JP3609975B2 - Sizing ultrasonic flaw detector and sizing flaw detection method - Google Patents

Sizing ultrasonic flaw detector and sizing flaw detection method Download PDF

Info

Publication number
JP3609975B2
JP3609975B2 JP2000041442A JP2000041442A JP3609975B2 JP 3609975 B2 JP3609975 B2 JP 3609975B2 JP 2000041442 A JP2000041442 A JP 2000041442A JP 2000041442 A JP2000041442 A JP 2000041442A JP 3609975 B2 JP3609975 B2 JP 3609975B2
Authority
JP
Japan
Prior art keywords
ultrasonic
defect
waveform information
sizing
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000041442A
Other languages
Japanese (ja)
Other versions
JP2001228128A (en
Inventor
美津男 拵
修 菊池
賢治 田山
Original Assignee
日立エンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立エンジニアリング株式会社 filed Critical 日立エンジニアリング株式会社
Priority to JP2000041442A priority Critical patent/JP3609975B2/en
Publication of JP2001228128A publication Critical patent/JP2001228128A/en
Application granted granted Critical
Publication of JP3609975B2 publication Critical patent/JP3609975B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/07Analysing solids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • G01N29/0654Imaging
    • G01N29/069Defect imaging, localisation and sizing using, e.g. time of flight diffraction [TOFD], synthetic aperture focusing technique [SAFT], Amplituden-Laufzeit-Ortskurven [ALOK] technique
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Description

【0001】
【発明の属する技術分野】
本発明は、超音波を利用することにより溶接部等の被検体の内部状況を非破壊で検査する電子走査式超音波検査装置および方法に係り、特に、被検体の内部にできた傷の種類と大きさを評価するに好適な電子走査式超音波検査装置および方法に関する。
【0002】
【従来の技術】
特開平11−14611 号公報には、アークアレイ型の送信アレイ探触子及び受信アレイ探触子と、これらの各アレイ探触子を所要の間隔を保ったまま被検部に沿って平行移動させる機械式スキャナと、前記送信アレイ探触子より指向性の鋭い超音波ビームを扇形に送出し、前記受信アレイ探触子にて検出される被検部からの反射波信号を前記機械式スキャナに付設されたエンコーダにて検出される前記各アレイ探触子の位置信号に応じてフレームメモリ上の所要のアドレスに順次格納する回路部と、前記フレームメモリに格納された反射波信号をリアルタイムで3次元情報による映像として表示する画像表示部とを備え、前記回路部に、セクタスキャン中の各時点における送信アレイ探触子及び受信アレイ探触子のビーム指向領域が交差する位置で超音波ビームを集束するように指向性を調整するための遅延時間調整手段を設けた電子走査式超音波検査装置が記載されている。
【0003】
TOFD(TIME OF FLIGHT DEFFRACTION)法を用いたサイジング用超音波探傷装置について説明する。尚、TOFD法は、英国の規格BS7706(1993)に規定されている。送信用固定角探触子より超音波を発信し、欠陥よりの回折波を受信用固定角探触子で受信する。送受信探触子を一定間隔に保持しながら、制御装置の制御により探触子全体を水平方向Xに移動させるスキャナからの位置信号と、超音波探傷器からの超音波信号とをそれぞれ入力し、TOFD処理を行う、データ収録処理装置にて構成される。データ収録処理装置では、横軸に探触子の移動距離、縦軸に超音波の伝搬時間を表示し、回折波の表示を確認して、欠陥の寸法を求める。このTOFDの手法は、サイジングしようとする欠陥に対し、超音波を適切に入射、回折波を受信することが必要で、一般的には、45度〜55度方向より超音波を入射し、反対の45度〜55度方向から受信することが必要となる。送受信用探触子は、通常の探触子よりビームの広がりを大きくして、欠陥各所からの回折波を得る様にしているが、サイジングしようとしている欠陥の深さ,形状によってはビームの広がり等により、欠陥端部からの回折波が得られない場合がある、回折波が得にくい欠陥についてはその都度、最適な探傷角度の探触子を選択交換することが必要となっていた。又、ビームの広がりにより、回折波そのものの強度が弱くなることもあり、欠陥検出性の低下要因ともなっていた。
【0004】
【発明が解決しようとする課題】
本発明は、TOFD法による探傷時に、探傷角度の選定のための時間を少なくし、欠陥の深さ,被検査体の板厚が変っても、簡単な設定で、探触子の交換が不要で、かつ欠陥の検出性を向上したTOFD法の探傷法が採用できる超音波探傷装置および方法を提供することにある。
【0005】
【課題を解決するための手段】
本発明は、超音波ビームを被検部の欠陥に当て、得られた回折波の伝搬時間を測定して欠陥を表示するようにしたサイジング探傷方法において、
送信用電子スキャンアレイプローブから探傷角度と深度を可変として焦点位置が位相整合により制御された超音波ビームを被検部の欠陥に送信して回折波を受信用電子スキャンアレイプローブにより位相整合して受信し、検査位置としての送受信焦点位置を順次移動させて欠陥端部を焦点位置として設定し、該焦点位置での回折波の強度を強め、N個の焦点位置で得られた超音波波形情報を記憶し、N点の焦点位置についての超音波波形情報に基づいて1ライン超音波波形情報を合成して記憶し、複数個の1ライン超音波波形情報を合成して記憶し、この記憶された超音波波形情報に基づいて欠陥を示す超音波波形情報を画像表示するようにした。
【0006】
本発明は、具体的には、超音波ビームを被検部の欠陥に当て、得られた回折波の伝搬時間を測定して欠陥を表示装置に表示するようにしたサイジング用超音波探傷装置において、可変される探傷角度と深度を変えた焦点位置とが位相整合により制御された、超音波ビームを発する送信用電子スキャンアレイプローブと、被検部の欠陥から発せられた回折波を位相整合して受信する受信用電子スキャンアレイプローブとを所定の間隔を保って配設し、かつ該所定の間隔を保って前記送信および受信電子スキャンアレイプローブを被検部に沿って平行移動させるスキャナを設け、N個の焦点位置で得られた超音波波形情報を記憶するN焦点メモリを有し、N焦点メモリに記憶された超音波波形情報に基づいて1ライン超音波波形情報を合成した情報を記憶する1ライン合成焦点メモリを有し、複数個の1ライン合成焦点メモリに記憶された1ライン合成超音波波形情報に基づいて多ライン合成超音波波形情報をフレームメモリに記憶し、この記憶された多ライン合成超音波波形情報に基づいて欠陥表示超音波波形情報を濃淡として画像化するサイジング用超音波探傷装置を提供する。
【0007】
【発明の実施の形態】
以下、本発明にかかる一実施例を図面に基づいて説明する。
【0008】
図1は本発明の一実施例の概略構成を示す。探触子に電子スキャンプローブ1(1a,1b)を使用する。電子スキャンプローブ1aから超音波を被検査体6に発信し、欠陥7(7a,7b)よりの回折波を電子スキャンプローブ1bで受信する。電子スキャンプローブ1a,1bを一定間隔に保持しながら、制御装置4の制御により電子スキャンプローブ1a,1bを探触子スキャナ3により水平方向Xに移動させ、探傷子スキャナ3からの位置信号をデータ収録処理装置5に入力する。電子スキャンコントローラ2により超音波の送受信をコントロールで増幅し、回折されて受信された超音波信号をデータ収録処理装置5に入力する。データ収録処理装置5は得られた信号を使用し、後述するようにしてTOFD処理を行い、横軸に探触子である電子スキャンプローブ1a,1bの移動距離、縦軸に超音波の伝搬時間を画像装置の画面に表示し、欠陥の位置,寸法を求める。
【0009】
電子スキャンコントローラ2により探傷角度と焦点距離とを位相整合により制御を行う。これによって、欠陥7に対し、指向のあるビームから最適なビームを選択して電子スキャンプローブ1a,1bにより超音波を発信し、回折波を受信することができる。固定角探触子によっては回折波の受信が困難である欠陥7aについても順次探傷角度を変更可能であるので最適な探傷角度で最適な送受信が可能になる。
【0010】
この場合、被検査体6の深さ方向に順次焦点を合わせ欠陥の端部に超音波を収束し、合わせた焦点における回折波の伝搬時間(伝搬路程ともいう。)でTOFD処理を実施することで回折波を確実に捉えることができる。
【0011】
図2に電子スキャンプローブの焦点の設定方法を示す。送信用電子スキャンプローブ1aと受信用電子スキャンプローブ1bの間で一般的には、送受信の中間位置の検査対象の欠陥のあるライン10a上を順次、焦点位置として、送受信の超音波特性を設定していくことにより、欠陥7a,7b焦点が移動し、これにより、欠陥端部からの回折波の強度を強めることができる。
【0012】
図3は、上記の焦点が移動にともなって得られる超音波波形を示しており、焦点が合った部分の焦点範囲10d,10eのエコーを選択することができる。
【0013】
図4は、実施例の構成をブロックで示す。図において電子スキャンコントローラ2によって送信遅延制御回路21,受信遅延制御回路22を制御し、パルサ回路切換器23から遅延された信号を電子スキャンプローブ1aの各超音波振動素子から被検査体6に発信する。回折波は電子スキャンプローブ1bの各超音波振動素子によって受信され、プリアンプ切換器24を介して受信遅延回路25に送られる。スキャンごとに回折された信号は加算器26で加算され、A/D変換器27でA/D変換されて焦点メモリ28に送られる。焦点メモリ28は1焦点メモリからN焦点メモリまでのN個から構成され、1つの焦点に合わせた欠陥ライン10a上の受信信号が記憶される。ここで焦点への集束方法について説明する。
【0014】
まず図5に超音波を任意の点に集束する方法を示す。
【0015】
検査対象(鋼材)の任意の深さに超音波を集束送信するには、円弧状に配列した振動子素子群の中の、任意の索子群(同図では7素子/群)によって行う。各素子から超音波を同時に送信すると超音波の干渉により点線で示されるごとく伝搬し、各素子を配列した円弧a−a′面の曲率中心0aに焦点を結ぶことになる。即ち、索子毎に設けたディレイラインによる遅延時間(Δt)を与えることにより、送信パルスにΔt分の時間遅れが発生し、このため各素子で送信される超音波はあたかも円弧b−b′面上から送信されたごとく伝搬し、反射体0b点で集束する。受信側は、同図(a)の受信において、超音波が0′点で反射し、受信側の各索子で時間差(位相差)をもって受信する。そこで、送信時と同様の遅延時間を設定することにより各受信信号の位相が揃えられ、加算器によって一つの信号に合成される。これにより、該焦点位置での回折波の強度を強めることが可能となる。
【0016】
次に、超音波の入射角度の制御の方法を図6に示す。
【0017】
図6に示すように振動子索子群の中から、常に超音波束に必要な素子数を1組として例えば、(1),(2),(3)と1素子毎順次シフトさせれば超音波の入射角が素子の配列ピッチに対応してθip,2θip,3θip…と変化する。従って被検査体中には、入射角に基づいた屈折角で回折した超音波が入射する。
【0018】
以上のように電子スキャン法は、振動子索子群に遅延時間を与えることで超音波を被検査体の任意の位置に集束させ、送受信する素子群を順次切換えることによって、任意の角度(可変角)による探傷が可能となる。
【0019】
電子スキャンコントローラ2には、検査位置として焦点位置を順次移動させて欠陥端部を焦点位置として設定する焦点設定位置設定手段と、および該焦点位置での回折波の強度を強める回折波強度設定手段とを設ける。
【0020】
図4に戻って、焦点メモリ28のN個の焦点メモリに記憶された伝搬時間情報に基づいて1ライン伝搬時間合成がなされる。
【0021】
図7に示すように、この焦点範囲で得られるエコーをTOFD処理画面状で順次10d,10eと合成していくことにより、従来のTOFD法にて得られる超音波ビームの広がりにより伝搬時間の変化図形が深さ毎に超音波ビームの強度が強まった形で、同様に得ることができ、欠陥検出性の向上したTOFD法を使用したサイジング用超音波探傷装置を実現できる。
【0022】
