JP2532650B2 - Method for manufacturing laminated polarizer - Google Patents

Method for manufacturing laminated polarizer

Info

Publication number
JP2532650B2
JP2532650B2 JP1075303A JP7530389A JP2532650B2 JP 2532650 B2 JP2532650 B2 JP 2532650B2 JP 1075303 A JP1075303 A JP 1075303A JP 7530389 A JP7530389 A JP 7530389A JP 2532650 B2 JP2532650 B2 JP 2532650B2
Authority
JP
Japan
Prior art keywords
substrate
film
polarizer
laminated
multilayer film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1075303A
Other languages
Japanese (ja)
Other versions
JPH02251906A (en
Inventor
尚 峯本
修 鎌田
石塚  訓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1075303A priority Critical patent/JP2532650B2/en
Publication of JPH02251906A publication Critical patent/JPH02251906A/en
Application granted granted Critical
Publication of JP2532650B2 publication Critical patent/JP2532650B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Polarising Elements (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は光アイソレータ,光スイッチ,各種光センサ
に用いられる積層型偏光子の製造方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a laminated polarizer used in optical isolators, optical switches and various optical sensors.

従来の技術 偏光子は光回路の構成上重要な素子である。近年の光
学素子に対する小型・高性能化の要求から偏光子に対し
ても誘電体と金属を交互に多層積層した積層型偏光子が
提案されている〔たとえばS.KawaKami,アプライド オ
プティクス(Appl.Opt)Vol22.(1983)2426〕。第3図
にその構成図を示す。
2. Description of the Related Art Polarizers are important elements in the construction of optical circuits. Due to the recent demand for miniaturization and high performance of optical elements, multilayer polarizers in which dielectrics and metals are alternately laminated in multiple layers have been proposed for polarizers (eg, S. KawaKami, Applied Optics (Appl.Opt). ) Vol22. (1983) 2426]. FIG. 3 shows the configuration diagram.

通常誘電体層21としてはSiO2数1000Å,金属層22とし
てはAl又はAu等が数10Å交互に積層されている。また素
子長としては数10μmである。
Normally, the dielectric layer 21 is formed by alternately laminating several thousand Å of SiO 2 , and the metal layer 22 is formed by alternately laminating several tens of Å Al or Au. The element length is several tens of μm.

次にこの積層型偏光子の原理を簡単に説明する。積層
膜と平行に電界成分を持つTEモードの光はこの素子を通
る時、金属層22の自由電子により簡単に打ち消されるた
め急速に減衰する。一方、積層膜と垂直な方向に電界成
分を打つTMモードの光は金属層22と金属層22の間の誘電
体層21を自由電子が移動できないため打ち消されずに素
子を通過する事ができる。従って一方の偏光方向を持つ
光だけが透過する偏光子を得る事ができる。
Next, the principle of this laminated polarizer will be briefly described. When passing through this element, TE mode light having an electric field component parallel to the laminated film is rapidly canceled because it is easily canceled by free electrons in the metal layer 22. On the other hand, TM-mode light that strikes an electric field component in the direction perpendicular to the laminated film can pass through the element without being canceled because free electrons cannot move in the dielectric layer 21 between the metal layers 22. Therefore, it is possible to obtain a polarizer that transmits only light having one polarization direction.

この偏光子の特徴は素子の厚みLが数10μm程度であ
り、他の方解石プリズム,偏光ビームスプリッタ等と比
較してその厚みが2ケタ程度薄くできる事である。
The characteristic of this polarizer is that the thickness L of the element is about several tens of μm, and the thickness can be reduced by about double digits as compared with other calcite prisms, polarizing beam splitters and the like.

次にこの素子の製造工程を第2図に示す。基板として
ガラス基板を用い、第2図aのようにガラス基板25上に
多元スパッター装置を用いて金属層としてAlを数10Åと
誘電体層としてSiO2を数1000Å交互に積層し全膜厚が10
0μm程度の多層膜20を作製する。次に第2図bに示す
ように適当な厚み(約2mm程度)にウエハを切り出す。
さらに第2図cに示すように基板25および多層膜20を切
り出し、中央部に約2mm(第2図bで切り出した部分が
入る程度)の溝を形成した補強ガラスブロックに樹脂等
で固定する。このブロックを必要な素子の厚み(数十μ
m)と両面の光学研磨に適切な厚み約0.3mm〜0.5mm厚に
切り出す。さらに第2図dに示すように偏光子として最
適な厚み(約20〜80μm)に両面光学研磨する。最後に
第2図eに示すように補強ガラスやまた必要に応じて基
板を取りのぞいて積層型偏光子が完成する。
Next, the manufacturing process of this element is shown in FIG. A glass substrate is used as the substrate, and as shown in FIG. 2a, a multi-source sputtering apparatus is used on the glass substrate 25 to alternately deposit several tens of liters of Al as a metal layer and several tens of liters of SiO 2 as a dielectric layer to obtain a total film thickness. Ten
A multilayer film 20 of about 0 μm is produced. Next, as shown in FIG. 2B, the wafer is cut into an appropriate thickness (about 2 mm).
Further, as shown in FIG. 2c, the substrate 25 and the multilayer film 20 are cut out and fixed with a resin or the like to a reinforced glass block having a groove of about 2 mm in the central portion (to the extent that the part cut out in FIG. 2b fits) is formed. . This block requires the required element thickness (tens of μ
m) and a thickness suitable for optical polishing of both sides is cut out to a thickness of about 0.3 mm to 0.5 mm. Further, as shown in FIG. 2d, both sides are optically polished to have an optimum thickness (about 20 to 80 μm) as a polarizer. Finally, as shown in FIG. 2e, the laminated glass is completed by removing the reinforcing glass and optionally the substrate.

発明が解決しようとする課題 積層型偏光子の課題は以下のようである。基板と形成
した多層膜の熱膨張係数が異なるため積層膜の膜厚を最
大200μm程度しか形成できず、それ以上厚く膜を形成
するとウエハがそったり、膜にクラックが入り歩留りが
著しく低下する。その結果約200μm以下の小さな有効
ビーム径の偏光子しか得る事ができないという課題があ
った。
Problems to be Solved by the Invention Problems of the laminated polarizer are as follows. Since the substrate and the formed multilayer film have different coefficients of thermal expansion, the film thickness of the laminated film can be formed only up to about 200 μm, and if the film is formed thicker than that, the wafer is warped or the film is cracked and the yield is remarkably reduced. As a result, there is a problem that only a polarizer having a small effective beam diameter of about 200 μm or less can be obtained.

課題を解決するための手段 上記課題を解決するためには、金属層と誘電体層との
多層膜よりなる積層型偏光子の製造において、基板の片
方の主面に溝状線を設け、多層膜を形成する主面が多数
の領域に区切られたものを用いることである。
Means for Solving the Problems In order to solve the above problems, in the production of a laminated polarizer composed of a multilayer film of a metal layer and a dielectric layer, a groove line is provided on one main surface of the substrate, The main surface forming the film is divided into a large number of regions.

作用 以下に本発明を用いる事により歩留りよく有効ビーム
径の大きな厚膜の積層型偏光子ができる理由を説明す
る。
Action The reason why a thick film laminated polarizer having a high yield and a large effective beam diameter can be obtained by using the present invention will be described below.

多層膜の全膜厚を200μm以上にすると、基板がそっ
たり膜クラックを生じるのは基板と積層膜の熱膨張係数
差により、膜形成後基板の温度を室温まで下げるときに
応力が発生するためである。
When the total film thickness of the multilayer film is 200 μm or more, the substrate warps or film cracks occur because stress is generated when the temperature of the substrate after film formation is lowered to room temperature due to the difference in thermal expansion coefficient between the substrate and the laminated film. Is.

そこで、多層膜に発生するクラックを防止するには、
応力の大きさが一定の場合、応力の働く面積を小さくす
る事が有効である。すなわち基板一枚一枚の面積を小さ
くする事が有効であるが、小さな基板を多数取り扱うの
は、扱いが複雑となり素子の製作工数を著しく増加させ
る。従って片方の主面上に溝状線を設けて多数の領域に
分けた基板を用い、その主面上に多層膜を形成する事が
有効である。
Therefore, to prevent cracks that occur in the multilayer film,
When the magnitude of stress is constant, it is effective to reduce the area where stress acts. That is, it is effective to reduce the area of each substrate, but handling a large number of small substrates makes the handling complicated and significantly increases the number of manufacturing steps of the element. Therefore, it is effective to use a substrate in which a groove-shaped line is provided on one main surface and divided into a large number of regions, and a multilayer film is formed on the main surface.

実 施 例 本発明に対する実施例を第1図を用いて説明する。基
板としてaに示す3mm厚×20mm×18mmの石英ガラス101を
用いた。
Example An example of the present invention will be described with reference to FIG. As the substrate, the quartz glass 101 shown in a having a thickness of 3 mm × 20 mm × 18 mm was used.

次にダイシングソーを用い1辺5mm,深さ2mm,巾0.2mm
の溝102を格子状に形成した。次にダイシングソーによ
る加工歪、チッピングを低減するため、800℃,1時間の
電気炉アニールの後、HF(10%)溶液で3分のエッチン
グをほどこした。
Next, using a dicing saw, 1 side 5 mm, depth 2 mm, width 0.2 mm
The grooves 102 were formed in a grid pattern. Next, in order to reduce processing strain and chipping due to the dicing saw, after an electric furnace anneal at 800 ° C. for 1 hour, etching was performed with a HF (10%) solution for 3 minutes.

次に上記基板を用いてAlのターゲットとSiO2のターゲ
ットを持った多元スパッター装置を用いた。基板温度は
400℃で、スパッター条件はSiO2の膜形成速度が2000Å/
min,RFパワー1000W、Alの膜形成速度が100Å/min,RFパ
ワー100W、ガス流量はO2(5%)−Ar(95%)とし、全
流量は120SCCMで行った。多層膜103の周期はAl90Å,SiO
25000Åで約3900周期作製して厚み2mmの多層膜を得た。
得られた試料は全体(20mm×18mm角)では最大10μm程
度のそりが測定されたが、基板101,多層膜103にクラッ
クは発生していなかった。これは、石英ガラス基板に溝
102を設ける事により、応力が緩和されたためである。
さらに格子状の5mm角の範囲ではそりは1μm程度と非
常に小さい値が得られた。
Next, using the above substrate, a multi-source sputtering apparatus having an Al target and a SiO 2 target was used. The substrate temperature is
At 400 ℃, the sputtering condition is that the SiO 2 film formation rate is 2000Å /
min, RF power 1000 W, Al film formation rate 100 Å / min, RF power 100 W, gas flow rate was O 2 (5%)-Ar (95%), and total flow rate was 120 SCCM. The cycle of the multilayer film 103 is Al90Å, SiO
To obtain a multilayer film having a thickness of 2mm was prepared from about 3900 cycles at 2 5000 Å.
Warpage of about 10 μm at the maximum was measured in the entire obtained sample (20 mm × 18 mm square), but no crack was generated in the substrate 101 and the multilayer film 103. This is a groove on a quartz glass substrate
This is because the stress is relaxed by providing 102.
Further, in the lattice-shaped area of 5 mm square, the warp was as small as about 1 μm.

この試料より第2図に示す手順で積層型偏光子を作製
し、その特性をはかった所消光比45dB,挿入損失0.3dBと
良好な結果を得た。まさにこの積層型偏光子は第3図の
Lで示す光透過方向の長さは数10μm程度でよい事か
ら、20mm×18mmの基板を用いた場合、有効ビーム径約2m
m積層型偏光子を約200個切り出す事が可能であった。
A laminated polarizer was prepared from this sample by the procedure shown in FIG. 2, and the excellent results were obtained with its extinction ratio of 45 dB and insertion loss of 0.3 dB. Since this laminated polarizer has a length of several tens of μm in the light transmission direction shown by L in FIG. 3, an effective beam diameter of about 2 m is obtained when a substrate of 20 mm × 18 mm is used.
It was possible to cut out about 200 laminated polarizers.

さらに有効ビーム径が約2mmであり、従来から光通信
に用いられている半導体レーザと光アイソレータを一体
化したモジュール用の2mm角の偏光ビームスプリッター
との置きかえが可能であった。
In addition, the effective beam diameter was about 2 mm, and it was possible to replace it with a 2 mm square polarization beam splitter for a module that integrates a semiconductor laser and an optical isolator that have been used for optical communication.

なお本実施例は金属層としてAlの場合について述べた
が他の金属(例えば金)の場合にし本発明は適応でき
る。
In the present embodiment, the case where Al is used as the metal layer has been described, but the present invention can be applied to the case where another metal (for example, gold) is used.

発明の効果 以上述べたように、本発明によれば、量産性にすぐれ
た方法で厚膜の積層型偏光子を作成する事が可能とな
り、従来困難であった積層型偏光子の有効ビーム径の大
型化が可能となる。
EFFECTS OF THE INVENTION As described above, according to the present invention, it is possible to produce a thick film laminated polarizer by a method excellent in mass productivity, and it has been difficult to obtain an effective beam diameter of a laminated polarizer. Can be made larger.

