JPH0715527B2 - Optical / electrical integrated circuit - Google Patents

Optical / electrical integrated circuit

Info

Publication number
JPH0715527B2
JPH0715527B2 JP62104252A JP10425287A JPH0715527B2 JP H0715527 B2 JPH0715527 B2 JP H0715527B2 JP 62104252 A JP62104252 A JP 62104252A JP 10425287 A JP10425287 A JP 10425287A JP H0715527 B2 JPH0715527 B2 JP H0715527B2
Authority
JP
Japan
Prior art keywords
substrate
optical
optical waveguide
linear expansion
glass layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62104252A
Other languages
Japanese (ja)
Other versions
JPS63271207A (en
Inventor
英夫 有馬
孝信 野呂
中 横野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62104252A priority Critical patent/JPH0715527B2/en
Publication of JPS63271207A publication Critical patent/JPS63271207A/en
Publication of JPH0715527B2 publication Critical patent/JPH0715527B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電気回路および光導波路の形成が容易で、し
かも光導波路の光伝搬損失の小さな光・電気集積回路に
関する。
Description: TECHNICAL FIELD The present invention relates to an optical / electrical integrated circuit in which an electric circuit and an optical waveguide can be easily formed and the optical propagation loss of the optical waveguide is small.

〔従来の技術〕[Conventional technology]

光集積回路用基板および光導波路としては、従来から、
ガラス,ニオブ酸リチウム(LiNbO3)結晶,ヒ素化ガリ
ウム(GaAs)結晶等が使用されてきた。これらのうち、
ニオブ酸リチウム,ヒ素化ガリウムは原材料が高く、高
品質の結晶を作成するための量産技術が確立されていな
いため、高価である。また電気回路をさらに高密度化す
る上での、回路の三次元化には多くの課題が残されてい
る。また、現技術においては、光導波路の光損失は数dB
/cmと大きい。
As a substrate for an optical integrated circuit and an optical waveguide, conventionally,
Glass, lithium niobate (LiNbO 3 ) crystals, gallium arsenide (GaAs) crystals, etc. have been used. Of these,
Lithium niobate and gallium arsenide are expensive because they have high raw materials and mass production technology for producing high quality crystals has not been established. In addition, many problems remain in making the circuit three-dimensional in order to further increase the density of the electric circuit. Moreover, in the current technology, the optical loss of the optical waveguide is several dB.
It is as large as / cm.

これに対して、ガラスは比較的廉価ではあるが、基板と
して用いた場合には、熱伝導率が低いため、発光源を含
む様な通常の光・電気集積回路では、基板温度,素子温
度の上昇は避けられず、このため発光源の動作不安定,
光導波路の光伝搬特性の不安定を招く。
On the other hand, although glass is relatively inexpensive, when it is used as a substrate, it has low thermal conductivity, so that in a normal optical / electrical integrated circuit including a light emitting source, the substrate temperature and the element temperature are The rise is unavoidable, which causes unstable operation of the light source.
This causes instability in the light propagation characteristics of the optical waveguide.

これらに対して、廉価なセラミックス基板上にガラスで
光導波路を形成した方法が、特開昭53−50464号公報や
特開昭59−127005号公報等で提案されている。
On the other hand, methods of forming an optical waveguide with glass on an inexpensive ceramic substrate have been proposed in Japanese Patent Laid-Open Nos. 53-50464 and 59-127005.

しかし、これらの方法においては、光導波路の低損失化
に対する考慮が、構造上および材料組成上全くされてい
ない。また、発光源を含む様な回路では必要となる基板
の熱伝導率,および上記光導波路の低損失化とも関連す
るが基板,導波路の線膨張係数に対する考慮がされてい
ない。
However, in these methods, no consideration is given to the reduction of loss of the optical waveguide in terms of structure and material composition. Further, although it is related to the thermal conductivity of the substrate and the reduction of the loss of the optical waveguide, which is required in a circuit including a light emitting source, no consideration is given to the linear expansion coefficient of the substrate and the waveguide.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上記従来技術は、光導波路の光伝搬の低損失化に対して
考慮していないため、光伝搬時の光の大幅な減衰が生じ
る問題があった。
Since the above-mentioned conventional technique does not take into consideration the reduction of the loss of light propagation in the optical waveguide, there is a problem that the light is greatly attenuated during the light propagation.

また、従来技術では、基板の熱伝導率に対して考慮して
いないため、光回路の光導波特性が不安定になるという
問題もあった。
Further, in the conventional technique, since the thermal conductivity of the substrate is not taken into consideration, there is a problem that the optical waveguide characteristic of the optical circuit becomes unstable.

本発明の目的は、上記問題点を解決し、電気回路および
光回路の形成が容易で、光導波路の光伝搬損失が小さく
動作特性が安定な光・電気集積回路を提供することにあ
る。
An object of the present invention is to solve the above problems, and to provide an optical / electrical integrated circuit in which an electric circuit and an optical circuit can be easily formed, the optical propagation loss of the optical waveguide is small, and the operation characteristics are stable.

〔問題点を解決するための手段〕[Means for solving problems]

上記の目的は、光集静回路基板としてGaAsやLiNbO3の単
結晶と比較して廉価で、印刷やフォトリソ技術等による
電気回路形成が容易で、熱伝導率が10W・m-1・K-1
上,線膨張係数が3.5×10-6K-1ないし、9.0×10-6K-1
その表面に電気配線の一部を設けた所の、含有ガラス成
分が10重量%以下の多結晶体基板、または、上記2属性
を持ち、その表面に電気配線の一部を設けたアモルファ
ス体基板と、この基板上に、この基板より線膨張係数が
大きくなく、その基板側と反対側の面が光学研磨された
ホウケイ酸を主成分とするガラス層、さらに、このガラ
ス層表面に、このガラス層と比較して、軟化点は低く、
線膨張係数は同等以下であり、ケイ酸,酸化ホウ素,酸
化バリウム,酸化ニオブ,酸化タンタル,酸化ランタ
ン,酸化亜鉛等を主成分として含む光導波路層から成る
構成とした光・電気集積回路により達成される。
The above objects, inexpensive compared with the single crystal of GaAs and LiNbO 3 as a light condenser static circuit board, printed and electrical circuit formed easily by photolithography or the like, the thermal conductivity of 10W · m -1 · K - 1 or more, linear expansion coefficient of 3.5 × 10 -6 K -1 to 9.0 × 10 -6 K -1 and a part of electrical wiring provided on the surface, the content of glass component is 10% by weight or less A crystalline substrate, or an amorphous substrate having the above-mentioned two attributes and provided with a part of electric wiring on its surface, and a linear expansion coefficient on this substrate which is not larger than that of this substrate A glass layer whose surface is an optically polished borosilicate as a main component, and further, on the surface of this glass layer, as compared with this glass layer, has a low softening point,
The linear expansion coefficient is not more than the same, and it is achieved by an optical / electrical integrated circuit that is composed of an optical waveguide layer containing silicic acid, boron oxide, barium oxide, niobium oxide, tantalum oxide, lanthanum oxide, zinc oxide, etc. as main components. To be done.

また、上記基板として、線膨張係数が3.5×10-6K-1ない
し9.0×10-6K-1で、熱伝導率が10W・m-1・K-1以上であ
り、その表面の一部に絶縁膜を形成し、その絶縁膜上に
電気配線の一部を設けた所の多結晶体またはアルモファ
ス体の基板でも、上記目的を達成できる。
In addition, the substrate has a linear expansion coefficient of 3.5 × 10 −6 K −1 to 9.0 × 10 −6 K −1 and a thermal conductivity of 10 W · m −1 · K −1 or more, and one of its surface is The above object can also be achieved by using a polycrystalline or alumophous substrate in which an insulating film is formed on a portion and a part of electric wiring is provided on the insulating film.

〔作用〕[Action]

基板は、熱伝導率が10W・m-1・K-1以上と高いことによ
り、光源である発光ダイオードや半導体レーザの発熱を
容易に周囲に逃がすことができるため、これらのデバイ
スあるいは光導波路の温度上昇が少なくなる。これによ
り、これらの発光源の動作および光導波路の光伝搬特性
が安定になる。
Since the substrate has a high thermal conductivity of 10 W · m −1 · K −1 or more, it is possible to easily dissipate the heat generated by the light emitting diode or semiconductor laser, which is the light source, to the surroundings. Less temperature rise. This stabilizes the operation of these light emitting sources and the light propagation characteristics of the optical waveguide.

基板材料として、多結晶体やアモルファス体としたの
は、GaAsやLiNbO3等の単結晶と比較して製造コストが低
いため集積回路のコストが安くなることの他、電気回路
の多層化,三次元回路化が容易で、これにより小形,低
コストの集積回路を供給できる。
As a substrate material, a polycrystalline or amorphous material is used because the manufacturing cost is lower than that of a single crystal such as GaAs or LiNbO 3 because the cost of the integrated circuit is low, and the multilayered and tertiary circuits are used. The original circuit can be easily made, and this makes it possible to supply small-sized and low-cost integrated circuits.

基板の線膨張係数を3.5×10-6K-1ないし9.0×10-6K-1
したのは、これ以下または以上では、基板上に搭載また
は配線する受光素子,発光素子,IC,光学レンズ・プリズ
ム,配線導体との線膨張係数の差により、周囲温度の変
化により、これらが基板から一部はく離し、動作が不安
定になり、動作特性が安定な集積回路が提供できなくな
る。
The linear expansion coefficient of the substrate is set to 3.5 × 10 -6 K -1 to 9.0 × 10 -6 K -1 below or above that for the light receiving element, light emitting element, IC, optical device mounted or wired on the substrate. Due to the difference in the linear expansion coefficient between the lens / prism and the wiring conductor, a change in the ambient temperature causes a partial peeling of these from the substrate, which makes operation unstable and it becomes impossible to provide an integrated circuit with stable operation characteristics.

多結晶体基板において、その含有ガラス成分を10重量%
以下としたのは、これ以上にすると、熱伝導率が通常0.
5〜2W・m-1・K-1と低いガラスが多結晶体粒界に浸入
し、基板の熱伝導率を大幅に低下させるためである。
10% by weight of the glass component contained in the polycrystalline substrate
Below, the thermal conductivity is usually 0 if more than this.
This is because glass as low as 5 to 2 W · m −1 · K −1 penetrates into the grain boundaries of the polycrystalline substance, and the thermal conductivity of the substrate is greatly reduced.

これら上記の特性を満たす基板としては、多結晶体で
は、アルミナ,スピネル,AlN,SiC,Fe,Ni,Co合金(例コ
バール),アモルファス体では、アモルファスゲルマニ
ウム等がある。基板として絶縁性の低いコバール等で
は、電気配線を設ける部分にあらかじめ絶縁膜を設ける
ことによりこれらの基板として使用できる。
As a substrate satisfying the above-mentioned characteristics, there are alumina, spinel, AlN, SiC, Fe, Ni, Co alloys (e.g. Kovar) in a polycrystalline body, and amorphous germanium in an amorphous body. Kovar, which has a low insulating property as a substrate, can be used as such a substrate by previously providing an insulating film at the portion where the electrical wiring is provided.

これらの基板は、一般に固く、研磨はしにくいが、本発
明での基板表面は光学研磨する必要はない。
These substrates are generally hard and difficult to polish, but the substrate surface in the present invention does not need to be optically polished.

しかし、基板上に密着したガラス層は、その表面を光学
研磨する必要がある。それは、ガラス層上に形成する光
導波路の基準面となるためであり、ガラス層表面が光学
的になめらかになっていて、はじめてその上に形成する
光導波路のガラス層側およびそれと反対側の界面が、光
学的になめらかになるのであり、これにより光伝搬時に
導波路界面で光が散乱されることがなくなり、光導波路
中の光伝搬損失は大幅に低減する。このガラス層の表面
研磨は、基板の研磨と比較すれば、ガラスの方が加工し
やすく、研磨も短時間ですみ。このガラス層の線膨張係
数を、基板と同等以下としたのは、基板より大きいと、
ガラス層に引張り歪が生じ、ガラス層にマイクロクラッ
クが発生しやすくなるためである。ガラス層の組成をケ
イ酸および酸化ホウ素の総和が全体組成の60重量%以上
としたのは、これらの組成において、下記の利点がある
ためである。
However, the surface of the glass layer adhered on the substrate needs to be optically polished. This is because it serves as the reference surface of the optical waveguide formed on the glass layer, and the surface of the glass layer is optically smooth, and the interface between the glass layer side of the optical waveguide formed on it and the opposite side However, since it becomes optically smooth, light is not scattered at the waveguide interface during light propagation, and the light propagation loss in the optical waveguide is greatly reduced. The surface polishing of this glass layer is easier to process with glass than polishing the substrate, and the polishing time is short. The linear expansion coefficient of this glass layer is equal to or less than that of the substrate
This is because tensile strain occurs in the glass layer and microcracks are likely to occur in the glass layer. The composition of the glass layer is such that the sum of silicic acid and boron oxide is 60% by weight or more of the total composition because these compositions have the following advantages.

光を光導波層中に閉じ込めるために必要となる低い屈
折率が実現できる。
The low index of refraction needed to confine light in the optical waveguide layer can be achieved.

前記基板とのなじみが良い(ぬれ性,形成時に化学反
応しない,等の点)。
Good compatibility with the substrate (wetting, no chemical reaction during formation, etc.).

光導波路からの光のしみ出しを再び光導波路に効率良
く戻すためにも、ガラス層の光学的均一性および光透過
率が高いことが要求されるが、その点光学的均一性を妨
害する結晶化が起こりにくく、光損失が小さい。
In order to efficiently return the exudation of light from the optical waveguide to the optical waveguide again, it is required that the glass layer have high optical uniformity and light transmittance, but at that point a crystal that interferes with optical uniformity. Is less likely to occur and light loss is small.

光導波路層の軟化点を、前記ガラス層と比較して低いの
は、光導波路形成時に加熱するが、その際ガラス層が流
動して光学研磨した表面が変形し、光導波損失が増加す
ることを防ぐためである。また光導波路層の線膨張係数
が、ガラス層より小さくしたのは、光導波路形成後光導
波路層に圧縮応力、ガラス層に引っ張り応力がかかり、
光弾性効果により、光導波路層の屈折率が増加、ガラス
層の屈折率が減少して、光導波路中への光閉じ込め効果
が増すためである。光導波路層の組成を、ケイ酸,酸化
ホウ素,酸化バリウム,酸化ニオブ,酸化タンタル,酸
化ランタン,酸化亜鉛のうち、2成分以上を含み、それ
らの総和が全体の60重量%以上としたのは、これらの組
成において、前記した軟化点,線膨張係数を達成しやす
いという理由の他に、下記の利点があるためである。
The softening point of the optical waveguide layer is lower than that of the glass layer because it is heated when the optical waveguide is formed, but at that time, the glass layer flows to deform the optically polished surface and increase the optical waveguide loss. This is to prevent The linear expansion coefficient of the optical waveguide layer is smaller than that of the glass layer because the optical waveguide layer is subjected to compressive stress and tensile stress to the glass layer after formation of the optical waveguide.
This is because the photoelastic effect increases the refractive index of the optical waveguide layer and decreases the refractive index of the glass layer, thereby increasing the light confinement effect in the optical waveguide. The composition of the optical waveguide layer contains two or more components of silicic acid, boron oxide, barium oxide, niobium oxide, tantalum oxide, lanthanum oxide, and zinc oxide, and the sum of them is 60% by weight or more. This is because these compositions have the following advantages in addition to the reason that the softening point and the linear expansion coefficient are easily achieved.

前記ガラス層とのなじみが良い(ぬれ性、形成時に化
学反応しない、等の点)。
Good compatibility with the glass layer (wetting, no chemical reaction during formation, etc.).

光を光導波路中に閉じ込めるために必要となる高い屈
折率を実現できる。
The high refractive index required to confine light in the optical waveguide can be realized.

光導波路中の光伝搬損失を小さくする上での、光透過
率が高く、および、光学的均一性を妨害する結晶化が起
こりにくい。
In order to reduce the light propagation loss in the optical waveguide, the light transmittance is high, and crystallization that hinders the optical uniformity is unlikely to occur.

〔実施例〕〔Example〕

以下、本発明の実施例を第1図により説明する。第1図
は、波長多重用に作成した光・電気集積回路の一部であ
る。光ファイブ7から入った短波長(波長:0.85μm)
の光は、光導波路3に入り、低損失のまま、SiO2とTiO2
の多層膜からなる長波長通過用のフィルタ4で反射さ
れ、フォトダイオード8に入る。半導体レーザ6からは
長波長(波長:1.3μm)の光が発射され、光導波路に入
った光は、長波長通過用のフィルタ4をそのまま通過
し、低損失で光ファイバ7に入る。
An embodiment of the present invention will be described below with reference to FIG. FIG. 1 shows a part of an optical / electrical integrated circuit prepared for wavelength division multiplexing. Short wavelength (wavelength: 0.85μm) entered from optical five
Light enters the optical waveguide 3 and remains as low loss as SiO 2 and TiO 2
The light is reflected by the long-wavelength-passing filter 4 made up of the multilayer film, and enters the photodiode 8. Light having a long wavelength (wavelength: 1.3 μm) is emitted from the semiconductor laser 6, and the light entering the optical waveguide passes through the filter 4 for passing a long wavelength as it is and enters the optical fiber 7 with low loss.

なお、第1図において、1は基板、2はクラッド層、5
ははんだ、9は電極である。
In FIG. 1, 1 is a substrate, 2 is a cladding layer, 5
Is solder and 9 is an electrode.

この光・電気回路を下記に述べる4つの方法で作成し
た。
This optical / electrical circuit was prepared by the following four methods.

実施例1. 基板として、純度96%のアルミナを使用した。この基板
の熱伝導率は21W・m-1・K-1,線膨張係数は7.8×10-6K-1
であった。この基板の左右を除く表面に、組成SiO2=7
0,B2O3=12,Al2O3=10,ZnO=3,Na2O=5(単位:重量
%)のガラスを厚膜印刷法を用いて形成した。これを電
気炉中で1100℃で20分間焼成した。焼成後のガラス層の
層厚は55μmであり、この表面を粒径0.08μmのと粒を
用いて光学研磨して、最終的に層厚を45μmにした。こ
のガラス層の物性は、測定の結果、軟化点820℃,線膨
張係数7.5×10-6 K-1,屈折率は1.49であった。このガ
ラス層表面に、T字形のパターンに、ガラス導波路を形
成した。ガラスの組成は、SiO2=20,B2O3=16,Al2O3
4,La2O3=35,BaO=16,Na2O=9(単位:重量%)であ
る。これを電子ビーム加熱法を用いたイオンプレーティ
ング法で成膜した。上記基板温度を500℃に保ち、30分
間イオンプレーティングし、膜厚10μmの光導波路にな
った。この導波路用ガラスの物性は、測定の結果、軟化
点760℃,線膨張係数6.9×10-6K-1であった。作成した
光導波路の屈折率は1.81,光伝搬損失は0.1dB/cm以下で
測定精度以下であった。
Example 1. Alumina having a purity of 96% was used as a substrate. The thermal conductivity of this substrate is 21 W ・ m -1・ K -1 , and the linear expansion coefficient is 7.8 × 10 -6 K -1.
Met. On the surface of this substrate excluding the left and right, the composition SiO 2 = 7
Glass of 0, B 2 O 3 = 12, Al 2 O 3 = 10, ZnO = 3, Na 2 O = 5 (unit:% by weight) was formed by the thick film printing method. This was baked in an electric furnace at 1100 ° C. for 20 minutes. The glass layer after firing had a layer thickness of 55 μm, and the surface thereof was optically polished using grains having a grain size of 0.08 μm to finally make the layer thickness 45 μm. As for the physical properties of this glass layer, the softening point was 820 ° C., the linear expansion coefficient was 7.5 × 10 −6 K −1 , and the refractive index was 1.49. A glass waveguide was formed in a T-shaped pattern on the surface of the glass layer. The composition of the glass is SiO 2 = 20, B 2 O 3 = 16, Al 2 O 3 =
4, La 2 O 3 = 35, BaO = 16, Na 2 O = 9 (unit: wt%). This was formed into a film by the ion plating method using the electron beam heating method. The substrate temperature was kept at 500 ° C. and ion plating was performed for 30 minutes to obtain an optical waveguide having a film thickness of 10 μm. As a result of the measurement, the physical properties of this glass for a waveguide were a softening point of 760 ° C and a linear expansion coefficient of 6.9 × 10 -6 K -1 . The prepared optical waveguide had a refractive index of 1.81 and a light propagation loss of 0.1 dB / cm or less, which was less than the measurement accuracy.

T字形の光導波路のできた基板を、フッ酸系のエッチン
グ液で、基板左右および下側のガラス層および光導波路
の端面さらには、光導波路T字形の交差部に幅15μmの
斜めの溝を、基板に垂直になる様にエッチング加工し
た。さらにこの基板の左右に半導体レーザ用の電極パタ
ーンと、光ファイバ固定用のパッドを、スパッタ法を用
いて形成した。
The substrate with the T-shaped optical waveguide was etched with a hydrofluoric acid-based etching solution to form glass grooves on the left and right sides of the substrate and the end faces of the optical waveguide, and diagonal grooves with a width of 15 μm at the intersection of the optical waveguide T-shaped, Etching was performed so that it was vertical to the substrate. Further, electrode patterns for semiconductor lasers and pads for fixing an optical fiber were formed on the left and right sides of this substrate by a sputtering method.

これに、クラッド表面をメタライズした光ファイバ,長
波長通過用フィルタ,半導体レーザ,フォトダイオード
を搭載して、波長多重用の光・電気集積回路を完成させ
た。
An optical fiber with a metallized clad surface, a long-wavelength pass filter, a semiconductor laser, and a photodiode were mounted on this to complete an optical / electrical integrated circuit for wavelength multiplexing.

実施例2. 基板として、スピネル磁器を使用した。この基板の熱伝
導率は14W・m-1・K-1,線膨張係数は8.8×10-6K-1であっ
た。この基板上にPd−Ag系ペーストを厚膜印刷法を用い
てレーザ半導体用電極,光ファイバ固定用パッド形成
し、その後1000℃,10分で焼成した。さらにこの上にAu
ペーストを用いて厚膜印刷法で被覆し、950℃,10分で焼
成した。
Example 2. Spinel porcelain was used as the substrate. The thermal conductivity of this substrate was 14 W · m −1 · K −1 , and the linear expansion coefficient was 8.8 × 10 −6 K −1 . A Pd-Ag paste was formed on this substrate by a thick film printing method to form a laser semiconductor electrode and an optical fiber fixing pad, and then firing at 1000 ° C. for 10 minutes. Further on this Au
The paste was used for thick film printing, and baked at 950 ° C. for 10 minutes.

この基板の左右を除く表面に、組成SiO2=60,B2O3=2,A
l2O3=3,K2O=20,PbO=10,Na2O=5(単位:重量%)の
ガラス層を厚膜印刷法を用いて形成した。焼成後のガラ
ス層の層厚は50μmであり、この表面を粒径0.08μmの
と粒を用いて光学研磨して、最終的な層厚を40μmにし
た。このガラス層の物性は、測定の結果、軟化点710
℃,線膨張係数8.6×10-6K-1,屈折率1.50であった。
The composition SiO 2 = 60, B 2 O 3 = 2, A
A glass layer of l 2 O 3 = 3, K 2 O = 20, PbO = 10, Na 2 O = 5 (unit: wt%) was formed by a thick film printing method. The layer thickness of the glass layer after firing was 50 μm, and this surface was optically polished by using particles having a grain size of 0.08 μm to give a final layer thickness of 40 μm. As a result of the measurement, the physical properties of this glass layer are 710
C, linear expansion coefficient was 8.6 × 10 -6 K -1 , and refractive index was 1.50.

このガラス層表面に、T字形にガラス導波路を形成し
た。このガラスの組成は、SiO2=61,B2O3=15.Al2O3
3,BaO=13,Na2O=8(単位:重量%)である。光導波路
の形成法は、上記と同じ厚膜印刷法を用いた。焼成は85
0℃,30分で真空焼成炉中で行なった。焼成後は、膜厚50
μmの光導波路となった。この導波路用ガラスの物性
は、測定の結果、軟化点650℃,線膨張係数5.7×10-6K
-1であった。作成した光導波路の屈折率は1.70,光伝搬
損失は0.1dB/cm以下で、測定精度以下であった。
A T-shaped glass waveguide was formed on the surface of the glass layer. The composition of this glass is SiO 2 = 61, B 2 O 3 = 15.Al 2 O 3 =
3, BaO = 13, Na 2 O = 8 (unit: wt%). As the method for forming the optical waveguide, the same thick film printing method as described above was used. Firing is 85
It was carried out in a vacuum baking furnace at 0 ° C for 30 minutes. After firing, the film thickness is 50
It became an optical waveguide of μm. As for the physical properties of this glass for a waveguide, the softening point was 650 ° C and the linear expansion coefficient was 5.7 × 10 -6 K.
It was -1 . The prepared optical waveguide had a refractive index of 1.70 and an optical propagation loss of 0.1 dB / cm or less, which was less than the measurement accuracy.

T字形の光導波路のできた基板を、フッ酸系のエッチン
グ液で加工,さらに部品搭載し、集積回路を形成する方
法は実施例1と同様である。
The method for forming an integrated circuit by processing a substrate having a T-shaped optical waveguide with a hydrofluoric acid-based etching solution and further mounting components is the same as in the first embodiment.

実施例3. 基板として、純度96%のアルミナを使用した。この基板
の熱伝導率は27W・m-1・K-1,線膨張係数は5.3×10-6K-1
であった。この基板の左右を除く表面に、組成SiO2=6
8,B2O3=19,Al2O3,K2O=8,Li2O=1,Na2O=1(単位:重
量%)のガラスを、厚膜印刷法を用いて形成した。これ
を電気炉中で1000℃で20分間焼成した。焼成後のガラス
層の層膜は55μmであり、この表面を粒径0.08μmのと
粒を用いて光学研磨して、最終的に層厚を45μmにし
た。このガラス層の物性は、測定の結果、軟化点720
℃,線膨張係数5.1×10-6K-1,屈折率は1.49であった。
このガラス層表面に、T字形のパターンに、ガラス導波
炉を形成した。ガラス組成は、SiO2=20,B2O3=15,Al2O
3=4,Nb2O3=18,BaO=22,ZnO=7,Ta2O5=4,Na2O=10
(単位:重量%)である。これを電子ビーム加熱法を用
いたイオンプレーティング法で成膜した。上記基板温度
を500℃に保ち、30分間イオンプレーティングし、膜厚1
0μmの光導波路になった。この導波路用ガラスの物性
は、測定の結果、軟化点690℃,線膨張係数4.8×10-6K
-1であった。作成した光導波路の屈折率は1.75,光伝搬
損失は0.1dB/cm以下で測定精度以下であった。
Example 3. As a substrate, alumina having a purity of 96% was used. The thermal conductivity of this substrate is 27 W ・ m -1・ K -1 , and the linear expansion coefficient is 5.3 × 10 -6 K -1.
Met. On the surface of this substrate excluding left and right, the composition SiO 2 = 6
Glass of 8, B 2 O 3 = 19, Al 2 O 3 , K 2 O = 8, Li 2 O = 1, Na 2 O = 1 (unit: wt%) was formed using a thick film printing method. . This was baked in an electric furnace at 1000 ° C. for 20 minutes. The layer thickness of the glass layer after firing was 55 μm, and this surface was optically polished using grains having a grain size of 0.08 μm, and finally the layer thickness was set to 45 μm. The physical properties of this glass layer were measured and the softening point was 720.
The linear expansion coefficient was 5.1 × 10 -6 K -1 , and the refractive index was 1.49.
A glass waveguide furnace was formed in a T-shaped pattern on the surface of the glass layer. The glass composition is SiO 2 = 20, B 2 O 3 = 15, Al 2 O
3 = 4, Nb 2 O 3 = 18, BaO = 22, ZnO = 7, Ta 2 O 5 = 4, Na 2 O = 10
(Unit: weight%). This was formed into a film by the ion plating method using the electron beam heating method. Keep the above substrate temperature at 500 ° C and ion-plat for 30 minutes to obtain a film thickness of 1
It became an optical waveguide of 0 μm. The physical properties of this glass for a waveguide were measured, and it was found that the softening point was 690 ° C and the linear expansion coefficient was 4.8 × 10 -6 K.
It was -1 . The refractive index of the fabricated optical waveguide was 1.75, and the optical propagation loss was 0.1 dB / cm or less, which was less than the measurement accuracy.

T字形の光導波路のできた基板を、フッ酸系のエッチン
グ液で加工,さらに部品を搭載し、集積回路を形成する
方法は、実施例1と同様である。
The method of processing a substrate having a T-shaped optical waveguide with a hydrofluoric acid-based etching solution, mounting components, and forming an integrated circuit is the same as in the first embodiment.

実施例4. 基板として、アモルファスGeを使用した。この基板の熱
伝導率は23W・m-1・K-1,線膨張係数は6.0×10-6K-1あっ
た。この基板を用いてのガラス層,光導波路層の作成
法,集積回路の作成法は、実施例3と同様である。
Example 4. Amorphous Ge was used as the substrate. The thermal conductivity of this substrate was 23 W · m −1 · K −1 , and the linear expansion coefficient was 6.0 × 10 −6 K −1 . The method of forming the glass layer, the optical waveguide layer, and the integrated circuit using this substrate is the same as in the third embodiment.

〔発明の効果〕〔The invention's effect〕

本発明によれば、下記の効果がある。 The present invention has the following effects.

(1) その構成および材料組成の限定により、光伝搬
損失が、従来のdB/cmから、0.1dB/cm以下ほとんど損失
が無く、またその経時変化が認められないほど少ない光
回路を形成できる。
(1) Due to the limitation of the configuration and the material composition, it is possible to form an optical circuit in which the optical propagation loss is 0.1 dB / cm or less from the conventional dB / cm, and there is little change with time.

(2) 基板の熱伝導率が10W・m-1・K-1以上と高いた
め、発光源を含む回路でも、動作の高安定,高信頼性を
得ることができる。
(2) Since the thermal conductivity of the substrate is as high as 10 W · m −1 · K −1 or higher, highly stable operation and high reliability can be obtained even in a circuit including a light emitting source.

また、回路構成体の線膨張係数の考慮により、周囲温度
の変動およびその繰り返しに対しても動作の高安定,経
時的にも高信頼性を得ることができる。
Further, by considering the coefficient of linear expansion of the circuit structure, it is possible to obtain a highly stable operation and a high reliability over time even when the ambient temperature fluctuates and is repeated.

(3) 基板として、製造コストの安い多結晶体または
アモルファス体を用いたことにより、回路のコスト低減
ができる。また、それらの基板には電気回路の形成が容
易である上、光・電気集積回路の三次元化も可能であ
り、この点からも光・電気集積回路低コスト光,さらに
は小形化を達成できる。
(3) The cost of the circuit can be reduced by using a polycrystalline body or an amorphous body, which has a low manufacturing cost, as the substrate. In addition, it is easy to form an electric circuit on those substrates, and it is possible to make an optical / electrical integrated circuit three-dimensional. From this point as well, a low-cost optical / electrical integrated circuit, and further miniaturization are achieved it can.

【図面の簡単な説明】[Brief description of drawings]

第1図(a)は本発明の一実施例の光集積回路の平面
図、同図(b)は正面図である。 1……基板、2……クラツド層 3……光導波路、4……誘導体多層膜フィルタ、 5……はんだ、6……半導体レーザ、 7……光ファイバ、8……フォトダイオード、 9……電極。
1A is a plan view of an optical integrated circuit according to an embodiment of the present invention, and FIG. 1B is a front view thereof. 1 ... Substrate, 2 ... Cladding layer 3 ... Optical waveguide, 4 ... Dielectric multilayer filter, 5 ... Solder, 6 ... Semiconductor laser, 7 ... Optical fiber, 8 ... Photodiode, 9 ... electrode.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭59−127005(JP,A) 特開 昭53−50464(JP,A) 特開 昭59−146946(JP,A) 特開 昭57−84189(JP,A) ─────────────────────────────────────────────────── ─── Continuation of front page (56) Reference JP-A-59-127005 (JP, A) JP-A-53-50464 (JP, A) JP-A-59-146946 (JP, A) JP-A-57- 84189 (JP, A)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】次の三つの部分を少なくとも備えて成る光
・電気集積回路。 (1) 線膨張係数が、3.5×10-6K-1ないし9.0×10-6K
-1で、熱伝導率が10W・m-1・K-1以上であり、その表面
に電気配線の一部を設けた所の含有ガラス成分が10重量
%以下の多結晶体基板,または上記2属性を持ち、その
表面に電気配線の一部を設けた所のアモルファス体基
板。 (2) 上記(1)の基板表面に密着しその基板側と反
対側の面が光学研磨され、線膨張係数が上記(1)の基
板より大きくなく、成分のうちケイ素(SiO2)および酸
化ホウ素(B2O3)の総和が全体の60重量%以上を占めた
ガラス層。 (3) 上記(2)のガラス層表面に密着し、(2)ガ
ラス層と比較して、軟化点は低く、線膨張係数は小さ
く、ケイ素(SiO2),酸化ホウ素(B2O3),酸化バリウ
ム(BaO),酸化ニオブ(Nb2O5),酸化タンタル(Ta2O
5),酸化ランタン(La2O3),酸化亜鉛(ZnO)のう
ち、2成分以上を含み、それらの総和が全体の60重量%
以上である光導波路層。
1. An optical / electrical integrated circuit comprising at least the following three parts. (1) The coefficient of linear expansion is 3.5 × 10 -6 K -1 to 9.0 × 10 -6 K
-1, with a thermal conductivity of 10 W · m −1 · K −1 or more and a glass substrate content of 10% by weight or less on the surface where a part of electric wiring is provided, or Amorphous substrate with two attributes and a part of electrical wiring on its surface. (2) The surface of the substrate of the above (1) is closely adhered and the surface opposite to the substrate side is optically polished, the coefficient of linear expansion is not larger than that of the substrate of the above (1), and silicon (SiO 2 ) and oxidation A glass layer in which the total amount of boron (B 2 O 3 ) accounts for 60% by weight or more of the total. (3) It adheres to the glass layer surface of (2) above, has a lower softening point, a smaller linear expansion coefficient, and silicon (SiO 2 ), boron oxide (B 2 O 3 ) than the glass layer of (2). , Barium oxide (BaO), niobium oxide (Nb 2 O 5 ), tantalum oxide (Ta 2 O
5 ), lanthanum oxide (La 2 O 3 ) and zinc oxide (ZnO) contain two or more components, the total of which is 60% by weight of the total.
The above is an optical waveguide layer.
【請求項2】上記基板(1)として、線膨張係数が、3.
5×10-6K-1ないし9.0×10-6K-1で、熱伝導率が10W.m-1
・K-1以上であり、その表面の一部に絶縁膜を形成し、
その絶縁膜上に電気配線の一部を設けた所の多結晶体ま
たはアモルファス体基板を用いた特許請求の範囲第1項
記載の光・電気集積回路。
2. The substrate (1) has a linear expansion coefficient of 3.
5 × 10 -6 K -1 to 9.0 × 10 -6 K -1 with thermal conductivity of 10 W.m -1
・ K -1 or more, and an insulating film is formed on a part of its surface,
The optical / electrical integrated circuit according to claim 1, wherein a polycrystalline or amorphous substrate provided with a part of electric wiring on the insulating film is used.
JP62104252A 1987-04-30 1987-04-30 Optical / electrical integrated circuit Expired - Lifetime JPH0715527B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62104252A JPH0715527B2 (en) 1987-04-30 1987-04-30 Optical / electrical integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62104252A JPH0715527B2 (en) 1987-04-30 1987-04-30 Optical / electrical integrated circuit

Publications (2)

Publication Number Publication Date
JPS63271207A JPS63271207A (en) 1988-11-09
JPH0715527B2 true JPH0715527B2 (en) 1995-02-22

Family

ID=14375742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62104252A Expired - Lifetime JPH0715527B2 (en) 1987-04-30 1987-04-30 Optical / electrical integrated circuit

Country Status (1)

Country Link
JP (1) JPH0715527B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2619198B2 (en) * 1993-06-17 1997-06-11 沖電気工業株式会社 Mounting structure of optical waveguide substrate in optical switch module
JP5835401B2 (en) * 2014-05-16 2015-12-24 住友ベークライト株式会社 Prepreg, circuit board and semiconductor device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4070516A (en) * 1976-10-18 1978-01-24 International Business Machines Corporation Multilayer module having optical channels therein
JPS5784189A (en) * 1980-11-14 1982-05-26 Nec Corp Hybrid integrated optical circuit
JPS59127005A (en) * 1983-01-11 1984-07-21 Nec Corp Manufacture of light guide
JPS59146946A (en) * 1983-02-04 1984-08-23 Hoya Corp Manufacture of slab-shaped lens having refractive index gradient only in thickness direction

Also Published As

Publication number Publication date
JPS63271207A (en) 1988-11-09

Similar Documents

Publication Publication Date Title
JP2651509B2 (en) Optoelectronic device having optical waveguide on metallized substrate and method of forming the optical waveguide
US3880630A (en) Method for forming optical waveguides
EP0304709B1 (en) Waveguide type optical device
WO1999012062A1 (en) Integrated optical polariser
JPS60239342A (en) Low expandable alkali-free borosilicate glass useful for photomask
JP3388453B2 (en) Glass for support of X-ray mask or X-ray mask material, X-ray mask material and X-ray mask
US6542685B1 (en) Temperature insensitive optical waveguides and optical devices using the same
JP2003279749A (en) Polarizing glass
JPH05304306A (en) Electrooptic module and manufacture thereof
JPH0715527B2 (en) Optical / electrical integrated circuit
US5261022A (en) Optical waveguide of silica glass film on ceramic substrate
JPH06222229A (en) Optical waveguide element and its manufacture
JPH06110091A (en) Waveguide type optical coupling circuit
JP7098666B2 (en) Composite substrate for electro-optic element and its manufacturing method
JP2004067460A (en) Glass composition
JPH0915440A (en) Production of packaging substrate for hybrid optical integration
JPH0766089B2 (en) Method for manufacturing substrate for optical surface mount circuit
JPH06214128A (en) Optical waveguide circuit
US3640738A (en) Borosilicate glass composition
JPH01201983A (en) Semiconductor laser device
JP2556206B2 (en) Method for manufacturing dielectric thin film
JP5273336B2 (en) Optical element and optical integrated device
JP2001183538A (en) Waveguide type optical device
JPH046130A (en) Production of substrate for electronic parts
JP3488844B2 (en) Semiconductor optical coupling device