget portion A and the corona bond portion B are identified by utilizing this property. Specifically, the nugget portion A and the corona bond portion B are distinguished from each other by the value of the ratio or the difference between the propagation times of the transverse and longitudinal waves of the ultrasonic wave propagating inside the welding member 3.

【0016】以下、図1に基づいて本実施例の動作を説
明する。本実施例の動作は、溶接部材3の超音波探傷検
査を行う前に行う前処理と、その後に行う超音波探傷検
査処理の2つに分かれる。
The operation of this embodiment will be described below with reference to FIG. The operation of the present embodiment is divided into two processes: a pre-process performed before the ultrasonic flaw inspection of the welding member 3 and an ultrasonic flaw inspection process performed thereafter.

【0017】まず、前処理について説明する。2種類の
鋼板を溶接して形成したダミー溶接部材を水などの媒体
中に沈め、その上方に超音波探触子1を置いて超音波探
触子1の先端部を媒体中に浸した状態でダミー溶接部材
に対して超音波を照射する。超音波探触子1から放射さ
れた超音波の一部はダミー溶接部材で反射されて超音波
探触子1によって受信される。以下、この受信信号を表
面エコーと呼ぶ。一方、超音波探触子1から放射された
超音波の他の一部はダミー溶接部材の表面で屈折して縦
波と横波に分かれて溶接部材内部を伝搬する。これら縦
波および横波はいずれもダミー溶接部材の底面で反射さ
れ、その反射エコーが超音波探触子1によって受信され
る。以下、この受信信号を底面エコーと呼ぶ。なお、ダ
ミー溶接部材の内部に未接合部Cがある場合には、この
部分でも反射される。
First, the preprocessing will be described. A state in which a dummy welding member formed by welding two types of steel plates is submerged in a medium such as water, the ultrasonic probe 1 is placed above it, and the tip of the ultrasonic probe 1 is immersed in the medium. Then, the dummy welding member is irradiated with ultrasonic waves. Part of the ultrasonic waves emitted from the ultrasonic probe 1 is reflected by the dummy welding member and received by the ultrasonic probe 1. Hereinafter, this received signal is referred to as a surface echo. On the other hand, the other part of the ultrasonic waves radiated from the ultrasonic probe 1 is refracted on the surface of the dummy welding member, divided into longitudinal waves and transverse waves, and propagates inside the welding member. Both the longitudinal wave and the transverse wave are reflected by the bottom surface of the dummy welding member, and the reflected echoes are received by the ultrasonic probe 1. Hereinafter, this received signal is referred to as a bottom surface echo. If there is an unbonded portion C inside the dummy welding member, this portion is also reflected.

【0018】ダミー溶接部材の底面で反射された縦波お
よび横波の底面エコーはそれぞれ異なる速度で伝搬し、
異なる時間に超音波探触子1に受信される。したがっ
て、図1の制御回路7は、各底面エコーの受信時間の違
いによって、縦波が受信されたのか、あるいは横波が受
信されたのかを識別する。具体的には、表面エコーが検
出された後、最初に受信される底面エコーを縦波と判断
し、次に受信される底面エコーを横波と判断する。
The bottom echoes of the longitudinal and transverse waves reflected by the bottom surface of the dummy welding member propagate at different velocities,
It is received by the ultrasonic probe 1 at different times. Therefore, the control circuit 7 of FIG. 1 discriminates whether the longitudinal wave or the transverse wave is received depending on the difference in the reception time of each bottom echo. Specifically, after the surface echo is detected, the bottom echo received first is determined to be a longitudinal wave, and the bottom echo received next is determined to be a transverse wave.