さらに有効ビーム径2mm程度の積層型偏光子は現在光
通信や光計測用に用いられている半導体レーザと光アイ
ソレータを一体化したモジュール用の偏光子としてまた
光ファイバーセンサ用として用いられている偏光子とし
て従来の偏光ビームスプリッタや方解石を用いたプリズ
ムに置き変えが可能であり、その工業的価値は非常に高
い。
Furthermore, a laminated polarizer with an effective beam diameter of about 2 mm is used as a polarizer for a module that integrates a semiconductor laser and an optical isolator currently used for optical communication and optical measurement, and is also used for an optical fiber sensor. It can be replaced with a conventional polarizing beam splitter or a prism using calcite, and its industrial value is extremely high.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例の積層型偏光子用基板製造工程
斜視図、第2図はチップ加工の工程を示す図、第3図は
積層型偏光子の原理図である。 101……石英ガラス基板、103……金属・誘電体多層膜、
102……溝、20……誘電体,金属多層膜。
FIG. 1 is a perspective view of a laminated polarizer substrate manufacturing process according to an embodiment of the present invention, FIG. 2 is a diagram showing a chip processing process, and FIG. 3 is a principle diagram of the laminated polarizer. 101 …… quartz glass substrate, 103 …… metal / dielectric multilayer film,
102 …… groove, 20 …… dielectric, metal multilayer film.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭55−117108(JP,A) 特開 昭50−92751(JP,A) 特公 昭44−27075(JP,B1) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-55-117108 (JP, A) JP-A-50-92751 (JP, A) JP-B-44-27075 (JP, B1)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】片方の主面に溝状線を設け多数の領域に区
切られた基板を用い、上記基板の主面上に金属層と誘電
体層との多層膜を形成し、しかる後に必要な素子サイズ
に上記基板および多層膜を切り出し上記素子の両主面を
光学研磨する事を特徴とする積層型偏光子の製造方法。
1. A substrate in which a groove line is provided on one main surface and is divided into a large number of regions is used, and a multilayer film of a metal layer and a dielectric layer is formed on the main surface of the substrate, which is required thereafter. A method for producing a laminated polarizer, which comprises cutting the substrate and the multilayer film into various element sizes and optically polishing both main surfaces of the element.
JP1075303A 1989-03-27 1989-03-27 Method for manufacturing laminated polarizer Expired - Fee Related JP2532650B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1075303A JP2532650B2 (en) 1989-03-27 1989-03-27 Method for manufacturing laminated polarizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1075303A JP2532650B2 (en) 1989-03-27 1989-03-27 Method for manufacturing laminated polarizer

Publications (2)

Publication Number Publication Date
JPH02251906A JPH02251906A (en) 1990-10-09
JP2532650B2 true JP2532650B2 (en) 1996-09-11

Family

ID=13572352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1075303A Expired - Fee Related JP2532650B2 (en) 1989-03-27 1989-03-27 Method for manufacturing laminated polarizer

Country Status (1)

Country Link
JP (1) JP2532650B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4704792B2 (en) * 2005-04-04 2011-06-22 シャープ株式会社 GLASS SUBSTRATE WITH THIN FILM, ITS MANUFACTURING METHOD, AND SEMICONDUCTOR DEVICE USING THE SAME
KR101416792B1 (en) * 2007-05-02 2014-07-09 호야 코포레이션 유에스에이 Optical element for free-space propagation between an optical waveguide and another optical waveguide, component, or device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5847681B2 (en) * 1973-12-15 1983-10-24 ソニー株式会社 Bisaisudarejiyoushiyakoban
JPS55117108A (en) * 1979-03-02 1980-09-09 Nippon Telegr & Teleph Corp <Ntt> Light polarizing circuit element

Also Published As

Publication number Publication date
JPH02251906A (en) 1990-10-09

Similar Documents

Publication Publication Date Title
US6996324B2 (en) Optical waveguide and method for fabricating the same
JPH0792337A (en) Polymer core optical waveguide and its production
EP1007997A1 (en) Integrated optical polariser
US4846541A (en) Interference film filter and an optical waveguide and a method for producing the same
JP2005531030A (en) Optical waveguide
JP2006053522A (en) Glass light guide
JP2001201636A (en) Optical fiber polarizer and method its manufacturing
WO2002043130A2 (en) Method of making a functional device with deposited layers subject to high temperature anneal
JP2532650B2 (en) Method for manufacturing laminated polarizer
JPH11202126A (en) Dielectric multilayer film filter
US20090294051A1 (en) Optical contacting enabled by thin film dielectric interface
JP3490418B2 (en) Method of manufacturing dielectric multilayer filter chip
JPH0756036A (en) Optical waveguide device and its production
JPS59218406A (en) Optical guide and its production
JP3201142B2 (en) Manufacturing method of optical waveguide
JPS62189407A (en) Production of optical waveguide
JP6601982B2 (en) Manufacturing method of optical waveguide substrate
JPH0715527B2 (en) Optical / electrical integrated circuit
KR20210022287A (en) Method for forming of large area diffraction grating by using optical contact
JPH07281046A (en) Manufacture of optical fiber array and connection to waveguide part
JPS6172206A (en) Substrate type waveguide and its production
JP2005070682A (en) Optical device and its manufacturing method
CN117687140A (en) Manufacturing techniques for wire grid polarizers
JP2001051114A (en) Multilayer film light wavelength filter and its manufacture
JPH11142605A (en) Production of optical element with optical multilayered film

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees