JPH02302662A - Automatic ultrasonic flaw detecting method for solid-core insulator - Google Patents

Automatic ultrasonic flaw detecting method for solid-core insulator

Info

Publication number
JPH02302662A
JPH02302662A JP1123075A JP12307589A JPH02302662A JP H02302662 A JPH02302662 A JP H02302662A JP 1123075 A JP1123075 A JP 1123075A JP 12307589 A JP12307589 A JP 12307589A JP H02302662 A JPH02302662 A JP H02302662A
Authority
JP
Japan
Prior art keywords
insulator
solid
probes
central axis
ultrasonic flaw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1123075A
Other languages
Japanese (ja)
Other versions
JP2533190B2 (en
Inventor
Junichi Matsuo
純一 松尾
Shoichi Sakamoto
坂本 正一
Matsuo Tominaga
冨永 松雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP1123075A priority Critical patent/JP2533190B2/en
Publication of JPH02302662A publication Critical patent/JPH02302662A/en
Application granted granted Critical
Publication of JP2533190B2 publication Critical patent/JP2533190B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/269Various geometry objects
    • G01N2291/2697Wafer or (micro)electronic parts

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To improve the detecting accuracy of an inner defect by suppressing the height of forest-shaped echoes which are inevitably generated in solid-core insulators to a lower value. CONSTITUTION:Probes 3 are brought into contact with deflected positions which are deviated to the outside from the central axis of the insulator at both end surfaces of upper and lower parts of a solid-core insulator. The probes 3 are turned around the central axis of the insulator by one time. Thus the inside of the solid-core insulator 1 undergoes ultrasonic wave flaw detection. The contact positions of the probes 3 to both end surfaces of the upper and lower parts of the solid-core insulator 1 are made to be the deflected position which are deviated from the central axis of the insulator. In this way, the height of a forest-shaped echo can be made to be 1/2 or lower than the height when the contact positions of the probes 3 are made to be the position on the central axis of the insulator. For example, the probes 3 at both end surfaces 2 are alternately selected with a multiplexer 4 which is an electronic switching device, and the waveform of a flaw is outputted through an ultrasonic-wave flaw detector 5. The analog waveform outputted from the flaw detector 5 is digitized with an A/D converter 6. The signal is inputted into a computer 7 and processed with software. Only the waveform of the defect is detected.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は中実碍子、長幹碍子のような中実の磁器本体の
周囲に多数の笠を備えた物体(以下、中実碍子類という
)の内部の探傷を行うために用いられる中実碍子類の自
動超音波探傷方法に関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to an object having a large number of shades around a solid porcelain body such as a solid insulator or a long-stem insulator (hereinafter referred to as a solid insulator). This invention relates to an automatic ultrasonic flaw detection method for solid insulators, which is used to detect flaws in the interior of solid insulators.

(従来の技術) 一般に中実碍子類の磁器本体の両端は、焼成後に不要部
分の切断と研摩とが行われ、平滑な端面とされている。
(Prior Art) In general, both ends of the porcelain body of a solid insulator are cut off and polished to have smooth end faces after firing.

そこで中実碍子類の磁器内部の欠陥の有無を検査するた
めに、これらの研摩された両端面に超音波探傷器の探触
子を接触させ、超音波探傷試験が行われている。
Therefore, in order to inspect the presence or absence of defects inside the porcelain of solid insulators, an ultrasonic flaw detection test is carried out by bringing the probes of an ultrasonic flaw detector into contact with both polished end faces of the solid insulators.

このような探触子の指向角は、一般に次式によって求め
ることができる。
The directivity angle of such a probe can generally be determined by the following equation.

θ。!−170×λ/2a(度) ここでθ。は探触子の指向角、aは探触子の半径、λは
超音波の波長を示す、実測データによれば中実碍子類の
内部の音速は5900m/secであり、使用される探
触子の半径は10IIIIM、振動周波数は2゜0MH
2が普通であるので、これらの値を上式に代入すると探
触子の指向角θ0は約10度となり、これを図示すると
第4図のようになる。中実碍子類の最大径は225−1
全長1218mであるが、この最大サイズの製品におけ
る音の拡がりは第4図のように端面から638閣の距離
で胴径と等しい225■の直径の円となる。従って上下
の端面から探傷すれば、はぼ磁器本体全体を欠陥検出範
囲とすることができるので、探触子は碍子端面の中心に
置けばよいことが分かる。そこで従来はこのような方法
により中実碍子類の内部の欠陥の有無を検査していた。
θ. ! -170×λ/2a (degrees) where θ. is the directivity angle of the probe, a is the radius of the probe, and λ is the wavelength of the ultrasonic wave.According to actual measurement data, the sound speed inside the solid insulator is 5900 m/sec, and the probe used The radius of the child is 10IIIM, the vibration frequency is 2゜0MH
2 is normal, so by substituting these values into the above equation, the directivity angle θ0 of the probe becomes approximately 10 degrees, which is illustrated in FIG. 4. The maximum diameter of solid insulators is 225-1
The total length is 1218 m, but the sound spread in this largest product is a circle with a diameter of 225 square meters, which is equal to the diameter of the body, at a distance of 638 cm from the end face, as shown in Figure 4. Therefore, if flaws are detected from the upper and lower end faces, the entire body of the porcelain can be covered as a defect detection range, so it is understood that the probe should be placed at the center of the end face of the insulator. Conventionally, solid insulators have been inspected for internal defects using such a method.

ところが中実碍子類には胴部に多数の笠があるため、内
部に欠陥がない場合にも上記の探傷法による探傷波形は
第1図のような林状エコーのある特殊な波形となる。こ
れは各笠からのエコーが相互に干渉しあうためであると
考えられる。また内部に欠陥が存在する場合には第2図
に示すように林状エコー中に欠陥エコーF+、 Pg、
F、が発生するので、これらの欠陥エコーを自動的に検
出して不良と判定しているのであるが、欠陥エコーの高
さが林状エコーを越えるものしか検出することができず
、林状エコーの高さが増大すると欠陥エコーが隠されて
しまうため、内部欠陥の検出精度が低いという問題があ
った。
However, solid insulators have many caps on their bodies, so even if there are no internal defects, the flaw detection waveform obtained by the above flaw detection method will be a special waveform with forest echoes as shown in Figure 1. This is thought to be due to the echoes from each shade interfering with each other. In addition, if there is a defect inside, defect echoes F+, Pg,
F, occurs, so these defective echoes are automatically detected and determined to be defective, but only defective echoes whose height exceeds the forest echo can be detected; As the height of the echo increases, the defect echo is hidden, resulting in a problem of low internal defect detection accuracy.

(発明が解決しようとする諜B) 本発明の目的は、上記した従来の問題を解決して、中実
碍子類において不可避的に発生する林状エコーの高さを
低く抑えることにより、内部欠陥の検出精度を大幅に向
上させた中実碍子類の自動超音波探傷方法を提供するこ
とにある。
(Intelligence B to be Solved by the Invention) An object of the present invention is to solve the above-mentioned conventional problems and reduce the height of forest echoes that inevitably occur in solid insulators, thereby reducing internal defects. An object of the present invention is to provide an automatic ultrasonic flaw detection method for solid insulators that greatly improves detection accuracy.

(課匙を解決するための手段) 本発明者は上記の課題を解決するために、中実碍子類に
おける林状エコーの発生状況について試験を重ねた結果
、探触子の接触位置を従来の常識に反して碍子中心軸か
ら外れた偏心位置とすることにより、林状エコーの高さ
を減少できることを見出した。
(Means for Solving the Problems) In order to solve the above problems, the present inventor conducted repeated tests on the occurrence of forest echoes in solid insulators, and as a result, the contact position of the probe was changed from the conventional one. Contrary to common sense, we have found that the height of the forest echo can be reduced by locating the insulator at an eccentric position away from the central axis.

本発明はかかる知見に基づいて完成されたものであって
、中実碍子類の上下両端面の碍子中心軸から外れた偏心
位置に探触子を接触させ、探触子を碍子中心軸のまわり
に1回転させながら中実碍子類の内部を超音波探傷する
ことを特徴とするものである。
The present invention was completed based on this knowledge, and consists of bringing a probe into contact with an eccentric position away from the center axis of the insulator on both the upper and lower end surfaces of a solid insulator, and moving the probe around the center axis of the insulator. This method is characterized by performing ultrasonic flaw detection on the inside of a solid insulator while rotating it once.

このように、本発明においては中実碍子類の上下両端面
への探触子の接触位置を、碍子中心軸から外れた偏心位
置とする。これにより林状エコーの高さを探触子の接触
位置を碍子中心軸上とした場合の1/2以下とすること
ができる。ところが中心部に内部欠陥があることが分か
っている試料を用いて適切な偏心量を調べたところ、碍
子中心軸から10■の位置では100%欠陥エコーを検
出することができたが、15論の位置では5回に1回程
度の割合で欠陥エコーを検出することができなかった。
As described above, in the present invention, the contact position of the probe on both the upper and lower end surfaces of the solid insulator is set at an eccentric position away from the central axis of the insulator. Thereby, the height of the forest echo can be reduced to 1/2 or less of the height when the contact position of the probe is on the center axis of the insulator. However, when we investigated the appropriate amount of eccentricity using a sample that was known to have an internal defect in the center, we were able to detect 100% defect echoes at a position 10 cm from the insulator center axis; At this position, defective echoes could not be detected approximately once in five times.

従って偏心量は通常サイズの中実碍子類の場合には15
−以下とすべきである。
Therefore, the eccentricity is 15 for solid insulators of normal size.
-Should be:

また第4図に示したように、中実碍子類の上下両端面か
ら探傷すれば胴部全体が検出可能範囲に入るので、探傷
子の位置を固定してもよいと思われたが、探触子を碍子
中心軸のまわりに回転させながら欠陥エコーを観察して
いると、ある角度では欠陥エコーが消滅することがあっ
た。これは中実・碍子類の軸方向の曲がり、笠ごとの間
隔のばらつき等に起因して各笠からのエコーが互いに干
渉しあい、たまたま欠陥エコーが消滅したものと考えら
れる。従って本発明においては、探触子を碍子中心軸の
まわりに1回転させながら超音波探傷することにより、
内部欠陥を100%検出することができるようにした。
Furthermore, as shown in Figure 4, if the flaws are detected from both the upper and lower end surfaces of the solid insulator, the entire body will be within the detectable range, so it was thought that it would be possible to fix the position of the flaw detector, but the When observing defect echoes while rotating the tentacle around the insulator's central axis, the defect echoes sometimes disappeared at certain angles. This is thought to be because the echoes from each shade interfered with each other due to the bending of the solid/insulator in the axial direction, variations in the spacing between the shades, etc., and the defective echoes happened to disappear. Therefore, in the present invention, by performing ultrasonic flaw detection while rotating the probe once around the central axis of the insulator,
It is now possible to detect 100% of internal defects.

このように、本発明によれば中実碍子類の笠により発生
する林状エコーの高さを従来の1/2以下とすることが
できるから、林状エコーに隠れていた欠陥エコーの検出
が容易となり、内部欠陥の検出精度を大幅に向上させる
ことができる。
As described above, according to the present invention, the height of the forest echoes generated by the shade of solid insulators can be reduced to 1/2 or less of the conventional height, so that it is possible to detect defective echoes hidden in the forest echoes. This makes it possible to greatly improve the accuracy of detecting internal defects.

次に本発明の好ましい実施例を示す。Next, preferred embodiments of the present invention will be shown.

(実施例) 第3図に示すように、磁器本体の直径が200m、全長
1000−の中実碍子類(1)の上下の両端面(2)、
(2)の碍子中心軸から5鋪偏心させた位置にそれぞれ
探触子(3)、(3)を自動的に接触させ、碍子中心軸
の回りに360度回転させながら振動周波数が2.0?
IHzの超音波による超音波探傷試験を行った。
(Example) As shown in Fig. 3, both upper and lower end surfaces (2) of a solid insulator (1) whose porcelain body has a diameter of 200 m and a total length of 1000 m,
The probes (3) and (3) are automatically brought into contact with each other at a position 5 degrees eccentric from the center axis of the insulator (2), and the vibration frequency is 2.0 while rotating 360 degrees around the center axis of the insulator. ?
An ultrasonic flaw detection test using IHz ultrasonic waves was conducted.