N焦点メモリに記憶された超音波波形情報に基づいて1ライン合成焦点メモリ29に1ライン超音波波形情報を記憶する。この1ライン合成焦点メモリは複数個設けられており、複数個の1ライン合成焦点メモリ29に記憶された1ライン合成超音波波形情報と、探触子スキャナ3の水平方向移動量Xに基づいて多ライン合成超音波波形をフレームメモリ30に記憶する。この多ライン合成は、電子スキャンコントローラ2によって探触子スキャナ3の水平方向への移動指令が与えられ、その座標位置が座標発生回路32により計測される。この記憶された多ライン合成超音波波形情報に基づいて欠陥表示超音波波形情報を画像化信号を作り、この信号によって画像部31(画像装置の表示部)に欠陥の表示を行う。
【0023】
図8に1ライン伝搬時間を合成するステップを示す。欠陥を7a,欠陥検査ライン10a,欠陥下端をP,上端をB,底面をP,表面をPで示す。(イ)に示すように、Pに焦点を設定したときには、Pに大きな回折波信号が現われ、この信号はゲート信号P11として入力される。順次焦点を上に持って来て、(ロ)に示すように、Pに焦点を設定したときに、回折波信号は回折強度が強められ、に大きな回折波信号が現われる。この焦点位置の超音波波形をゲート信号P 21 により抽出すれば、回折強度が強められた超音波だけ取り出すことができる。
【0024】
更に焦点が上にあげられて(ハ)に示すように、Pに焦点を設定したときに、Pに大きな回折波信号が現われる。この時、ゲート信号P31 により回折強度が強められた超音波波形だけを取り出すことができる。焦点が表面に設定されるとゲート信号P41 により表面の超音波波形を取り出すことができる。
【0025】
このようにして作られた回折信号を合成して(ホ)に示すような1ライン超音波波形が作られ、1ライン焦点合成メモリ29に記憶される。記憶された後の処理は前述した通りである。
【0026】
【発明の効果】
本発明によれば、1組の電子スキャンアレイプローブを用いることにより、異なる深さの欠陥のサイジングを最適な角度で、TOFD法を用いて探傷することができる。また、焦点を移動させることにより欠陥端部からの回折波を強め、欠陥検出性を向上することが可能となる。
【図面の簡単な説明】
【図1】本発明の一実施例を示す電子スキャンプローブを使用したTOFD法によるサイジング装置の概略構成図。
【図2】焦点移動説明図。
【図3】焦点移動時の焦点範囲と検出エコー説明図。
【図4】本発明の実施例を示すブロック図。
【図5】ビーム集束説明図。
【図6】電子スキャン扇形走査説明図。
【図7】焦点移動時のTOFD画面表示方法説明図。
【図8】1ライン超音波波形合成ステップ図。
【符号の説明】
1a…送信用電子スキャンプローブ、1b…受信用電子スキャンプローブ、2…電子スキャンコントローラ、3…探触子スキャナ、4…制御装置、5…データ収録処理装置、6…被検査体、7a,7b…欠陥、8…超音波探傷器、9a…送信用固定角探触子、9b…受信用固定角探触子、10a…欠陥検査ライン、10b,10c…収束超音波ビーム、10d,10e…焦点範囲。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electronic scanning ultrasonic inspection apparatus and method for nondestructively inspecting the internal state of a subject such as a welded portion by using ultrasonic waves, and in particular, the type of flaws formed inside the subject. And an electronic scanning ultrasonic inspection apparatus and method suitable for evaluating the size.
[0002]
[Prior art]
Japanese Patent Application Laid-Open No. 11-14611 discloses an arc array type transmitting array probe and a receiving array probe, and these array probes are moved in parallel along a test portion while maintaining a predetermined interval. A mechanical scanner that transmits an ultrasonic beam having a sharp directivity from the transmission array probe in a fan shape, and a reflected wave signal from a test portion detected by the reception array probe A circuit unit that sequentially stores the required addresses on the frame memory in accordance with the position signals of the array probes detected by the encoders attached to the encoder, and the reflected wave signals stored in the frame memory in real time. An image display unit for displaying as an image based on three-dimensional information, and the beam directing regions of the transmitting array probe and the receiving array probe at each time point during the sector scan intersect the circuit unit. An electronic scanning ultrasonic inspection apparatus provided with delay time adjusting means for adjusting directivity so as to focus an ultrasonic beam at a certain position is described.
[0003]
An ultrasonic flaw detector for sizing using the TOFD (TIME OF LIGHT DEFFRACTION) method will be described. The TOFD method is defined in the British standard BS7706 (1993). Ultrasound is transmitted from the fixed angle probe for transmission, and the diffracted wave from the defect is received by the fixed angle probe for reception. While holding the transmission / reception probe at a constant interval, a position signal from a scanner that moves the entire probe in the horizontal direction X under the control of the control device and an ultrasonic signal from the ultrasonic flaw detector are input, respectively. It is composed of a data recording processing device that performs TOFD processing. In the data recording processing apparatus, the horizontal axis represents the distance traveled by the probe, the vertical axis represents the ultrasonic wave propagation time, the display of the diffracted wave is confirmed, and the dimension of the defect is obtained. In this TOFD method, it is necessary to appropriately enter ultrasonic waves and receive diffracted waves with respect to the defect to be sized. Generally, the ultrasonic waves are incident from the direction of 45 to 55 degrees, and the opposite. It is necessary to receive from the direction of 45 degrees to 55 degrees. The probe for transmission and reception is designed to obtain a diffracted wave from each part of the defect by increasing the beam spread compared to a normal probe. However, depending on the depth and shape of the defect to be sized, the beam spreads. As a result, it is necessary to selectively replace a probe having an optimum flaw detection angle each time for a defect in which a diffracted wave from the edge of the defect may not be obtained, or a defect in which a diffracted wave is difficult to obtain. In addition, the intensity of the diffracted wave itself may be weakened due to the spread of the beam, which has been a factor in reducing defect detectability.
[0004]
[Problems to be solved by the invention]
The present invention reduces the time for selecting the flaw detection angle during flaw detection by the TOFD method, and even if the depth of the defect and the plate thickness of the object to be inspected are changed, the probe does not need to be replaced with a simple setting. It is another object of the present invention to provide an ultrasonic flaw detection apparatus and method which can employ a TOFD flaw detection method with improved defect detection.
[0005]
[Means for Solving the Problems]
The present invention relates to a sizing flaw detection method in which an ultrasonic beam is applied to a defect in a test portion, and a propagation time of the obtained diffracted wave is measured to display the defect.
And transmitted from the transmitting electronic scanning array probe ultrasonic beam focal position location flaw detection angle and depth as a variable is more controlled in phase matching defects the test unit, the phase by the reception electronics scan array probe diffracted wave The received and transmitted focal positions as the inspection positions are sequentially moved to set the defect end as the focal position, the intensity of the diffracted wave at the focal position is increased, and the superpositions obtained at the N focal positions are obtained. Storing ultrasonic waveform information, synthesizing and storing one-line ultrasonic waveform information based on ultrasonic waveform information about the focal point of N points, and synthesizing and storing a plurality of one-line ultrasonic waveform information; Based on the stored ultrasonic waveform information, ultrasonic waveform information indicating a defect is displayed as an image.
[0006]
Specifically, the present invention relates to an ultrasonic flaw detector for sizing in which an ultrasonic beam is applied to a defect in a test portion, and a propagation time of the obtained diffracted wave is measured and the defect is displayed on a display device. Phase matching of the diffracted wave emitted from the defect of the inspection part and the transmission electron scan array probe for emitting the ultrasonic beam in which the flaw detection angle and the focal position where the depth is changed are controlled by phase matching. And a receiving electronic scan array probe for receiving in a predetermined interval, and a scanner for translating the transmitting and receiving electronic scan array probes along the test portion at the predetermined interval. An N-focus memory for storing ultrasonic waveform information obtained at N focal positions, and information obtained by synthesizing one-line ultrasonic waveform information based on the ultrasonic waveform information stored in the N-focus memory. A multi-line synthesized ultrasound waveform information is stored in the frame memory based on the 1-line synthesized ultrasound waveform information stored in the plurality of 1-line synthesized focus memories. Provided is a sizing ultrasonic flaw detector for imaging defect display ultrasonic waveform information as shades based on the multi-line synthesized ultrasonic waveform information.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment according to the present invention will be described below with reference to the drawings.
[0008]
FIG. 1 shows a schematic configuration of an embodiment of the present invention. The electronic scan probe 1 (1a, 1b) is used for the probe. An ultrasonic wave is transmitted from the electronic scan probe 1a to the inspection object 6, and a diffracted wave from the defect 7 (7a, 7b) is received by the electronic scan probe 1b. While holding the electronic scan probes 1a and 1b at a constant interval, the electronic scan probes 1a and 1b are moved in the horizontal direction X by the probe scanner 3 under the control of the control device 4, and the position signal from the flaw detector scanner 3 is data. Input to the recording processing device 5. The electronic scan controller 2 amplifies transmission / reception of ultrasonic waves by control, and inputs the ultrasonic signals received after being diffracted to the data recording processing device 5. The data recording processing device 5 uses the obtained signal, performs TOFD processing as described later, the horizontal axis represents the movement distance of the electronic scan probes 1a and 1b, and the vertical axis represents the ultrasonic wave propagation time. Is displayed on the screen of the image device, and the position and size of the defect are obtained.
[0009]
The electronic scan controller 2 controls the flaw detection angle and the focal length by phase matching. As a result, an optimum beam is selected from the directional beams with respect to the defect 7, ultrasonic waves are transmitted by the electronic scan probes 1 a and 1 b, and diffracted waves can be received. Depending on the fixed angle probe, it is possible to sequentially change the flaw detection angle for the defect 7a for which it is difficult to receive the diffracted wave, so that the optimum transmission / reception at the optimum flaw detection angle becomes possible.
[0010]
In this case, the focal point is sequentially focused in the depth direction of the inspected object 6, the ultrasonic wave is converged on the edge of the defect, and the TOFD process is performed with the propagation time (also referred to as a propagation path length) of the diffracted wave at the combined focus. Can reliably capture diffracted waves.
[0011]
FIG. 2 shows a method for setting the focus of the electronic scan probe. In general, between the transmission electronic scan probe 1a and the reception electronic scan probe 1b, transmission / reception ultrasonic characteristics are sequentially set on the defective line 10a to be inspected at an intermediate position of transmission / reception as a focal position. by going defects 7a, the focus is moved to 7b, which makes it possible to enhance the intensity of the diffracted wave from the defect ends.
[0012]
FIG. 3 shows an ultrasonic waveform obtained when the focal point moves as described above, and echoes in the focal ranges 10d and 10e in the focused portion can be selected.
[0013]
FIG. 4 is a block diagram showing the configuration of the embodiment. In the figure, a transmission delay control circuit 21 and a reception delay control circuit 22 are controlled by an electronic scan controller 2, and a signal delayed from a pulsar circuit switch 23 is transmitted from each ultrasonic vibration element of the electronic scan probe 1a to an object to be inspected 6. To do. The diffracted wave is received by each ultrasonic vibration element of the electronic scan probe 1 b and sent to the reception delay circuit 25 via the preamplifier switch 24. Signals diffracted for each scan are added by an adder 26, A / D converted by an A / D converter 27, and sent to a focus memory 28. The focus memory 28 is composed of N elements from a 1-focus memory to an N-focus memory, and stores a reception signal on the defect line 10a aligned with one focus. Here, the focusing method to the focus will be described.
[0014]
First, FIG. 5 shows a method of focusing an ultrasonic wave at an arbitrary point.
[0015]
In order to focus and transmit ultrasonic waves to an arbitrary depth of an inspection object (steel material), an arbitrary chord group (7 elements / group in the figure) in the transducer element group arranged in an arc shape is used. When an ultrasonic wave is transmitted simultaneously from each element, it propagates as indicated by the dotted line due to the interference of the ultrasonic wave, and focuses on the center of curvature 0a of the arc aa ′ plane in which each element is arranged. That is, by giving a delay time (Δt) by a delay line provided for each cord, a time delay corresponding to Δt is generated in the transmission pulse, so that the ultrasonic wave transmitted by each element is as if the arc bb ′. It propagates as it is transmitted from the surface and converges at the reflector 0b. In the reception shown in FIG. 5A, the reception side reflects the ultrasonic wave at the point 0 ′, and receives the time difference (phase difference) by each cord on the reception side. Therefore, by setting a delay time similar to that at the time of transmission, the phases of the received signals are made uniform and synthesized into one signal by an adder. As a result, the intensity of the diffracted wave at the focal position can be increased.
[0016]
Next, a method for controlling the incident angle of ultrasonic waves is shown in FIG.
[0017]
As shown in FIG. 6, if the number of elements necessary for the ultrasonic bundle is always set as one set from the transducer cord group, for example, (1), (2), and (3) are sequentially shifted for each element. The incident angle of the ultrasonic waves changes as θip, 2θip, 3θip,... Corresponding to the arrangement pitch of the elements. Therefore, the ultrasonic wave diffracted at the refraction angle based on the incident angle enters the object to be inspected.
[0018]
As described above, in the electronic scanning method, by giving a delay time to the transducer cord group, the ultrasonic wave is focused on an arbitrary position of the object to be inspected, and the element group to be transmitted and received is sequentially switched to change an arbitrary angle (variable). (Square) flaw detection is possible.
[0019]
The electronic scan controller 2 includes a focus setting position setting unit that sequentially moves the focal position as the inspection position and sets the defect end as the focal position, and a diffracted wave intensity setting unit that increases the intensity of the diffracted wave at the focal position. And provide.
[0020]
Returning to FIG. 4, one-line propagation time synthesis is performed based on the propagation time information stored in the N focus memories of the focus memory 28.
[0021]
As shown in FIG. 7, the echo obtained in this focal range is sequentially synthesized with 10d and 10e in the form of a TOFD processing screen, thereby changing the propagation time due to the spread of the ultrasonic beam obtained by the conventional TOFD method. An ultrasonic flaw detector for sizing using the TOFD method, which can be obtained in the same manner in a form where the intensity of the ultrasonic beam is increased for each depth of the figure and the defect detectability is improved, can be realized.
[0022]
Storing one line ultrasonic waveform information into a line synthesis focal memory 29 based on the ultrasound waveform information stored in the N focal memory. A plurality of one-line synthetic focus memories are provided. Based on the one-line synthetic ultrasonic waveform information stored in the plurality of one-line synthetic focus memories 29 and the horizontal movement amount X of the probe scanner 3. The multi-line synthesized ultrasonic waveform is stored in the frame memory 30. In the multi-line synthesis, a command for moving the probe scanner 3 in the horizontal direction is given by the electronic scan controller 2, and the coordinate position is measured by the coordinate generation circuit 32. Based on the stored multi-line synthetic ultrasonic waveform information , an image signal is generated from the defect display ultrasonic waveform information , and the defect is displayed on the image unit 31 (display unit of the image device) by this signal.
[0023]
FIG. 8 shows a step of synthesizing one line propagation time. Defect 7a, defect inspection line 10a, P 2 defects lower, upper and B 3, P 1 the bottom surface shown in P 4. As shown in (b), when setting the focus P 1 is, appear larger diffracted wave signals P 1, this signal is input as a gate signal P 11. Bring sequentially focus on, as shown in (b), when setting the focal point P 2, diffracted wave signal is intensified diffraction intensity appears larger diffracted wave signal P 2. Be extracted ultrasound waveform of the focus position by the gate signal P 21, it is possible to extract only the ultrasonic diffraction intensity is strengthened.
[0024]
Furthermore, as shown in focus are listed above (c), when setting the focus on P 3, it appears larger diffracted wave signal P 3. In this case, it is possible to retrieve only ultrasonic waveform diffraction intensity is strengthened by the gate signal P 31. Can be taken out ultrasonic wave surface by the focus is set to the surface gate signal P 41.
[0025]
By synthesizing the diffraction signals thus produced, a one-line ultrasonic waveform as shown in (e) is created and stored in the one-line focus synthesis memory 29. The processing after the storage is as described above.
[0026]
【The invention's effect】
According to the present invention, by using one set of electronic scan array probes, sizing of defects having different depths can be detected using the TOFD method at an optimum angle. Further, by moving the focal point, it is possible to enhance the diffracted wave from the defect end and improve the defect detectability.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a sizing apparatus based on a TOFD method using an electronic scan probe according to an embodiment of the present invention.
FIG. 2 is an explanatory diagram of focus movement.
FIG. 3 is an explanatory diagram of a focus range and a detection echo when a focus is moved.
FIG. 4 is a block diagram showing an embodiment of the present invention.
FIG. 5 is an explanatory diagram of beam focusing.
FIG. 6 is an explanatory diagram of an electronic scan fan-shaped scan.
FIG. 7 is an explanatory diagram of a TOFD screen display method during focus movement.
FIG. 8 is a one-line ultrasonic waveform synthesis step diagram.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1a ... Electronic scan probe for transmission, 1b ... Electronic scan probe for reception, 2 ... Electronic scan controller, 3 ... Probe scanner, 4 ... Control apparatus, 5 ... Data recording processing apparatus, 6 ... Test object, 7a, 7b Defect, 8 ... Ultrasonic flaw detector, 9a ... Fixed angle probe for transmission, 9b ... Fixed angle probe for reception, 10a ... Defect inspection line, 10b, 10c ... Convergent ultrasonic beam, 10d, 10e ... Focus range.

Claims (2)

超音波ビームを被検部の欠陥に当て、得られた回折波の伝搬時間を測定して欠陥を表示装置に表示するようにしたサイジング用超音波探傷装置において、
可変される探傷角度と深度を変えた焦点位置とが位相整合により制御された、超音波ビームを発する送信用電子スキャンアレイプローブと、被検部の欠陥から発せられた回折波を位相整合して受信する受信用電子スキャンアレイプローブとを所定の間隔を保って配設し、かつ
該所定の間隔を保って前記送信および受信電子スキャンアレイプローブを被検部に沿って平行移動させるスキャナを設け、
検査位置としての送受信焦点位置を順次移動させて欠陥端部を焦点位置として設定するように送信用および受信用電子スキャンコントローラーと、該焦点位置で生じる回折波を取り出すためのゲート信号入力手段を設け、
前記順次移動させたN個の焦点位置で得られた超音波波形情報を記憶するN焦点メモリを有し、N焦点メモリに記憶された超音波波形情報に基づいて1ライン超音波波形情報を合成して記憶する1ライン合成焦点メモリを有し、複数個の1ライン合成焦点メモリに記憶された1ライン合成超音波波形情報に基づいて多ライン合成超音波波形情報をフレームメモリに記憶し、
この記憶された多ライン合成超音波波形情報に基づいて欠陥表示を画像化すること
を特徴とするサイジング用超音波探傷装置。
In the ultrasonic flaw detector for sizing in which the ultrasonic beam is applied to the defect of the test part, the propagation time of the obtained diffracted wave is measured, and the defect is displayed on the display device.
A phase-matching of an electron scanning array probe for transmitting an ultrasonic beam, in which the flaw detection angle to be varied and a focal position with a changed depth are controlled by phase matching, and a diffracted wave emitted from a defect in the test part A receiving electronic scan array probe for receiving is disposed at a predetermined interval, and a scanner for translating the transmission and reception electronic scan array probes along the test portion at the predetermined interval is provided,
A transmitting and receiving electronic scan controller to sequentially move the reception focal position as the inspection position to set the defective end portion as the focus position, the gate signal input means for taking out diffracted wave generated at the focal point position provided ,
An N-focus memory is provided for storing ultrasonic waveform information obtained at the N focal positions that are sequentially moved, and one-line ultrasonic waveform information is synthesized based on the ultrasonic waveform information stored in the N-focus memory. 1 line synthetic focus memory for storing and storing multi-line synthetic ultrasonic waveform information in the frame memory based on the one line synthetic ultrasonic waveform information stored in a plurality of one line synthetic focus memories,
An ultrasonic flaw detector for sizing, wherein a defect display is imaged based on the stored multi-line synthetic ultrasonic waveform information.
超音波ビームを被検部の欠陥に当て、得られた回折波の伝搬時間を測定して欠陥を表示するようにしたサイジング探傷方法において、
送信用電子スキャンアレイプローブから探傷角度と深度を可変として焦点位置が位相整合により制御された超音波ビームを被検部の欠陥に送信して回折波を受信用電子スキャンアレイプローブにより位相整合して受信し、検査位置としての送受信焦点位置を順次移動させて欠陥端部を焦点位置として設定し、該焦点位置で生じる回折波をゲート信号により取り出し、前記順次移動させたN個の焦点位置で得られた超音波波形情報を記憶し、N点の焦点位置についての超音波波形情報に基づいて1ライン伝搬時間を合成して記憶し、複数個の1ライン超音波波形情報を合成して記憶し、この記憶された超音波波形情報に基づいて欠陥を画像表示すること
を特徴とするサイジング用超音波探傷方法。
In a sizing flaw detection method in which an ultrasonic beam is applied to a defect in a part to be examined and the propagation time of the obtained diffracted wave is measured to display the defect.
And transmitted from the transmitting electronic scanning array probe ultrasonic beam focal position location flaw detection angle and depth as a variable is more controlled in phase matching defects the test unit, the phase by the reception electronics scan array probe diffracted wave Receiving in alignment , the transmission / reception focal position as the inspection position is sequentially moved to set the defect end as the focal position, the diffracted wave generated at the focal position is taken out by the gate signal, and the sequentially moved N focal points The ultrasonic waveform information obtained at the position is stored, one line propagation time is synthesized and stored based on the ultrasonic waveform information about the focal point of the N points, and a plurality of one line ultrasonic waveform information is synthesized. An ultrasonic flaw detection method for sizing, characterized in that a defect is image-displayed based on the stored ultrasonic waveform information.
JP2000041442A 2000-02-15 2000-02-15 Sizing ultrasonic flaw detector and sizing flaw detection method Expired - Fee Related JP3609975B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000041442A JP3609975B2 (en) 2000-02-15 2000-02-15 Sizing ultrasonic flaw detector and sizing flaw detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000041442A JP3609975B2 (en) 2000-02-15 2000-02-15 Sizing ultrasonic flaw detector and sizing flaw detection method

Publications (2)

Publication Number Publication Date
JP2001228128A JP2001228128A (en) 2001-08-24
JP3609975B2 true JP3609975B2 (en) 2005-01-12

Family

ID=18564684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000041442A Expired - Fee Related JP3609975B2 (en) 2000-02-15 2000-02-15 Sizing ultrasonic flaw detector and sizing flaw detection method

Country Status (1)

Country Link
JP (1) JP3609975B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6957583B2 (en) * 2002-10-31 2005-10-25 Hitachi, Ltd. Ultrasonic array sensor, ultrasonic inspection instrument and ultrasonic inspection method
US6792808B1 (en) * 2003-04-30 2004-09-21 General Electric Company Ultrasonic inspection method
JP2011149888A (en) * 2010-01-25 2011-08-04 Toden Kogyo Co Ltd Compound-type ultrasonic probe, and ultrasonic flaw detection method by tofd method using the probe
CN101806777B (en) * 2010-03-01 2011-09-21 哈尔滨工业大学 Near surface flaw quantification detection method based on ultrasonic TOFD method
CN102393422A (en) * 2011-08-22 2012-03-28 江苏省产品质量监督检验研究院 Ultrasonic time of flight diffraction (TOFD)-based offline defect judgment method
JP5841026B2 (en) * 2012-08-31 2016-01-06 株式会社原子力安全システム研究所 Ultrasonic flaw detection method and ultrasonic flaw detection apparatus
CN114235963B (en) * 2021-12-21 2024-04-16 一重集团大连核电石化有限公司 Method for detecting cracks under build-up welding layer

Also Published As

Publication number Publication date
JP2001228128A (en) 2001-08-24

Similar Documents

Publication Publication Date Title
JP5279090B2 (en) Ultrasonic flaw detection method and apparatus
CN104535657B (en) A kind of sheet workpiece phased array supersonic guided wave image-forming detecting system and its detection method
KR101218473B1 (en) Ultrasonic measurement device and ultrasonic measurement method
JP5800667B2 (en) Ultrasonic inspection method, ultrasonic flaw detection method and ultrasonic inspection apparatus
JP2009281805A (en) Ultrasonic flaw detecting method and ultrasonic flaw detector
JP3609975B2 (en) Sizing ultrasonic flaw detector and sizing flaw detection method
JP4644621B2 (en) Ultrasonic inspection method and ultrasonic inspection apparatus
JP5910641B2 (en) Ultrasonic imaging method and ultrasonic imaging apparatus
JP3704065B2 (en) Ultrasonic flaw detector
JP2004150875A (en) Method and system for imaging internal flaw using ultrasonic waves
JP2001108661A (en) Method and apparatus for ultrasonically detecting flaw
JP5689227B2 (en) Ultrasonic measurement method and apparatus
JP4866791B2 (en) Ultrasonic flaw detection apparatus and method
JP2002214204A (en) Ultrasonic flaw detector and method using the same
JPH03122563A (en) Ultrasonic flaw detection apparatus
CN113075297A (en) Titanium alloy phased array linear array ultrasonic detection sound field model construction method
JPH08201569A (en) Ultrasonic inspection equipment
JPH1114611A (en) Electronic scanning system ultrasonic inspection equipment
JPS58117452A (en) Ultrasonic image pickup apparatus
JP5709357B2 (en) Ultrasonic flaw detection apparatus and ultrasonic flaw detection method
KR100543736B1 (en) Ultrasonic imaging method
JP2612890B2 (en) Ultrasonic flaw detection method
JPH11211708A (en) Electronic scanning type ultrasonic flaw detection device
JP2013108892A (en) Ultrasonic inspection method and ultrasonic inspection device
JPH01126543A (en) Sector scan type ultrasonic flaw detector

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041015

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071022

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081022

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091022

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091022

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101022

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111022

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121022

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121022

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 9

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees