JPS62189407A - Production of optical waveguide - Google Patents

Production of optical waveguide

Info

Publication number
JPS62189407A
JPS62189407A JP3077386A JP3077386A JPS62189407A JP S62189407 A JPS62189407 A JP S62189407A JP 3077386 A JP3077386 A JP 3077386A JP 3077386 A JP3077386 A JP 3077386A JP S62189407 A JPS62189407 A JP S62189407A
Authority
JP
Japan
Prior art keywords
optical waveguide
heat treatment
glass
loss
waveguide layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3077386A
Other languages
Japanese (ja)
Other versions
JPH0621891B2 (en
Inventor
Mamoru Kanazawa
金澤 守
Masayuki Takami
昌之 高見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP61030773A priority Critical patent/JPH0621891B2/en
Publication of JPS62189407A publication Critical patent/JPS62189407A/en
Publication of JPH0621891B2 publication Critical patent/JPH0621891B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To provide a lower loss and higher yield by depositing a thin glass film on a silicon substrate on which a heat oxidation film is formed to form an optical waveguide layer and subjecting the optical waveguide layer to polishing at the end faces then to a heat treatment. CONSTITUTION:The heat oxidation film 2 is formed on the silicon substrate 1 and the thin glass film 3 to be made into the optical waveguide layer is formed thereon by a sputtering method. After the thin glass film 3 is deposited and formed, the end faces 4 to act as the incident part and exit part of the optical waveguide are polished and thereafter, the entire part is heat-treated in a prescribed atmosphere. The heat treatment is executed by putting a sample in a quartz tube in which a prescribed gas is allowed to flow and heating the same by a heater from the outside. The low-loss optical waveguide is thus obtd. without the exfoliation of the thin glass film 3.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、ガラス薄膜Iを用いた低損失の光導波路の製
造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method of manufacturing a low-loss optical waveguide using a glass thin film I.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

薄膜先導波路を用いた素子は、光の集束1分波。 An element using a thin film guiding waveguide focuses one minute wave of light.

白波9分岐等の機能を基板上に実現する光集積回路にと
って重要である。この様な光導波路の構成材料としては
、低損失で安定なものが要求され、従来より各種ガラス
tillを用いた先導波路について検討がなされている
。特に、コーニング7059ガラスを熱酸化膜が形成さ
れたシリコン塁板上のスパッタリング法により被着して
形成される先導波路は、Il造が簡単でしかも単一モー
ド光ファイバとの結合効率も^いため、広く注目されて
いる。この先導波路は、スパッタリングしたままの状態
で伝搬損失0.4〜1dB/ca程度のものが得られて
いるが、a性能の光集積回路を構成するためには、より
低損失の先導波路が望まれる。
This is important for optical integrated circuits that implement functions such as nine white wave branches on a substrate. The constituent material of such an optical waveguide is required to be low loss and stable, and various types of guided waveguides using glass tills have been studied. In particular, the leading waveguide formed by sputtering Corning 7059 glass on a silicon base plate with a thermal oxide film is easy to construct and has high coupling efficiency with a single mode optical fiber. , has received wide attention. This guiding waveguide has a propagation loss of about 0.4 to 1 dB/ca in the sputtered state, but in order to construct an optical integrated circuit with a performance, a guiding waveguide with lower loss is required. desired.

ガラス薄膜を用いた先導波路を低損失化する一つの方法
として、ガラスWI膜をスパッタリングにより被着した
後熱処理を加えることが既に知られている。一方、この
光導波路の光ファイバなどとの結合効率を十分大きいも
のとして更に低損失化するためには、光入射端面および
光出射端面の端面研磨を行うことが不可欠である。
As one method for reducing the loss of a guided waveguide using a glass thin film, it is already known to apply heat treatment after depositing a glass WI film by sputtering. On the other hand, in order to make the coupling efficiency of this optical waveguide with an optical fiber sufficiently high and further reduce the loss, it is essential to perform end face polishing of the light input end face and the light output end face.

ところが本発明者らの実験によると、この端面研磨の工
程でしばしば光導波路層のはがれが生じる。mmm1t
iaによると、ガラス薄膜を被着した後熱処理を行うこ
とにより、熱酸化膜のガラス薄膜との界面近傍に熱応力
によると思われるボイド状の欠陥ができ、この部分でガ
ラス薄膜表面に僅かな凸が生じる。この状態は光伝搬に
は特に支障はないが、この後端面研磨を行うと、凸部の
ガラス薄膜が剥がれるのである。従ってシリコン基板と
ガラス31181の組合わせによる光導波路の製造歩留
りが低い、という問題があった。
However, according to experiments conducted by the present inventors, the optical waveguide layer often peels off during this end face polishing process. mmm1t
According to IA, by performing heat treatment after depositing the glass thin film, void-like defects are created near the interface between the thermal oxide film and the glass thin film, which is thought to be due to thermal stress, and in this area, a small amount of the glass thin film surface is formed. Convexity occurs. Although this state does not particularly impede light propagation, when this rear end face is polished, the glass thin film on the convex portion is peeled off. Therefore, there was a problem in that the manufacturing yield of an optical waveguide formed by combining a silicon substrate and glass 31181 was low.

(発明の目的) 本発明は上記した点に鑑みなされたもので、低損失化と
製造歩留り向上を図った。ガラス1llllを用いた光
導波路の製造方法を提供することを目的とする。
(Object of the Invention) The present invention was made in view of the above points, and aims to reduce loss and improve manufacturing yield. An object of the present invention is to provide a method for manufacturing an optical waveguide using glass 1llll.

〔発明のR要〕[Requirements for invention]

本発明は、熱酸化膜が形成されたシリコン基板上にガラ
スIIRを被着して先導波路層を形成し、この先導波路
層の端面研磨を行った後に熱処理を行うようにしたこと
を特徴とする。
The present invention is characterized in that a guiding waveguide layer is formed by depositing glass IIR on a silicon substrate on which a thermal oxide film is formed, and heat treatment is performed after polishing the end face of this guiding waveguide layer. do.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、熱処理前に光導波路層の端面研磨を行
うことにより、光導波路層の剥がれを防止することがで
き、光導波路の製造歩留りを高いものとすることができ
る。また最終工程としての熱処理条件を最適化すること
により、光導波路の十分な低損失化を図ることができる
According to the present invention, by polishing the end face of the optical waveguide layer before heat treatment, peeling of the optical waveguide layer can be prevented and the manufacturing yield of the optical waveguide can be increased. Furthermore, by optimizing the heat treatment conditions as the final step, it is possible to achieve a sufficiently low loss in the optical waveguide.

〔発明の実施例〕[Embodiments of the invention]

以下図面を参照して本発明の詳細な説明する。 The present invention will be described in detail below with reference to the drawings.

第1図は一実施例による光導波路の構成を示す。FIG. 1 shows the configuration of an optical waveguide according to one embodiment.

1はシリコン基板であり、この上に熱酸化112が形成
されている。熱酸化膜2は1050℃、水蒸気添加酸素
中で60時間の熱酸化を行って約4μ而の厚さに形成し
たものである。この上に先導波路層となるガラス@lI
3をスパッタリング法により形成している。スパッタリ
ング条件は、真空度I X 10”” torr、ガス
がAr+Oz  (30%)、印加RF電力600Wで
ある。ガラスill!13としてこの実施例では、Si
O2(49%)。
1 is a silicon substrate, on which thermal oxidation 112 is formed. Thermal oxide film 2 was formed to a thickness of approximately 4 μm by thermal oxidation at 1050° C. in oxygen added with water vapor for 60 hours. On top of this is the glass that will become the leading waveguide layer @lI
3 is formed by a sputtering method. The sputtering conditions were a vacuum degree of I x 10" torr, a gas of Ar+Oz (30%), and an applied RF power of 600 W. Glass ill! In this example, Si
O2 (49%).

Aj22O3  (11%)、Ba0(25%)、82
O9(15%)を主成分とするコーニング7059を用
いて2μmの厚さ被着形成した。このようにガラス薄I
I 3を被着形成した後、先導波路の入射部。
Aj22O3 (11%), Ba0 (25%), 82
Corning 7059 containing O9 (15%) as a main component was used to deposit a thickness of 2 μm. In this way, glass thin I
After depositing I 3, the entrance part of the leading waveguide.

出射部となる端面4を研磨し、その後全体を所定の雰囲
気中で熱処理する。熱処理は、所定のガスを流した石英
管に試料を入れ、外側からヒータで加熱する方式を用い
た。
The end face 4, which becomes the emission part, is polished, and then the whole is heat-treated in a predetermined atmosphere. For the heat treatment, a method was used in which the sample was placed in a quartz tube through which a predetermined gas was flowed, and the sample was heated from the outside with a heater.

このように端面研磨を行った後に熱処理をすることによ
り、ガラス簿膜3の剥がれを生じることなく、低損失の
光導波路が得られる。
By performing heat treatment after end face polishing in this way, a low-loss optical waveguide can be obtained without peeling of the glass film 3.

最適熱処理熱処理条件を求めるための穆々の実験を行っ
た結果を次に説明する。
The results of extensive experiments to determine the optimum heat treatment conditions will be described below.

第2図は、乾燥酸素中(0印)および水蒸気添加酸素中
(×印)での熱処理温度と先導波路の伝搬損失の関係を
測定した結果である。O印はスパッタリングしたままの
状態での値である。スパッタリングは室温で開始し、水
冷や加熱を行わず放置し、4時間の連続スパッタリング
を行っているが、このとき試料濃度は約340℃に達す
るので、図ではこの初期値を340℃の点にプロットし
である。この初期値は0.8〜1.2dB/cmである
。熱処理時間は30分であるが、この実験は400℃で
30分の熱処理をして伝搬損失を測定し、同じ試料を次
に500℃、30分の熱処理をするというように、熱処
理を累積的に重ねた場合のデータである。伝搬損失測定
波長は0.63μmである。
FIG. 2 shows the results of measuring the relationship between the heat treatment temperature and the propagation loss of the leading waveguide in dry oxygen (0 mark) and in steam-added oxygen (x mark). The O mark indicates the value in the sputtered state. Sputtering is started at room temperature, left without water cooling or heating, and continuous sputtering is performed for 4 hours. At this time, the sample concentration reaches approximately 340°C, so this initial value is set at 340°C in the figure. It is plotted. This initial value is 0.8 to 1.2 dB/cm. The heat treatment time was 30 minutes, but in this experiment, the heat treatment was performed cumulatively, such as heat treatment at 400°C for 30 minutes, measuring the propagation loss, and then heat treating the same sample at 500°C for 30 minutes. This is the data when superimposed on . The propagation loss measurement wavelength is 0.63 μm.

第2因から明らかなように、乾燥酸素中の熱処理では、
700℃近傍(700℃±50℃)で伝搬損失の極少値
を示し、その鴫は初期値の約1/4になっている。また
水蒸気添加酸素中では630℃近傍(630℃±50℃
)で極少値が得られる。このように熱処理雰囲気により
最適熱処理1!度が異なる。なお以上では熱処理時間を
30分としたが、10分以上であれば効果が得られるこ
とが確認されている。
As is clear from the second factor, in heat treatment in dry oxygen,
The propagation loss shows a minimum value near 700°C (700°C±50°C), and the loss is about 1/4 of the initial value. In addition, in water vapor added oxygen, it is around 630℃ (630℃±50℃
) gives the minimum value. In this way, the heat treatment atmosphere is optimal for heat treatment 1! The degrees are different. Although the heat treatment time was set to 30 minutes in the above, it has been confirmed that the effect can be obtained if the heat treatment time is 10 minutes or more.

以上のデータは累積的熱処理を行った場合であるが、第
3図は同様の試料につき、乾燥酸素中。
The above data are for the case of cumulative heat treatment, but Figure 3 shows the same sample in dry oxygen.

700℃、30分の熱処理のみを行った場合の伝搬距離
と相対光強度の関係を示す。図から明らかなように、伝
搬損失0.15dB/a+という小さい値が得られてい
る。
The relationship between propagation distance and relative light intensity when only heat treatment is performed at 700° C. for 30 minutes is shown. As is clear from the figure, a small propagation loss of 0.15 dB/a+ is obtained.

第4図はやはり同様の試料につき、異なる雰囲気で熱処
理した場合の伝′1IIII失を比較して示したもので
ある。雰囲気は窒素、乾燥酸素、水蒸気添加酸素の3種
類であり、いずれも750℃、30分の熱処理を行った
場合である。この温度条件では、窒素雰囲気および乾燥
酸素雰囲気の場合は小さい伝m*失が得られるが、水蒸
気添加酸素中では効果が小さい。
FIG. 4 also shows a comparison of the loss of conductivity when similar samples were heat treated in different atmospheres. There were three atmospheres: nitrogen, dry oxygen, and steam-added oxygen, and in each case heat treatment was performed at 750° C. for 30 minutes. Under this temperature condition, a small conduction m* loss is obtained in a nitrogen atmosphere and a dry oxygen atmosphere, but the effect is small in water vapor-added oxygen.

次に光導波路層表面に光回路素子として回折格子を形成
した実施例につき説明する。
Next, an example will be described in which a diffraction grating is formed as an optical circuit element on the surface of an optical waveguide layer.

第5図はその試料の断面形状であり、第1図と対応する
部分には第1図と同一符号を付しである。
FIG. 5 shows the cross-sectional shape of the sample, and parts corresponding to those in FIG. 1 are given the same symbols as in FIG. 1.

即ち熱酸化lI2が形成されたシリコン基板1上に先の
実施例と同様にしてガラス11113を被着形成し、そ
の表面にエツチングにより周期1μmの凹凸を形成して
回折格子5を形成したものである。
That is, a glass 11113 is deposited on the silicon substrate 1 on which thermally oxidized lI2 has been formed in the same manner as in the previous embodiment, and the diffraction grating 5 is formed by etching the surface of the glass 11113 to form irregularities with a pitch of 1 μm. be.

先の実施例と同様に端面研磨を行った後に所定の熱処理
をすることにより、良好な結果が得られた。
Good results were obtained by performing a prescribed heat treatment after end face polishing in the same manner as in the previous example.

このような回折格子を含む光導波路の熱処理の最適条件
を求める実験データを以下に具体的に説明する。
Experimental data for determining the optimal conditions for heat treatment of an optical waveguide including such a diffraction grating will be specifically explained below.

第6図(a)(b)は、それぞれ熱処理前と熱処理後の
回折格子の凹凸部をターリステップにより測定した結果
である。熱処理前の格子深さは、(a>に示すように、
約1660人である。乾燥酸素中で700℃、30分の
熱処理を行うと(b)に示すようになり、格子の凹凸形
状は殆ど変わっていない。
FIGS. 6(a) and 6(b) show the results of measuring the unevenness of the diffraction grating before and after heat treatment using a tarry step, respectively. The lattice depth before heat treatment is as shown in (a>)
There are approximately 1,660 people. After heat treatment at 700° C. for 30 minutes in dry oxygen, the result is as shown in (b), where the uneven shape of the lattice remains almost unchanged.

第7図(a)〜(C)は同様の試料についての他の熱処
理条件でのターリステップ測定結果を示す。(a)はエ
ツチングしたままの結果であり、格子深さは約1050
人である。(b)はこの試料を乾燥窒素中で750℃、
30分の熱処理をした場合であり、格子深さは約133
0人と深くなっている。また凸部の形状が丸みを帯びて
いるがこれは、凸部が粘性流動を起こしたためと思われ
る。(C)は更に同じ試料に乾燥F!素中、750’0
.30分の熱処理を加えた場合である。格子深さは約1
2O0人とやや浅くなる。これは粘性流動が進み格子凹
部が浅くなった結果と思われる。
FIGS. 7(a) to (C) show the results of terly step measurements on similar samples under other heat treatment conditions. (a) shows the result after etching, and the grating depth is about 1050.
It's a person. (b) This sample was heated at 750°C in dry nitrogen.
This is the case after 30 minutes of heat treatment, and the lattice depth is approximately 133 mm.
The number is deep with 0 people. Furthermore, the shape of the convex portion is rounded, which is thought to be due to viscous flow occurring in the convex portion. (C) The same sample was further dried F! Sochu, 750'0
.. This is the case where 30 minutes of heat treatment was added. The grid depth is approximately 1
It's a little shallow at 200 people. This seems to be the result of the viscous flow progressing and the lattice depressions becoming shallower.

なおこの後更に、水蒸気添加Fil素中で750℃。After this, the temperature was further increased to 750°C in a Fil element with the addition of water vapor.

30分の熱処理を行った結果、回折格子は消失した。こ
のとき光導波路層の伝搬損失は約0.6dBであり、乾
燥酸素中熱処理後の値の約1.4、〜2.2倍になって
いる。他の同様に試料につき乾燥酸素中で800℃、3
0分の熱処理を行った結果、回折格子は消失した。
As a result of heat treatment for 30 minutes, the diffraction grating disappeared. At this time, the propagation loss of the optical waveguide layer is about 0.6 dB, which is about 1.4 to 2.2 times the value after heat treatment in dry oxygen. 800°C in dry oxygen for other similar samples.
As a result of heat treatment for 0 minutes, the diffraction grating disappeared.

以上の結果から、回折格子に関しては、乾燥酸素中では
750℃未満、水蒸気添加酸素中では700’C未満の
温度で熱処理を行うことが好ましい。
From the above results, it is preferable to heat the diffraction grating at a temperature of less than 750°C in dry oxygen and less than 700'C in water vapor-added oxygen.

第8図は、本発明を適用した集積化光分波器を示す。1
1は先に説明した実施例と同様に熱酸化膜が形成された
シリコン基板にガラス薄膜をスパッタリングにより被着
した先導波路である。その表面には、コリメーションレ
ンズ12.集束レンズ13および回折格子14が形成さ
れている。コリメーションレンズ12および集束レンズ
13は、予め基板表面に浅い凹部を形成しておくことに
より形成されるジオデシックレンズである。光の入射端
面15および出射端面16の研磨は、前述の実施例と同
様に熱処理前に行う。
FIG. 8 shows an integrated optical demultiplexer to which the present invention is applied. 1
Reference numeral 1 designates a leading waveguide in which a glass thin film is deposited by sputtering on a silicon substrate on which a thermally oxidized film is formed, as in the previously described embodiment. A collimation lens 12. A focusing lens 13 and a diffraction grating 14 are formed. The collimation lens 12 and the focusing lens 13 are geodesic lenses formed by forming shallow recesses in the substrate surface in advance. The light incident end face 15 and the light exit end face 16 are polished before the heat treatment as in the previous embodiment.

入射端面15には光ファイバ17が結合され、出射端面
16には受光ダイオードアレイ18が配置される。この
構成は、波長多重伝送システムに用いられる。即ち、光
ファイバ17を介して伝送された波長多l化されたレー
ザ光は端面15で光導波路11に結合する。光導、波路
11に入った光はコリメーションレンズ12で平行光に
された後、回折格子14により波長毎に分波される。こ
の分波された光は集束レンズ13により集束され、端面
16に設けられた受光ダイオードアレイ18により各波
長成分が検出される。
An optical fiber 17 is coupled to the input end face 15, and a light receiving diode array 18 is arranged at the output end face 16. This configuration is used in wavelength division multiplexing transmission systems. That is, the wavelength-multiplexed laser light transmitted through the optical fiber 17 is coupled to the optical waveguide 11 at the end face 15. The light entering the optical waveguide 11 is made into parallel light by a collimation lens 12, and then demultiplexed into wavelengths by a diffraction grating 14. This demultiplexed light is focused by a focusing lens 13, and each wavelength component is detected by a light receiving diode array 18 provided on an end face 16.

この槌な集積化光分波器は低挿入損で良好な漏話特性を
持つことが必要である。光導波路の低損失化を図り、も
って挿入損の低減を実現すべく本発明方法を適用した。
This highly integrated optical demultiplexer must have low insertion loss and good crosstalk characteristics. The method of the present invention was applied to reduce the loss of the optical waveguide and thereby reduce the insertion loss.

即ち前述のように熱処理前に端面15.16の研磨を行
い、この後乾燥酸素雰囲気中で700℃、30分の熱処
理を行った。
That is, as described above, the end faces 15 and 16 were polished before the heat treatment, and then heat treatment was performed at 700° C. for 30 minutes in a dry oxygen atmosphere.

波長1.3μmの光を用いて光ファイバとの結合損およ
び回折損を含む挿入損を測定したところ、熱処理前が1
2dBであり、熱処理債は9.5dBとなった。染束鍮
も熱処理によって損われず良好であり、本発明の有効性
が確認された。  。
When we measured the insertion loss including the coupling loss and diffraction loss with the optical fiber using light with a wavelength of 1.3 μm, it was found that the insertion loss before heat treatment was 1.
2 dB, and the heat treatment bond was 9.5 dB. The dyed bundled brass was also not damaged by the heat treatment and was in good condition, confirming the effectiveness of the present invention. .

以上では回折格子やレンズを含む二次元導波路の場合の
み説明したが、本発明は光分岐回路や他の合波器2分波
器等に利用される三次元導波路に対しても同様に適用で
きる。また以上では光導波路層材料として専らコーニン
グ7059ガラスを用いたが、シリコン熱酸化膜より屈
折率の大きい他のガラス材料を用いて同様の先導波路を
形成する場合にも本発明を適用できることは勿論である
Although only the case of a two-dimensional waveguide including a diffraction grating and a lens has been described above, the present invention can be similarly applied to a three-dimensional waveguide used in an optical branching circuit or other multiplexer/two-brancher. Applicable. In addition, although Corning 7059 glass was exclusively used as the optical waveguide layer material in the above, it is of course possible to apply the present invention to the case where a similar guiding waveguide is formed using other glass materials having a higher refractive index than a silicon thermal oxide film. It is.

熱処理装置としても、ヒータ加熱方式の炉に限らず例え
ば赤外線ランプ加熱方式等を利用することが可能である
The heat treatment apparatus is not limited to a heater heating type furnace, and for example, an infrared lamp heating type or the like can be used.

その漬水発明はその趣旨を逸脱しない範囲で種々変形し
て実施することができる。
The soaking water invention can be implemented with various modifications without departing from the spirit thereof.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例による先導波路を示す図、i
I2図はその熱処理温度と伝搬損失の関係を測定したデ
ータを示す図、第3図は同じく光伝搬距離と相対光強度
の関係を測定したデータを示す図、第4図は各種熱処理
雰囲気と伝搬損失の関係を測定したデータを示す図、第
5図は他の実施例による回折格子付光導波路を示す図、
第6図(a)(b)はその熱処理による格子深さの変化
を測定したデータを示す図、第7図(a)〜(C)は同
様の先導波路に対する他の熱処理条件での格子深さの変
化を測定したデータを示す図、第8図は更に他の実施例
による集積化充分波器を示す図で、ある。 1・・・シリコン基板、2・・・熱酸化膜、3・・・ガ
ラス薄膜(先導波路層)、4・・・端面、5・・・回折
格子、11・・・先導波路、12・・・コリメーション
レンズ、13・・・集束レンズ、14・・・回折格子、
15.16・・・端面、17・・・光ファイバ、18・
・・受光ダイオードアレイ。 工業技術院長 等々力   達 距   @  (am) 第3図 第4図 第5図 第6図 第7図
FIG. 1 is a diagram showing a leading waveguide according to an embodiment of the present invention, i
Figure I2 shows data measured on the relationship between heat treatment temperature and propagation loss, Figure 3 shows data measured on the relationship between light propagation distance and relative light intensity, and Figure 4 shows various heat treatment atmospheres and propagation. FIG. 5 is a diagram showing data obtained by measuring loss relationships; FIG. 5 is a diagram showing an optical waveguide with a diffraction grating according to another embodiment;
Figures 6(a) and 6(b) are diagrams showing measurement data of changes in grating depth due to the heat treatment, and Figures 7(a) to (C) are graphs showing the grating depth of similar leading waveguides under other heat treatment conditions. FIG. 8 is a diagram illustrating data obtained by measuring changes in height, and FIG. 8 is a diagram illustrating an integrated sufficient waveform device according to yet another embodiment. DESCRIPTION OF SYMBOLS 1... Silicon substrate, 2... Thermal oxide film, 3... Glass thin film (guide waveguide layer), 4... End surface, 5... Diffraction grating, 11... Guide waveguide, 12...・Collimation lens, 13... Focusing lens, 14... Diffraction grating,
15.16... end face, 17... optical fiber, 18...
...Photodetector diode array. Director of the Agency of Industrial Science and Technology Todoroki Range @ (am) Figure 3 Figure 4 Figure 5 Figure 6 Figure 7

Claims (4)

【特許請求の範囲】[Claims] (1)熱酸化膜が形成されたシリコン基板の表面にガラ
ス薄膜を被着して光導波路層を形成し、前記光導波路層
の光入射端面および出射端面の研磨を行った後、熱処理
を加えることを特徴とする光導波路の製造方法。
(1) A thin glass film is deposited on the surface of a silicon substrate on which a thermal oxide film has been formed to form an optical waveguide layer, and after polishing the light input end face and output end face of the optical waveguide layer, heat treatment is applied. A method for manufacturing an optical waveguide, characterized by:
(2)前記光導波路層は、導波路レンズ、回折格子若し
くは三次元導波路、またはこれらの二以上を含む光回路
素子が形成されたものである特許請求の範囲第1項記載
の光導波路の製造方法。
(2) The optical waveguide according to claim 1, wherein the optical waveguide layer is formed with a waveguide lens, a diffraction grating, a three-dimensional waveguide, or an optical circuit element containing two or more of these. Production method.
(3)前記ガラス薄膜はSiO_2、Al_2O_3、
BaOおよびB_2O_3を主成分とするガラスであり
、前記熱処理は700℃近傍の乾燥酸素中で行う特許請
求の範囲第1項記載の光導波路の製造方法。
(3) The glass thin film is SiO_2, Al_2O_3,
2. The method of manufacturing an optical waveguide according to claim 1, wherein the glass is mainly composed of BaO and B_2O_3, and the heat treatment is performed in dry oxygen at around 700°C.
(4)前記ガラス薄膜はSiO_2、Al_2O_3、
BaOおよびB_2O_3を主成分とするガラスであり
、前記熱処理は630℃近傍の水蒸気添加酸素中で行う
特許請求の範囲第1項記載の光導波路の製造方法。
(4) The glass thin film is SiO_2, Al_2O_3,
2. The method of manufacturing an optical waveguide according to claim 1, wherein the glass is mainly composed of BaO and B_2O_3, and the heat treatment is performed in steam-added oxygen at around 630°C.
JP61030773A 1986-02-17 1986-02-17 Method of manufacturing optical waveguide Expired - Lifetime JPH0621891B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61030773A JPH0621891B2 (en) 1986-02-17 1986-02-17 Method of manufacturing optical waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61030773A JPH0621891B2 (en) 1986-02-17 1986-02-17 Method of manufacturing optical waveguide

Publications (2)

Publication Number Publication Date
JPS62189407A true JPS62189407A (en) 1987-08-19
JPH0621891B2 JPH0621891B2 (en) 1994-03-23

Family

ID=12313000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61030773A Expired - Lifetime JPH0621891B2 (en) 1986-02-17 1986-02-17 Method of manufacturing optical waveguide

Country Status (1)

Country Link
JP (1) JPH0621891B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5235662A (en) * 1992-01-02 1993-08-10 Eastman Kodak Company Method to reduce light propagation losses in optical glasses and optical waveguide fabricated by same
US6075625A (en) * 1992-06-24 2000-06-13 British Telecommunications Public Limited Company Photoinduced grating in B2 O3 containing glass
US6104852A (en) * 1996-01-18 2000-08-15 British Telecommunications Public Limited Company Optical waveguide with photosensitive refractive index cladding
US6229945B1 (en) 1992-06-24 2001-05-08 British Telecommunications Public Limited Company Photo induced grating in B2O3 containing glass

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57186711A (en) * 1981-05-14 1982-11-17 Toshiba Corp Forming method for optical waveguide
JPS57202505A (en) * 1981-06-06 1982-12-11 Nippon Sheet Glass Co Ltd Production of optical circuit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57186711A (en) * 1981-05-14 1982-11-17 Toshiba Corp Forming method for optical waveguide
JPS57202505A (en) * 1981-06-06 1982-12-11 Nippon Sheet Glass Co Ltd Production of optical circuit

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5235662A (en) * 1992-01-02 1993-08-10 Eastman Kodak Company Method to reduce light propagation losses in optical glasses and optical waveguide fabricated by same
US6075625A (en) * 1992-06-24 2000-06-13 British Telecommunications Public Limited Company Photoinduced grating in B2 O3 containing glass
US6097512A (en) * 1992-06-24 2000-08-01 British Telecommunications Public Limited Company Photoinduced grating in B2 O3 containing glass
US6229945B1 (en) 1992-06-24 2001-05-08 British Telecommunications Public Limited Company Photo induced grating in B2O3 containing glass
US6104852A (en) * 1996-01-18 2000-08-15 British Telecommunications Public Limited Company Optical waveguide with photosensitive refractive index cladding

Also Published As

Publication number Publication date
JPH0621891B2 (en) 1994-03-23

Similar Documents

Publication Publication Date Title
US4547262A (en) Method for forming thin film passive light waveguide circuit
JP2599488B2 (en) Method for adjusting characteristics of optical waveguide circuit and optical waveguide circuit used in the method
US4445751A (en) Metal coated, tapered, optical fiber coupled to substrate and method of fabrication
JP2002323633A (en) Optical waveguide device and method for manufacturing the same
US4711514A (en) Product of and process for forming tapered waveguides
EP0106752A1 (en) Method of making light guides
JPS62189407A (en) Production of optical waveguide
Boyd et al. Guided wave optical structures utilizing silicon
JPS6157601B2 (en)
JPH06222229A (en) Optical waveguide element and its manufacture
JPH06289346A (en) Dielectric substance optical waveguide element and its production
JPH10227930A (en) Temperature-independent optical waveguide and its manufacture
GB2189899A (en) Optical waveguide
JP2001033640A (en) Optical waveguide
JPH06214128A (en) Optical waveguide circuit
JPS5960405A (en) Optical waveguide and its manufacture
JPS60156014A (en) Production of flush type optical waveguide device
JPH09113744A (en) Waveguide and its production
JP2002311277A (en) Production method for glass waveguide
JPS5917510A (en) Optical waveguide
JPS6145202A (en) Optical waveguide
JPH06100694B2 (en) Method of forming optical waveguide
JPS60216335A (en) Preparation of shifting element of wavelength of light
JPH07281046A (en) Manufacture of optical fiber array and connection to waveguide part
Chen et al. Multimode optical channel waveguides induced in glass by laser heating

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term