【0019】縦波および横波の各底面エコーが受信され
ると、次に制御回路7は各底面エコーと表面エコーとの
時間差を求める。以下、この時間差を伝搬時間と呼ぶ。
そして、縦波および横波の各伝搬時間の比または差を求
めた後、走査制御装置4を制御して超音波探触子1を所
定方向に所定量だけ移動させる。そして、再度縦波と横
波との伝搬時間の比または差を求める。以後、同様の処
理を繰り返す。
When the longitudinal and transverse wave bottom echoes are received, the control circuit 7 then determines the time difference between each bottom echo and the surface echo. Hereinafter, this time difference is referred to as a propagation time.
Then, after obtaining the ratio or difference between the propagation times of the longitudinal wave and the transverse wave, the scanning controller 4 is controlled to move the ultrasonic probe 1 in a predetermined direction by a predetermined amount. Then, the ratio or difference of the propagation times of the longitudinal wave and the transverse wave is obtained again. After that, the same processing is repeated.

【0020】ダミー溶接部材の走査が終了すると、前処
理に用いたダミー溶接部材を切断して、不図示の顕微鏡
を用いてナゲット部Aの面積および位置を確認し、この
確認結果と伝搬時間の比または差の演算結果とを照らし
合わせて、縦波および横波の比または差とナゲット面積
との関係を示す基準値を求める。このようにして求めた
基準値は、図1のメモリ8に格納しておく。
When the scanning of the dummy welding member is completed, the dummy welding member used for the pretreatment is cut, and the area and position of the nugget portion A are confirmed by using a microscope (not shown). The reference value indicating the relationship between the ratio or difference between the longitudinal wave and the transverse wave and the nugget area is obtained by comparing the calculated result of the ratio or difference. The reference value thus obtained is stored in the memory 8 of FIG.

【0021】次に、超音波探傷検査処理について説明す
る。検査対象である溶接部材3をダミー溶接部材と同様
に媒体中に沈め、溶接部材3の上方に超音波探触子1を
置いて溶接部材3に向けて超音波を放射する。溶接部材
3に入射された超音波はダミー溶接部材と同様に横波と
縦波に分かれて伝搬し、溶接部材3の底面で反射され
る。
Next, the ultrasonic flaw detection inspection process will be described. The welding member 3 to be inspected is immersed in the medium similarly to the dummy welding member, and the ultrasonic probe 1 is placed above the welding member 3 to emit ultrasonic waves toward the welding member 3. The ultrasonic waves incident on the welding member 3 are divided into transverse waves and longitudinal waves and propagate like the dummy welding member, and are reflected by the bottom surface of the welding member 3.

【0022】制御回路7は、表面エコーと横波と縦波の
各底面エコーを受信し、横波の伝搬時間と縦波の伝搬時
間の比または差を演算する。そして、メモリ8に格納さ
れている基準値と照らし合わせることで、現在超音波探
触子1が走査している地点がナゲット部Aなのかコロナ
ボンド部Bなのかを識別する。例えば、(横波の伝搬時
間)/(縦波の伝搬時間)が基準値未満であればナゲッ
ト部Aと判断し、(横波の伝搬時間)/(縦波の伝搬時
間)が基準値以上であればコロナボンド部Bであると判
断する。
The control circuit 7 receives the surface echo and the bottom echoes of the transverse wave and the longitudinal wave, and calculates the ratio or difference between the propagation time of the transverse wave and the propagation time of the longitudinal wave. Then, by comparing with the reference value stored in the memory 8, it is identified whether the point currently scanned by the ultrasonic probe 1 is the nugget portion A or the corona bond portion B. For example, if (transverse wave propagation time) / (longitudinal wave propagation time) is less than the reference value, it is determined as the nugget portion A, and (transverse wave propagation time) / (longitudinal wave propagation time) is greater than or equal to the reference value. For example, it is determined to be the corona bond part B.

【0023】このように、本実施例によれば、溶接時に
形成されるナゲット部Aとコロナボンド部Bとで組織の
大きさに違いがあることに着目し、また組織の大きさの
違いによって超音波の横波および縦波の伝搬時間に差が
生じることを考慮し、横波と縦波の伝搬時間の比または
差の値によってナゲット部Aかコロナボンド部Bかを判
断するようにしたため、溶接状態を精度よくかつ簡易に
検出できる。また、本実施例は横波と縦波の伝搬時間の
比または差を演算するため、溶接することによって溶接
部材3に凹凸ができてもその影響を受けずに済む。すな
わち、伝搬時間の比または差を取ることで凹凸による影
響を相殺できる。さらに、本実施例では、走査制御装置
4によって溶接部材表面を所定量ずつ走査し、各走査位
置ごとにナゲット部Aとコロナボンド部Bとの識別を行
うようにしたため、溶接部材内部のナゲット部Aとコロ
ナボンド部Bとの境界位置を精度よく検出できる。
As described above, according to this embodiment, attention is paid to the difference in the size of the structure between the nugget part A and the corona bond part B formed during welding, and the difference in the size of the structure Considering that there is a difference in the propagation time of the transverse wave and the longitudinal wave of the ultrasonic wave, it is determined whether the nugget portion A or the corona bond portion B is determined by the value of the ratio or the difference of the propagation time of the transverse wave and the longitudinal wave. The state can be detected accurately and easily. Further, in the present embodiment, since the ratio or the difference between the propagation times of the transverse wave and the longitudinal wave is calculated, even if the welding member 3 is made uneven by welding, it is not affected. That is, by taking the ratio or difference of the propagation times, it is possible to cancel the influence of unevenness. Further, in this embodiment, the scanning control device 4 scans the surface of the welding member by a predetermined amount, and the nugget portion A and the corona bond portion B are identified for each scanning position. The boundary position between A and the corona bond portion B can be accurately detected.

【0024】上記実施例では、横波と縦波の伝搬時間の
比または差によってナゲット部Aとコロナボンド部Bと
の識別を行っているが、前述したように、縦波は組織の
大きさに違いがあっても伝搬時間の差はほとんど生じな
い。このため、横波の伝搬時間だけでナゲット部Aとコ
ロナボンド部Bの識別を行ってもよい。ただし、この場
合には、溶接によって溶接部材に凹凸が生じるとその影
響によって精度が悪くなるおそれがある。また、上記実
施例において、横波と縦波の伝搬時間の比と差の両方を
求める必要はなく、いずれか一方だけを求めればよい。
In the above embodiment, the nugget portion A and the corona bond portion B are distinguished from each other by the ratio or difference in the propagation time of the transverse wave and the longitudinal wave. Even if there is a difference, there is almost no difference in propagation time. Therefore, the nugget portion A and the corona bond portion B may be identified only by the propagation time of the transverse wave. However, in this case, if unevenness occurs in the welding member due to welding, the accuracy may deteriorate due to the influence. Further, in the above embodiment, it is not necessary to obtain both the ratio and the difference in the propagation time of the transverse wave and the longitudinal wave, and only one of them needs to be obtained.

【0025】このように構成した実施例にあっては、メ
モリ8が記憶手段に、制御回路7が識別手段に、それぞ
れ対応する。
In the embodiment thus constructed, the memory 8 corresponds to the storage means and the control circuit 7 corresponds to the identification means.

【0026】[0026]

【発明の効果】以上詳細に説明したように、本発明によ
れば、溶接部材内部のナゲット部の組織はコロナボンド
部の組織に比べて肥大化していることに着目し、また組
織の大きさの違いによって横波および縦波の伝搬時間に
差が生じることを考慮し、横波の伝搬時間と縦波の伝搬
時間の比によってナゲット部とコロナボンド部とを識別
するようにしたため、溶接状態を精度よくかつ簡易に検
出できる。請求項2に記載の発明によれば、横波の伝搬
時間と縦波の伝搬時間の差によってナゲット部とコロナ
ボンド部とを識別するようにしたため、ナゲット部かコ
ロナボンド部かの判断を正確かつ簡易に行える。請求項
3に記載の発明によれば、超音波探触子の開口角を溶接
部材内部を伝搬する縦波の臨界角度以上の角度にしたた
め、縦波の臨界角度以内の全範囲からの超音波を溶接部
材に入射でき、横波と縦波を効率よく発生させることが
できる。請求項4に記載の発明によれば、ダミー溶接部
材を用いて縦波と横波の伝搬時間の比を求め、この比を
用いてナゲット部とコロナボンド部とを識別するための
基準値を予め記憶するようにしたため、この基準値を利
用すれば、検査対象となる溶接部材内部のナゲット部と
コロナボンド部とを簡易に識別できる。請求項5,7に
記載の発明によれば、溶接部材を所定量ずつ走査して、
各走査位置ごとにナゲット部とナゲット部との識別を行
うようにしたため、溶接部材内部のナゲット部とコロナ
ボンド部との境界位置を精度よく検出できる。請求項6
に記載の発明によれば、ダミー溶接部材を用いて縦波と
横波の伝搬時間の差を求め、この差を用いてナゲット部
とコロナボンド部とを識別するための基準値を予め記憶
するようにしたため、この基準値を利用すれば、検査対
象となる溶接部材内部のナゲット部とコロナボンド部と
を簡易に識別できる。
As described in detail above, according to the present invention, it is noted that the structure of the nugget portion inside the welded member is enlarged compared to the structure of the corona bond portion, and the size of the structure is also increased. Considering that there is a difference in the propagation time of transverse wave and longitudinal wave due to the difference in the wave length, the nugget part and the corona bond part are identified by the ratio of the propagation time of transverse wave and the propagation time of longitudinal wave. Good and easy to detect. According to the invention of claim 2, the nugget portion and the corona bond portion are distinguished from each other by the difference between the propagation time of the transverse wave and the propagation time of the longitudinal wave. It can be done easily. According to the invention as set forth in claim 3, since the opening angle of the ultrasonic probe is set to an angle equal to or greater than the critical angle of the longitudinal wave propagating inside the welding member, the ultrasonic waves from the entire range within the critical angle of the longitudinal wave. Can be incident on the welding member, and transverse and longitudinal waves can be efficiently generated. According to the invention described in claim 4, the ratio of the propagation times of the longitudinal wave and the transverse wave is obtained using the dummy welding member, and the reference value for distinguishing the nugget part and the corona bond part is used in advance by using this ratio. Since the information is stored, the nugget portion and the corona bond portion inside the welding member to be inspected can be easily identified by using this reference value. According to the invention described in claims 5 and 7, the welding member is scanned by a predetermined amount,
Since the nugget portion and the nugget portion are identified for each scanning position, the boundary position between the nugget portion and the corona bond portion inside the welding member can be accurately detected. Claim 6
According to the invention described in (1), the difference between the propagation times of the longitudinal wave and the transverse wave is obtained using the dummy welding member, and the reference value for identifying the nugget part and the corona bond part is stored in advance using this difference. Therefore, by using this reference value, the nugget portion and the corona bond portion inside the welding member to be inspected can be easily identified.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による超音波探傷装置の一実施例のブロ
ック図。
FIG. 1 is a block diagram of an embodiment of an ultrasonic flaw detector according to the present invention.

【図2】溶接部材の内部を伝搬する横波および縦波を示
す図。
FIG. 2 is a diagram showing a transverse wave and a longitudinal wave propagating inside a welding member.

【図3】ナゲット部とコロナボンド部の組織の様子を示
す図。
FIG. 3 is a diagram showing a state of a structure of a nugget portion and a corona bond portion.

【図4】鋼板内部に形成されるナゲット部、コロナボン
ド部および未接合部を示す図。
FIG. 4 is a view showing a nugget portion, a corona bond portion, and an unbonded portion formed inside a steel plate.

【図5】ナゲット面積と反射エコーレベルとの関係を示
す検量線を表した図。
FIG. 5 is a diagram showing a calibration curve showing a relationship between a nugget area and a reflected echo level.

【符号の説明】[Explanation of symbols]

1 超音波探触子 2 送信器 3 溶接部材 4 走査制御装置 5 増幅器 6 ピーク検出器 7 制御回路 8 メモリ 9 表示装置 1 Ultrasonic probe 2 Transmitter 3 Welding member 4 Scanning control device 5 Amplifier 6 Peak detector 7 Control circuit 8 Memory 9 Display device

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 超音波探触子から溶接部材に向けて集束
超音波を放射し、前記溶接部材からの反射超音波を前記
超音波探触子で受信し、この受信信号により前記溶接部
材内部の溶接状態を検出する超音波探傷方法において、 前記溶接部材内部を横波で伝搬する超音波が前記溶接部
材の底面で反射されて前記超音波探触子で受信されるま
での伝搬時間と、前記溶接部材内部を縦波で伝搬する超
音波が前記溶接部材の底面で反射されて前記超音波探触
子で受信されるまでの伝搬時間との比に基づいて、前記
溶接部材内部に存在する完全に溶着しているナゲット部
と密着しているが完全には溶着していないコロナボンド
部との識別を行うことを特徴とする超音波探傷方法。
1. A focused ultrasonic wave is radiated from an ultrasonic probe toward a welding member, reflected ultrasonic waves from the welding member are received by the ultrasonic probe, and the received signal causes the inside of the welding member to be received. In the ultrasonic flaw detection method for detecting the welding state of, the propagation time until ultrasonic waves propagating in transverse waves inside the welding member are reflected by the bottom surface of the welding member and received by the ultrasonic probe, and Ultrasonic waves propagating in the welding member as longitudinal waves are reflected by the bottom surface of the welding member and are based on the ratio of the propagation time until received by the ultrasonic probe. An ultrasonic flaw detection method, characterized in that it is distinguished from a corona bond portion that is in close contact with the nugget portion that is welded to, but is not completely welded.
【請求項2】 超音波探触子から溶接部材に向けて集束
超音波を放射し、前記溶接部材からの反射超音波を前記
超音波探触子で受信し、この受信信号により前記溶接部
材内部の溶接状態を検出する超音波探傷方法において、 前記溶接部材内部を横波で伝搬する超音波が前記溶接部
材の底面で反射されて前記超音波探触子で受信されるま
での伝搬時間と、前記溶接部材内部を縦波で伝搬する超
音波が前記溶接部材の底面で反射されて前記超音波探触
子で受信されるまでの伝搬時間との差に基づいて、前記
溶接部材内部に存在する完全に溶着しているナゲット部
と密着しているが完全には溶着していないコロナボンド
部との識別を行うことを特徴とする超音波探傷方法。
2. A focused ultrasonic wave is emitted from an ultrasonic probe toward a welding member, reflected ultrasonic waves from the welding member are received by the ultrasonic probe, and the received signal causes the inside of the welding member to be received. In the ultrasonic flaw detection method for detecting the welding state of, the propagation time until ultrasonic waves propagating in transverse waves inside the welding member are reflected by the bottom surface of the welding member and received by the ultrasonic probe, and Ultrasonic waves propagating in the welding member as longitudinal waves are reflected by the bottom surface of the welding member and are based on the difference from the propagation time until they are received by the ultrasonic probe. An ultrasonic flaw detection method, characterized in that it is distinguished from a corona bond portion that is in close contact with the nugget portion that is welded to, but is not completely welded.
【請求項3】 請求項1または2に記載された超音波探
傷方法において、 前記超音波探触子の開口角は、前記溶接部材内部を伝搬
する前記縦波の臨界角度以上の角度に設定されることを
特徴とする超音波探傷方法。
3. The ultrasonic flaw detection method according to claim 1, wherein an opening angle of the ultrasonic probe is set to an angle equal to or greater than a critical angle of the longitudinal wave propagating inside the welding member. An ultrasonic flaw detection method characterized by the following.
【請求項4】 溶接部材に対して集束超音波を放射する
とともに、前記溶接部材からの反射超音波を受信する超
音波探触子を備え、前記超音波探触子によって受信され
た反射超音波に基づいて前記溶接部材内部の溶接状態を
検出する超音波探傷装置において、 ダミー溶接部材の内部を横波で伝搬する超音波が前記ダ
ミー溶接部材の底面で反射されて前記超音波探触子で受
信されるまでの伝搬時間と、前記ダミー溶接部材の内部
を縦波で伝搬する超音波が前記ダミー溶接部材の底面で
反射されて前記超音波探触子で受信されるまでの伝搬時
間との比に基づいて、前記ダミー溶接部材内部に存在す
る完全に溶着しているナゲット部と密着しているが完全
には溶着していないコロナボンド部とを識別するための
基準値を予め記憶する記憶手段と、 前記溶接部材内部を横波で伝搬する超音波が前記溶接部
材の底面で反射されて前記超音波探触子で受信されるま
での伝搬時間と、前記溶接部材内部を縦波で伝搬する超
音波が前記溶接部材の底面で反射されて前記超音波探触
子で受信されるまでの伝搬時間との比を求め、この比と
前記記憶手段に記憶されている前記基準値とに基づいて
前記溶接部材内部の前記ナゲット部と前記コロナボンド
部とを識別する識別手段とを備えることを特徴とする超
音波探傷装置。
4. An ultrasonic probe that emits focused ultrasonic waves to a welding member and receives reflected ultrasonic waves from the welding member, and the reflected ultrasonic waves received by the ultrasonic probe. In the ultrasonic flaw detector for detecting the welding state inside the welding member based on the above, ultrasonic waves propagating in transverse waves inside the dummy welding member are reflected by the bottom surface of the dummy welding member and received by the ultrasonic probe. The ratio of the propagation time until the ultrasonic wave propagating as a longitudinal wave inside the dummy welding member is reflected by the bottom surface of the dummy welding member and is received by the ultrasonic probe. Storage means for storing in advance a reference value for discriminating between a completely welded nugget portion existing inside the dummy welding member and a corona bond portion which is not completely welded, based on And before The ultrasonic wave propagating in the transverse direction inside the welding member is propagated until the ultrasonic wave is reflected by the bottom surface of the welding member and received by the ultrasonic probe, and the ultrasonic wave propagating in the longitudinal direction inside the welding member is the ultrasonic wave. The inside of the welding member is obtained based on the ratio of the propagation time until the ultrasonic wave is reflected by the bottom surface of the welding member and is received by the ultrasonic probe, and the reference value stored in the storage means. 2. An ultrasonic flaw detector, comprising: an identification unit that identifies the nugget portion and the corona bond portion.
【請求項5】 請求項4に記載された超音波探傷装置に
おいて、 前記超音波探触子を前記溶接部材の少なくとも一方向に
所定量ずつ走査させる走査制御手段を備え、 前記超音波探触子の開口角は、前記溶接部材内部を伝搬
する前記縦波の臨界角度以上の角度に設定され、 前記識別手段は、前記超音波探触子の走査位置ごとに前
記比を求め、各走査位置ごとに前記ナゲット部と前記コ
ロナボンド部との識別を行うことを特徴とする超音波探
傷装置。
5. The ultrasonic flaw detection apparatus according to claim 4, further comprising a scanning control unit that scans the ultrasonic probe in a predetermined amount in at least one direction of the welding member, the ultrasonic probe. The opening angle of is set to an angle equal to or greater than the critical angle of the longitudinal wave propagating inside the welding member, the identifying means obtains the ratio for each scanning position of the ultrasonic probe, and for each scanning position. An ultrasonic flaw detector, wherein the nugget portion and the corona bond portion are distinguished from each other.
【請求項6】 溶接部材に対して集束超音波を放射する
とともに、前記溶接部材からの反射超音波を受信する超
音波探触子を備え、前記超音波探触子によって受信され
た反射超音波に基づいて前記溶接部材内部の溶接状態を
検出する超音波探傷装置において、 ダミー溶接部材の内部を横波で伝搬する超音波が前記ダ
ミー溶接部材の底面で反射されて前記超音波探触子で受
信されるまでの伝搬時間と、前記ダミー溶接部材の内部
を縦波で伝搬する超音波が前記ダミー溶接部材の底面で
反射されて前記超音波探触子で受信されるまでの伝搬時
間との差に基づいて、前記ダミー溶接部材内部に存在す
る完全に溶着しているナゲット部と密着しているが完全
には溶着していないコロナボンド部とを識別するための
基準値を予め記憶する記憶手段と、 前記溶接部材内部を横波で伝搬する超音波が前記溶接部
材の底面で反射されて前記超音波探触子で受信されるま
での伝搬時間と、前記溶接部材内部を縦波で伝搬する超
音波が前記溶接部材の底面で反射されて前記超音波探触
子で受信されるまでの伝搬時間との差を求め、この差と
前記記憶手段に記憶されている前記基準値とに基づいて
前記溶接部材内部の前記ナゲット部と前記コロナボンド
部とを識別する識別手段とを備えることを特徴とする超
音波探傷装置。
6. A reflected ultrasonic wave received by the ultrasonic probe, comprising an ultrasonic probe that emits focused ultrasonic waves to the welding member and receives reflected ultrasonic waves from the welding member. In the ultrasonic flaw detector for detecting the welding state inside the welding member based on the above, ultrasonic waves propagating in transverse waves inside the dummy welding member are reflected by the bottom surface of the dummy welding member and received by the ultrasonic probe. The difference between the propagation time and the propagation time until ultrasonic waves propagating as longitudinal waves inside the dummy welding member are reflected by the bottom surface of the dummy welding member and received by the ultrasonic probe. Storage means for storing in advance a reference value for discriminating between a completely welded nugget portion existing inside the dummy welding member and a corona bond portion which is not completely welded, based on And before The ultrasonic wave propagating in the transverse direction inside the welding member is propagated until the ultrasonic wave is reflected by the bottom surface of the welding member and received by the ultrasonic probe, and the ultrasonic wave propagating in the longitudinal direction inside the welding member is the ultrasonic wave. Inside the welding member based on this difference and the reference value stored in the storage means, the difference between the propagation time until the ultrasonic wave is reflected by the bottom surface of the welding member and received by the ultrasonic probe. 2. An ultrasonic flaw detector, comprising: an identification unit that identifies the nugget portion and the corona bond portion.
【請求項7】 請求項6に記載された超音波探傷装置に
おいて、 前記超音波探触子を前記溶接部材の少なくとも一方向に
所定量ずつ走査させる走査制御手段を備え、 前記超音波探触子の開口角は、前記溶接部材内部を伝搬
する前記縦波の臨界角度以上の角度に設定され、 前記識別手段は、前記超音波探触子の走査位置ごとに前
記差を求め、各走査位置ごとに前記ナゲット部と前記コ
ロナボンド部との識別を行うことを特徴とする超音波探
傷装置。
7. The ultrasonic flaw detector according to claim 6, further comprising a scanning control unit that causes the ultrasonic probe to scan a predetermined amount in at least one direction of the welding member, the ultrasonic probe. The opening angle of is set to an angle equal to or greater than the critical angle of the longitudinal wave propagating inside the welding member, the identification means obtains the difference for each scanning position of the ultrasonic probe, for each scanning position An ultrasonic flaw detector, wherein the nugget portion and the corona bond portion are distinguished from each other.
JP7017238A 1995-02-03 1995-02-03 Ultrasonic flaw detecting method and apparatus Pending JPH08211028A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7017238A JPH08211028A (en) 1995-02-03 1995-02-03 Ultrasonic flaw detecting method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7017238A JPH08211028A (en) 1995-02-03 1995-02-03 Ultrasonic flaw detecting method and apparatus

Publications (1)

Publication Number Publication Date
JPH08211028A true JPH08211028A (en) 1996-08-20

Family

ID=11938375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7017238A Pending JPH08211028A (en) 1995-02-03 1995-02-03 Ultrasonic flaw detecting method and apparatus

Country Status (1)

Country Link
JP (1) JPH08211028A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005070017A (en) * 2003-08-28 2005-03-17 Hajime Hatano Ultrasonic flaw detection method using vertical and horizontal diffracted waves and apparatus therefor
JP2007232525A (en) * 2006-02-28 2007-09-13 Jfe Steel Kk Method and device for evaluating spot welding section by ultrasonic wave
JP2009039758A (en) * 2007-08-09 2009-02-26 Kanto Auto Works Ltd Nugget diameter measuring instrument for resistance spot welding
WO2020039850A1 (en) * 2018-08-22 2020-02-27 国立大学法人東北大学 Method and device for evaluating bonding interface

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005070017A (en) * 2003-08-28 2005-03-17 Hajime Hatano Ultrasonic flaw detection method using vertical and horizontal diffracted waves and apparatus therefor
JP2007232525A (en) * 2006-02-28 2007-09-13 Jfe Steel Kk Method and device for evaluating spot welding section by ultrasonic wave
JP4728838B2 (en) * 2006-02-28 2011-07-20 Jfeスチール株式会社 Ultrasonic spot weld evaluation method and apparatus
JP2009039758A (en) * 2007-08-09 2009-02-26 Kanto Auto Works Ltd Nugget diameter measuring instrument for resistance spot welding
WO2020039850A1 (en) * 2018-08-22 2020-02-27 国立大学法人東北大学 Method and device for evaluating bonding interface
CN112534254A (en) * 2018-08-22 2021-03-19 国立大学法人东北大学 Method and device for evaluating joint interface
JPWO2020039850A1 (en) * 2018-08-22 2021-08-26 国立大学法人東北大学 Bonding interface evaluation method and bonding interface evaluation device
EP3842797A4 (en) * 2018-08-22 2021-09-22 Tohoku University Method and device for evaluating bonding interface
US11898990B2 (en) 2018-08-22 2024-02-13 Shimane University Bonding interface evaluation method and bonding interface evaluation device

Similar Documents

Publication Publication Date Title
US7789286B2 (en) Method and apparatus for assessing the quality of spot welds
JP4910770B2 (en) Tubular ultrasonic inspection apparatus and ultrasonic inspection method
JP5800667B2 (en) Ultrasonic inspection method, ultrasonic flaw detection method and ultrasonic inspection apparatus
WO2007058391A1 (en) Pipe ultrasonic flaw detecting apparatus and ultrasonic flaw detecting method
CN105021142B (en) The measuring method and equipment therefor of a kind of laser lap weld width
JP2008209356A (en) Method of calibrating ultrasonic flaw detection, and quality control method and manufacturing method of tube
JPH11183446A (en) Method and apparatus for ultrasonic flaw detection of weld
JP2008286640A (en) Device and method for ultrasonic flaw detection of pipe
CN110779990A (en) Laser ultrasonic three-dimensional positioning quantitative detection method for multiple defects in material
JP5285845B2 (en) Defect detection apparatus and defect detection method
JP3535417B2 (en) Ultrasonic defect height measuring device and defect height measuring method
JP4559931B2 (en) Ultrasonic flaw detection method
JP4564183B2 (en) Ultrasonic flaw detection method
JPH08211028A (en) Ultrasonic flaw detecting method and apparatus
JP3165888B2 (en) Ultrasonic flaw detection method and ultrasonic flaw detection apparatus
JP2000146928A (en) Method for inspecting spot welding
JP2002243703A (en) Ultrasonic flaw detector
JPH09171005A (en) Method for discriminating kind of defect by ultrasonic flaw detection
JP3761883B2 (en) Ultrasonic flaw detection method
JP4175762B2 (en) Ultrasonic flaw detector
JP2007263956A (en) Ultrasonic flaw detection method and apparatus
JP2014174012A (en) Measurement device, measurement method, program and storage medium
JP2002071648A (en) Method and device for ultrasonic flaw detection
JPH0735729A (en) Ultrasonic flaw detector at welded part
JPH07190998A (en) Ultrasonic flaw detection method and device