試験中、電子スイッチングデバイスであるマルチプレク
サ(4)により両端面(2)、(2)の探触子(3)、
(3)が交互に選択され、探傷波形が超音波探傷器(5
)を通じて出力された。出力された超音波探傷器(5)
のアナログ波形は^/D変換器(6)によりデジタル化
され、コンピュータ(7)に取り込まれてソフト処理が
なされ、欠陥波形のみが検出された。
During the test, the multiplexer (4), which is an electronic switching device, switches the probe (3) on both end faces (2), (2),
(3) are selected alternately, and the flaw detection waveform is changed to the ultrasonic flaw detector (5
) was output through. Output ultrasonic flaw detector (5)
The analog waveform was digitized by the ^/D converter (6), taken into the computer (7), and subjected to software processing, and only defective waveforms were detected.

このような本発明の方法により内部に欠陥のある100
本の中実碍子の超音波探傷を行ったところ、100%の
精度で内部欠陥を検出することができた。これに対して
探触子(3)を従来のように碍子中心軸上に固定して同
様の超音波探傷を行ったところ、内部欠陥の検出精度は
87%に低下した。
By the method of the present invention, 100
When we performed ultrasonic flaw detection on a solid book insulator, we were able to detect internal defects with 100% accuracy. On the other hand, when similar ultrasonic flaw detection was performed with the probe (3) fixed on the center axis of the insulator as in the conventional manner, the internal defect detection accuracy decreased to 87%.

(発明の効果) 本発明は以上に説明したように、中実碍子類の自動超音
波探傷試験において、探触子を碍子中心軸から偏心させ
た位置に置き、かつ碍子中心軸の回りに1回転すること
により林状エコーの高さを減少させ、内部欠陥の検出精
度を格段に向上させることに成功したものである。よっ
て本発明は中実SP碍子や長幹碍子のような林状エコー
を生ずる中実碍子類の内部欠陥の検出に好適な中実碍子
類の自動超音波探傷方法として、産業の発展に寄与する
ところは極めて大きいものである。
(Effects of the Invention) As explained above, the present invention, in an automatic ultrasonic flaw detection test of solid insulators, places the probe at a position eccentric from the center axis of the insulator, and By rotating, the height of forest echoes was reduced, and the accuracy of detecting internal defects was successfully improved significantly. Therefore, the present invention contributes to the development of industry as an automatic ultrasonic flaw detection method for solid insulators suitable for detecting internal defects in solid insulators that produce forest-like echoes, such as solid SP insulators and long-stem insulators. However, it is extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は内部に欠陥のない中実碍子類の超音波探傷波形
図、第2図は林状エコー中に欠陥エコーF7、Fts 
psを含んだ不良品の示す超音波探傷波形図、第3図は
実施例を説明するブロック図、第4図は中実碍子類の内
部における音波の拡がりと欠陥検出可能範囲との関係を
示す断面図である。 (1):中実碍子類、(2):両端面、(3):探触子
Figure 1 is an ultrasonic flaw detection waveform diagram of a solid insulator with no internal defects. Figure 2 is a defective echo F7, Fts during forest echo.
An ultrasonic flaw detection waveform diagram of a defective product containing PS, Figure 3 is a block diagram explaining the embodiment, and Figure 4 shows the relationship between the spread of sound waves inside solid insulators and the defect detectable range. FIG. (1): Solid insulator, (2): Both end faces, (3): Probe.

Claims (1)

【特許請求の範囲】[Claims] 中実碍子類(1)の上下両端面(2)、(2)の碍子中
心軸から外れた偏心位置に探触子(3)を接触させ、探
触子(3)を碍子中心軸のまわりに1回転させながら中
実碍子類の内部を超音波探傷することを特徴とする中実
碍子類の自動超音波探傷方法。
The probe (3) is brought into contact with the upper and lower end surfaces (2) of the solid insulator (1), at eccentric positions away from the insulator center axis (2), and the probe (3) is moved around the insulator center axis. An automatic ultrasonic flaw detection method for solid insulators characterized by ultrasonic flaw detection inside the solid insulator while rotating the solid insulator once.
JP1123075A 1989-05-17 1989-05-17 Automatic ultrasonic flaw detection method for solid insulators Expired - Lifetime JP2533190B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1123075A JP2533190B2 (en) 1989-05-17 1989-05-17 Automatic ultrasonic flaw detection method for solid insulators

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1123075A JP2533190B2 (en) 1989-05-17 1989-05-17 Automatic ultrasonic flaw detection method for solid insulators

Publications (2)

Publication Number Publication Date
JPH02302662A true JPH02302662A (en) 1990-12-14
JP2533190B2 JP2533190B2 (en) 1996-09-11

Family

ID=14851572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1123075A Expired - Lifetime JP2533190B2 (en) 1989-05-17 1989-05-17 Automatic ultrasonic flaw detection method for solid insulators

Country Status (1)

Country Link
JP (1) JP2533190B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108072606A (en) * 2018-01-26 2018-05-25 中国南方电网有限责任公司超高压输电公司检修试验中心 A kind of non-destructive testing device and its application method of insulating materials interlayer adhesive force
CN115327328A (en) * 2022-10-17 2022-11-11 广东电网有限责任公司 Ultrasonic detection method and device for interface defects of asymmetric epoxy-conductor insert

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63173958A (en) * 1987-01-14 1988-07-18 Ngk Insulators Ltd Automatic ultrasonic flow detection
JPS63243751A (en) * 1987-03-31 1988-10-11 Ngk Insulators Ltd Method, jig and apparatus for ultrasonic flaw detection of rotary body for bearing

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63173958A (en) * 1987-01-14 1988-07-18 Ngk Insulators Ltd Automatic ultrasonic flow detection
JPS63243751A (en) * 1987-03-31 1988-10-11 Ngk Insulators Ltd Method, jig and apparatus for ultrasonic flaw detection of rotary body for bearing

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108072606A (en) * 2018-01-26 2018-05-25 中国南方电网有限责任公司超高压输电公司检修试验中心 A kind of non-destructive testing device and its application method of insulating materials interlayer adhesive force
CN108072606B (en) * 2018-01-26 2023-09-26 中国南方电网有限责任公司超高压输电公司检修试验中心 Nondestructive testing device for interlayer adhesive force of insulating material and application method thereof
CN115327328A (en) * 2022-10-17 2022-11-11 广东电网有限责任公司 Ultrasonic detection method and device for interface defects of asymmetric epoxy-conductor insert

Also Published As

Publication number Publication date
JP2533190B2 (en) 1996-09-11

Similar Documents

Publication Publication Date Title
CA1169539A (en) Ultrasonic probe for nondestructive inspection
JPH056145B2 (en)
CN102636567B (en) Oblique-incidence ultrasonic flaw detection method for barrel-type forging
JPH02302662A (en) Automatic ultrasonic flaw detecting method for solid-core insulator
JP7057196B2 (en) Ultrasonic flaw detection method and equipment
CN105116057B (en) Small-bore pipe rolling defect ultrasonic probe and matching used test block
JPH07244028A (en) Apparatus and method for ultrasonically detecting flaw on spherical body to be detected
CN210123416U (en) Standard test block for calibrating ultrasonic flaw detection sensitivity of hollow shaft of motor train unit
JP2609647B2 (en) Ultrasonic flaw detector
JP2787265B2 (en) Ultrasonic flaw detection method and apparatus
Alleyne Guided Wave Testing for touch point corrosion
JPS61138160A (en) Ultrasonic flaw detector
JP2933778B2 (en) Ultrasonic flaw detection method for insulator tube
JPH05126803A (en) Automatic ultrasonic flaw detecting apparatus
JPS6459152A (en) Ultrasonic flaw detection of steel pipe
SU1061709A3 (en) Method for identifying nature of flaws in ultrasonic flaw detection
SU616572A1 (en) Once-through eddy-current transducer to flaw detector
RU2146362C1 (en) Eddy-current bushing converter for detection of flaws in longitudinally extended articles
JPS61286750A (en) Method for flaw detection by standing wave of ultrasonic wave
Palanisamy et al. On the accuracy of AC flux leakage, eddy current, EMAT and ultrasonic methods of measuring surface connecting flaws in seamless steel tubing
JPS5649955A (en) Flaw-detecting method by oblique supersonic wave for small-diameter welded pipe and the like
SU1148455A1 (en) Through converter for eddy current check
JPH01187449A (en) Sensitivity calibrating method for ultrasonic flaw detection
JP2000258397A (en) Nondestructive inspection device of pipe
JP2003344364A (en) Ultrasonic flaw detection method of solid shaft

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080627

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090627

Year of fee payment: 13

EXPY Cancellation because of completion of term