JPH05322860A - Ultrasonic flaw detection method of insulating tube - Google Patents

Ultrasonic flaw detection method of insulating tube

Info

Publication number
JPH05322860A
JPH05322860A JP4133674A JP13367492A JPH05322860A JP H05322860 A JPH05322860 A JP H05322860A JP 4133674 A JP4133674 A JP 4133674A JP 13367492 A JP13367492 A JP 13367492A JP H05322860 A JPH05322860 A JP H05322860A
Authority
JP
Japan
Prior art keywords
flaw detection
waveform
insulating tube
ultrasonic flaw
probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4133674A
Other languages
Japanese (ja)
Other versions
JP2933778B2 (en
Inventor
Junichi Matsuo
純一 松尾
Kaoru Yamanaka
薫 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP4133674A priority Critical patent/JP2933778B2/en
Publication of JPH05322860A publication Critical patent/JPH05322860A/en
Application granted granted Critical
Publication of JP2933778B2 publication Critical patent/JP2933778B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/11Analysing solids by measuring attenuation of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/269Various geometry objects
    • G01N2291/2697Wafer or (micro)electronic parts

Abstract

PURPOSE:To obtain a method for performing ultrasonic flaw detection to check to see if there is any defect in an insulating tube with a shade on the outer- periphery surface from the inner surface of the insulating tube efficiently. CONSTITUTION:A rotary shaft 6 with N arms 7 with a probe 8 is set on the center axis line of an insulating tube 1 and then the insulating tube 1 is rotated or the rotary shaft 6 is rotated, thus performing ultrasonic flaw detection while giving a relative rotation in reference to the insulating tube 1 and a displacement in the direction of axial line. The flaw detection waveform is equally divided into a number of sections along a time axis and is converted a waveform which is obtained by holding the peak maximum value in each section. Then, the difference between flaw detection waveforms at two positions which are in proximity on nearly an equal circumference for canceling the influence of a shade 2 and taking out only the change in waveform due to defect.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、外周面に回転対称形状
の笠を有する碍管の欠陥の有無を、碍管の内面から超音
波探傷する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for ultrasonic flaw detection from the inner surface of a porcelain tube for the presence or absence of defects in the porcelain tube having a rotationally symmetrical cap on its outer peripheral surface.

【0002】[0002]

【従来の技術】碍管の内部の欠陥の有無を検査するため
には、従来から超音波探傷方法が使用されている。とこ
ろが碍管は外周面に多数の笠を有するために、探触子か
ら発信された超音波がこれらの笠によって反射して笠エ
コーとなり、図7に示すように欠陥からの反射による欠
陥エコーと入り混じることが避けられない。このために
従来は熟練した作業員が経験により笠エコーと欠陥エコ
ーとを見分けていたが、この方法は作業員による良否判
定のバラツキを招くこととなる。
2. Description of the Related Art An ultrasonic flaw detection method has hitherto been used for inspecting the inside of a porcelain insulator for defects. However, since the porcelain insulator has a large number of shades on the outer peripheral surface, the ultrasonic waves transmitted from the probe are reflected by these shades to form shade echoes, and as shown in FIG. Mixing is inevitable. For this reason, a skilled worker conventionally discriminates the shade echo and the defect echo by experience, but this method causes variations in the quality judgment by the worker.

【0003】また碍管に要求される信頼性の向上に伴
い、碍管の内面からも超音波探傷を行うことが求められ
ている。しかしこのためには碍管の径に応じて作業員が
碍管の内部に入ったり、腕を入れて探触子を操作する必
要があり、その作業性及び検査精度は低いものであっ
た。
Further, as the reliability required of the porcelain tube is improved, it is required to carry out ultrasonic flaw detection from the inner surface of the porcelain tube. However, for this purpose, it is necessary for an operator to enter the inside of the porcelain tube or to insert the arm and operate the probe according to the diameter of the porcelain tube, and the workability and inspection accuracy are low.

【0004】[0004]

【発明が解決しようとする課題】本発明は上記した従来
の問題点を解決し、外周面に笠を有する碍管の欠陥の有
無を、碍管の内面から精度よく、また能率よく超音波探
傷することができる碍管の超音波探傷方法を提供するた
めに完成されたものである。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned problems of the prior art, and ultrasonically inspects the presence or absence of defects in a porcelain tube having a cap on the outer peripheral surface thereof from the inner surface of the porcelain tube with high accuracy and efficiency. It has been completed to provide an ultrasonic flaw detection method for porcelain tubes.

【0005】[0005]

【課題を解決するための手段】上記の課題を解決するた
めになされた本発明は、碍管の内面に圧着される探触子
を備えたアームを持つ回転シャフトを碍管の中心軸線上
にセットし、この回転シャフトと碍管との間に相対的な
回転及び軸線方向の変位を与えながら超音波探傷を行
い、このようにして得られた探傷波形を時間軸に沿って
多数の区間に等分割して各区間毎に最大値でピークホー
ルドした波形に変換したうえ、ほぼ同一円周上における
近接した2位置の探傷波形の差により欠陥の有無を判定
することを特徴とするものである。
SUMMARY OF THE INVENTION The present invention, which has been made to solve the above problems, sets a rotary shaft having an arm having a probe to be crimped to the inner surface of a porcelain insulator on the central axis of the porcelain insulator. , Ultrasonic flaw detection is performed while applying relative rotation and axial displacement between the rotary shaft and the porcelain tube, and the flaw detection waveform thus obtained is equally divided into a number of sections along the time axis. Then, the waveform is converted into a waveform that is peak-held at the maximum value for each section, and the presence or absence of a defect is determined based on the difference between the flaw detection waveforms at two adjacent positions on substantially the same circumference.

【0006】[0006]

【作用】本発明においては、碍管の中心軸線上にセット
された回転シャフトと碍管との間に相対的な回転及び軸
線方向の変位を与えながら、回転シャフトのアームの先
端の探触子を碍管の内面に圧着させて超音波探傷を行
う。この場合、碍管の笠は回転対称に形成されているの
で、上記の軸線方向の変位の速度を回転速度に比較して
小さく設定しておけば、探触子は碍管のほぼ同一円周上
を移動し、ほぼ同一円周上における探傷波形を得ること
ができる。従って、探傷波形を時間軸に沿って多数の区
間に等分割して各区間毎に最大値でピークホールドした
波形に変換したうえ、近接した2位置の探傷波形の差を
取ると、笠の影響は近接した2位置の探傷波形に同様に
現れるはずであるから、笠の影響はキャンセルされて欠
陥による探傷波形の変化のみを取り出すことができる。
このために本発明の方法によれば、笠の影響を受けるこ
となく碍管の内面からの超音波探傷が可能となる。
In the present invention, the probe at the tip of the arm of the rotary shaft is applied to the porcelain tube while providing relative rotation and axial displacement between the rotary shaft and the porcelain tube set on the central axis of the porcelain tube. Ultrasonic flaw detection is performed by crimping to the inner surface of the. In this case, since the cap of the porcelain tube is formed rotationally symmetrical, if the speed of displacement in the above-mentioned axial direction is set to be smaller than the rotational speed, the probe will be placed on substantially the same circumference of the porcelain tube. It is possible to move and obtain a flaw detection waveform on substantially the same circumference. Therefore, if the flaw detection waveform is equally divided into a number of sections along the time axis and converted into a waveform that peak-holds at the maximum value for each section, and if the difference between the flaw detection waveforms at two adjacent positions is calculated, the effect of the shade Should also appear in the flaw detection waveforms at two adjacent positions, the influence of the shade is canceled and only the change in the flaw detection waveform due to the defect can be extracted.
Therefore, according to the method of the present invention, ultrasonic flaw detection can be performed from the inner surface of the porcelain tube without being affected by the shade.

【0007】[0007]

【実施例】以下に本発明を図示の実施例により、更に詳
細に説明する。図1、図2は本発明の第1の実施例を示
すもので、外周面に回転対称形状の多数の笠2を備えた
碍管1が、2本のロープ3により水平に吊り下げられて
いる。これらのロープ3の一方は動力式の滑車4により
駆動され、他方のロープ3はフリーな滑車5により支持
されたものであって、碍管1をその中心軸線のまわりに
回転させることができる。
The present invention will be described in more detail with reference to the embodiments shown in the drawings. 1 and 2 show a first embodiment of the present invention, in which a porcelain bushing 1 having a large number of rotationally symmetrical caps 2 on its outer peripheral surface is suspended horizontally by two ropes 3. .. One of these ropes 3 is driven by a powered pulley 4 and the other rope 3 is supported by a free pulley 5, which allows the porcelain bushing 1 to rotate about its central axis.

【0008】6は上記の碍管1の中心軸線上にセットさ
れた回転シャフトであり、その上にN本(N=1、2、
3・・)のアーム7が設けられている。実施例ではN=
3であり、3本のアーム7が設けられている。各アーム
7の先端には碍管1の内面に圧着される探触子8が取り
付けられている。説明の都合上、3個の探触子8にA,
B,Cの符号を付けるものとする。実施例の回転シャフ
ト6にはねじが切ってあり、各アーム7の基部と螺合し
ているので、回転シャフト6を回転させることによって
各アーム7とともに探触子8を碍管1の軸線方向に移動
させることができる。
Reference numeral 6 denotes a rotary shaft set on the central axis of the above-mentioned porcelain bushing 1, on which N (N = 1, 2,
3 ...) Arm 7 is provided. In the embodiment, N =
3, and three arms 7 are provided. A probe 8 that is crimped onto the inner surface of the porcelain bushing 1 is attached to the tip of each arm 7. For convenience of explanation, A is attached to the three probes 8.
The symbols B and C are attached. Since the rotary shaft 6 of the embodiment is threaded and screwed with the base of each arm 7, by rotating the rotary shaft 6, the probe 8 is moved in the axial direction of the porcelain tube 1 together with each arm 7. Can be moved.

【0009】探触子8は市販の斜角探触子であり、例え
ば63ヘルツのトリガクロックにより駆動され、チャネ
ルセレクタ9の作用により図3のように一つのトリガク
ロック毎にA,B,Cの探触子8からの探傷波形が演算
装置に順次取り込まれるようになっている。次に図3と
図4を参照しつつ、本発明の超音波探傷工程を説明す
る。
The probe 8 is a commercially available bevel probe, and is driven by a trigger clock of, for example, 63 hertz, and by the action of the channel selector 9, as shown in FIG. The flaw detection waveforms from the probe 8 of FIG. Next, the ultrasonic flaw detection process of the present invention will be described with reference to FIGS. 3 and 4.

【0010】まず前記したように碍管1を回転させつつ
回転シャフト6を回転させ、各探触子8を碍管1の内面
に沿ってゆるやかな螺旋状に移動させる。しかし碍管1
の軸線方向への探触子8の移動速度は回転速度に比較し
て小さいので、各探触子8は碍管1のほぼ同一円周上を
移動するものと見なすことができる。
First, as described above, the rotary shaft 6 is rotated while rotating the porcelain bushing 1, and each probe 8 is moved along the inner surface of the porcelain bushing 1 in a gentle spiral shape. But insulator 1
Since the moving speed of the probe 8 in the axial direction is smaller than the rotating speed, each probe 8 can be regarded as moving on substantially the same circumference of the porcelain insulator 1.

【0011】図4のフローチャートに示すように、まず
トリガクロックのナンバーを意味するti を1とする。
そしてti =1に対応するAの探触子8からの探傷波形
の取込みを開始する。このとき、トリガクロック間の探
傷波形を時間軸に沿ってN個の区間に等分割し、分割さ
れた各区間Ni 毎に区間内の波形の最大値をピークホー
ルドさせ、図3の下段に示すような波形に変換する。そ
してN個の区間について変換が終了したらその分のデー
タをメモリへ転送する。メモリは3の倍数分の波形を蓄
積できる容量を持つもので、ここでは説明を単純化する
ためにti =1〜6の6個分の波形を蓄積できるメモリ
(T=6)を使用するものとする。
As shown in the flow chart of FIG. 4, first, t i , which means the number of the trigger clock, is set to 1.
Then, the acquisition of the flaw detection waveform from the A probe 8 corresponding to t i = 1 is started. In this case, equally divided into N intervals along the flaw waveform between the trigger clock in the time axis, to the peak hold the maximum value of the waveform in the interval for each interval N i which is divided, the lower part of FIG. 3 Convert to the waveform as shown. When the conversion is completed for the N sections, the corresponding data is transferred to the memory. The memory has a capacity capable of accumulating waveforms for multiples of 3, and here, a memory (T = 6) capable of accumulating 6 waveforms of t i = 1 to 6 is used to simplify the description. I shall.

【0012】上記のようにしてti =1に対応するAの
探触子8からの探傷波形を変換したうえメモリに転送し
たら、次にti =2に対応するBの探触子8からの探傷
波形を同様に変換し、メモリへ転送する。更にti =3
に対応するCの探触子8からの探傷波形をメモリへ転送
し、以下同様にti =4、5、6に対応する第2巡目の
A,B,Cの探傷波形をメモリへ転送する。図3ではA
の探触子8からの探傷波形のみを示してあるが、実際に
はB,Cの探触子8からもそれぞれ異なる探傷波形が生
ずる可能性がある。このようにしてti =6に達したら
次にほぼ同一円周上における(即ち同一の探触子8から
得られた)近接した2位置の探傷波形の差を演算する。
As described above, after the flaw detection waveform from the A probe 8 corresponding to t i = 1 is converted and transferred to the memory, the B probe 8 corresponding to t i = 2 is then converted. Similarly, the flaw detection waveform of is converted and transferred to the memory. Furthermore, t i = 3
The flaw detection waveforms from the C probe 8 corresponding to the above are transferred to the memory, and thereafter, the flaw detection waveforms of the second round A, B, C corresponding to t i = 4, 5, 6 are similarly transferred to the memory. To do. In Figure 3, A
Although only the flaw detection waveforms from the probe 8 of FIG. 3 are shown, in reality, different flaw detection waveforms may occur from the probes 8 of B and C, respectively. In this way, when t i = 6 is reached, the difference between the flaw detection waveforms at two adjacent positions on the substantially same circumference (that is, obtained from the same probe 8) is calculated.

【0013】まずti =1とし、実施例ではti =1の
Aの波形とti =4のAの波形との比較を行う。比較は
各区間Ni 毎のピークホールド値の差を求める方法で行
い、その絶対値がしきい値αを越えるか否かによって欠
陥の有無を判定する。前記したように、回転対称形状で
ある笠2の影響は同一円周上における近接した2位置の
探傷波形に同様に現れるはずであるから、ti =1のA
の波形とti =4のAの波形との差を演算すれば笠2の
影響はキャンセルされ、欠陥による波形の変化のみを取
り出すことができる。そして欠陥が検出された場合には
不良信号を発生し、欠陥が検出されない場合にはti
2とし、ti =2のBの波形とti =5のBの波形との
比較を行う。このようにしてti =3のCの波形とti
=6のCの波形との比較を行うことにより1サイクルが
終了し、以下同様の演算が繰り返される。
First, t i = 1 is set, and in the embodiment, the waveform of A at t i = 1 and the waveform of A at t i = 4 are compared. The comparison is performed by a method of obtaining the difference between the peak hold values for each section N i , and the presence or absence of a defect is determined by whether or not the absolute value exceeds the threshold value α. As described above, the influence of the shade 2 having the rotationally symmetric shape should appear in the flaw detection waveforms at the two adjacent positions on the same circumference, so that A of t i = 1.
By calculating the difference between the waveform of A and the waveform of A of t i = 4, the influence of the shade 2 is canceled and only the change in the waveform due to the defect can be extracted. Then, when a defect is detected, a defective signal is generated, and when no defect is detected, t i =
2, the B waveform at t i = 2 and the B waveform at t i = 5 are compared. Thus, the waveform of C at t i = 3 and t i
One cycle is completed by making a comparison with the C waveform of = 6, and the same calculation is repeated thereafter.

【0014】以上に説明したように、第1の実施例にお
いては回転シャフト6上に設けられた3本のアーム7の
探触子8から得られた探傷波形を順次取込み、近接した
2位置の探傷波形の差を順次演算することにより、3つ
の断面位置における超音波探傷を並行処理することが可
能である。なお、上記の実施例ではti =1の波形とす
ぐ隣のti =4の波形とを比較したが、実際にはメモリ
の容量を大きくしておき、もう少し離れた2位置の探傷
波形の差を演算する方が好ましい。
As described above, in the first embodiment, the flaw detection waveforms obtained from the probes 8 of the three arms 7 provided on the rotating shaft 6 are sequentially taken in, and the two adjacent flaw positions are detected. By sequentially calculating the difference between the flaw detection waveforms, it is possible to perform ultrasonic flaw detection at three cross-sectional positions in parallel. Although the waveform of t i = 1 and the waveform of t i = 4 immediately adjacent to each other were compared in the above-described embodiment, the memory capacity is actually increased and the waveforms of flaw detection at two positions a little further apart are compared. It is preferable to calculate the difference.

【0015】つぎに図5と図6に、本発明の第2の実施
例を示す。第2の実施例は碍管1を固定し、その中心軸
線上にセットした回転シャフト6を回転させることによ
り、探触子8を碍管1の内面に沿って回転させるように
したものである。この場合には探触子8からの信号を取
り出すケーブルが捩じれることを防止するため、回転方
向を時計方向、反時計方向と交互に逆転させながら超音
波探傷を行う必要がある。また実施例のように同一円周
上を3つの探触子8により探傷するようにしておけば、
回転角度を120 °とすればよく、ケーブルのねじれが少
なくなる。第2の実施例でも3つの探触子8をA,B,
Cとすれば、第1の実施例について説明したと同様に演
算を行い、欠陥による波形変化のみを取り出すことが可
能である。
Next, FIGS. 5 and 6 show a second embodiment of the present invention. In the second embodiment, the porcelain insulator 1 is fixed, and the rotary shaft 6 set on the central axis of the porcelain insulator is rotated to rotate the probe 8 along the inner surface of the porcelain insulator 1. In this case, in order to prevent the cable for extracting the signal from the probe 8 from being twisted, it is necessary to carry out ultrasonic flaw detection while reversing the rotation direction alternately in the clockwise direction and the counterclockwise direction. If the three probes 8 are used to detect flaws on the same circumference as in the embodiment,
The twist angle of the cable is reduced by setting the rotation angle to 120 °. Also in the second embodiment, the three probes 8 are replaced by A, B,
If it is set to C, it is possible to perform the same calculation as described in the first embodiment and extract only the waveform change due to the defect.

【0016】[0016]

【発明の効果】以上に説明したように、本発明の碍管の
超音波探傷方法によれば、外周面に笠を有する碍管の欠
陥の有無を笠の影響を受けることなく、碍管の内面から
精度よく、また能率よく超音波探傷することができ、特
に超高圧送電用の大型碍管の内部欠陥の有無の検査に好
適なものである。よって本発明は従来の問題点を解消し
た碍管の超音波探傷方法として、産業の発展に寄与する
ところは極めて大きいものである。
As described above, according to the ultrasonic flaw detection method for a porcelain tube of the present invention, the presence or absence of defects in the porcelain tube having a cap on the outer peripheral surface can be accurately measured from the inner surface of the porcelain tube without being affected by the cap. It is possible to perform ultrasonic flaw detection well and efficiently, and is particularly suitable for inspecting the presence or absence of an internal defect in a large porcelain tube for ultra high voltage power transmission. Therefore, the present invention has an extremely great contribution to industrial development as an ultrasonic flaw detection method for porcelain tubes that solves the conventional problems.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例を説明する断面図であ
る。
FIG. 1 is a cross-sectional view illustrating a first embodiment of the present invention.

【図2】本発明の第1の実施例を説明する側面図であ
る。
FIG. 2 is a side view illustrating the first embodiment of the present invention.

【図3】各探傷子の探傷波形を示すグラフである。FIG. 3 is a graph showing a flaw detection waveform of each flaw detector.

【図4】本発明の波形処理の手順を説明するフローチャ
ートである。
FIG. 4 is a flowchart illustrating a procedure of waveform processing according to the present invention.

【図5】本発明の第2の実施例を説明する断面図であ
る。
FIG. 5 is a cross-sectional view illustrating a second embodiment of the present invention.

【図6】本発明の第2の実施例を説明する側面図であ
る。
FIG. 6 is a side view illustrating a second embodiment of the present invention.

【図7】従来の超音波探傷方法によって碍管を検査した
場合の波形図である。
FIG. 7 is a waveform diagram when inspecting a porcelain tube by a conventional ultrasonic flaw detection method.

【符号の説明】[Explanation of symbols]

1 碍管 2 笠 6 回転シヤフト 7 アーム 8 探触子 1 Insulator 2 Shade 6 Rotating Shaft 7 Arm 8 Probe

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 碍管の内面に圧着される探触子を備えた
アームを持つ回転シャフトを碍管の中心軸線上にセット
し、この回転シャフトと碍管との間に相対的な回転及び
軸線方向の変位を与えながら超音波探傷を行い、このよ
うにして得られた探傷波形を時間軸に沿って多数の区間
に等分割して各区間毎に最大値でピークホールドした波
形に変換したうえ、ほぼ同一円周上における近接した2
位置の探傷波形の差により欠陥の有無を判定することを
特徴とする碍管の超音波探傷方法。
1. A rotary shaft having an arm provided with a probe which is crimped to the inner surface of the porcelain bushing is set on the central axis of the porcelain bushing, and the rotary shaft and the porcelain bushing are rotated in a relative rotational and axial direction. Ultrasonic flaw detection is performed while applying displacement, and the flaw detection waveform obtained in this way is equally divided into a number of sections along the time axis and converted into peak-hold waveforms with maximum values for each section. 2 close to each other on the same circumference
An ultrasonic flaw detection method for a porcelain tube characterized by determining the presence or absence of a defect based on a difference in flaw detection waveform at a position.
JP4133674A 1992-05-26 1992-05-26 Ultrasonic flaw detection method for insulator tube Expired - Fee Related JP2933778B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4133674A JP2933778B2 (en) 1992-05-26 1992-05-26 Ultrasonic flaw detection method for insulator tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4133674A JP2933778B2 (en) 1992-05-26 1992-05-26 Ultrasonic flaw detection method for insulator tube

Publications (2)

Publication Number Publication Date
JPH05322860A true JPH05322860A (en) 1993-12-07
JP2933778B2 JP2933778B2 (en) 1999-08-16

Family

ID=15110249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4133674A Expired - Fee Related JP2933778B2 (en) 1992-05-26 1992-05-26 Ultrasonic flaw detection method for insulator tube

Country Status (1)

Country Link
JP (1) JP2933778B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1359413A2 (en) * 2002-04-29 2003-11-05 Mannesmannröhren-Werke AG Process for detecting flaws in oblong work pieces with ultrasounds

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1359413A2 (en) * 2002-04-29 2003-11-05 Mannesmannröhren-Werke AG Process for detecting flaws in oblong work pieces with ultrasounds
US6843131B2 (en) * 2002-04-29 2005-01-18 Mannesmannröhren Method of detecting discontinuities on elongated workpieces
EP1359413A3 (en) * 2002-04-29 2005-06-22 Mannesmannröhren-Werke AG Process for detecting flaws in oblong work pieces with ultrasounds

Also Published As

Publication number Publication date
JP2933778B2 (en) 1999-08-16

Similar Documents

Publication Publication Date Title
JP6088088B1 (en) Ultrasonic flaw detection inspection apparatus and inspection method for anchor bolt
JPH01123143A (en) Method and apparatus for detection of flaw by eddy current
CN108646131A (en) A kind of broken strand of steel-cored aluminium strand wire detection device and method
JPH03103746A (en) Diagnostic method for insulation deterioration of electric wire - cable and measuring instrument used for the same
CN103713054B (en) A kind of guide wave characteristic signal extraction method near weld zone defect of pipeline
JPH056145B2 (en)
JPH05322860A (en) Ultrasonic flaw detection method of insulating tube
CA1204851A (en) Automatic ultrasonic flaw detector for tubes
CN111855151B (en) Detection device and detection method for polarizer transmission shaft
JPS5917154A (en) Method and device for detecting defect by ultrasonic wave method
JP6274957B2 (en) Coupling monitoring method of oblique angle ultrasonic probe
JP2533190B2 (en) Automatic ultrasonic flaw detection method for solid insulators
JP2749021B2 (en) Automatic ultrasonic flaw detector
JPH01158348A (en) Ultrasonic flaw detection apparatus
JPH08201347A (en) Tube flaw detecting device
JPH0465618A (en) Thickness measuring instrument
JP2002310999A (en) Ultrasonic inspection method and ultrasonic inspection device
JPH067104B2 (en) Surface inspection device
JPS6260002B2 (en)
JPH10246793A (en) Inspection method and device for welding part of nuclear fuel rod end plug
JPH01167654A (en) Eddy current flaw detecting device for tube rod material
JPS5831871B2 (en) Ultrasonic flaw detection method
JP2000258397A (en) Nondestructive inspection device of pipe
JPH0320612A (en) Rotary-body inspecting apparatus
JPH01163652A (en) Detection of internal defect of head in insulator isolator

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990514

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080528

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100528

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees