JP2005070682A - Optical device and its manufacturing method - Google Patents

Optical device and its manufacturing method Download PDF

Info

Publication number
JP2005070682A
JP2005070682A JP2003303764A JP2003303764A JP2005070682A JP 2005070682 A JP2005070682 A JP 2005070682A JP 2003303764 A JP2003303764 A JP 2003303764A JP 2003303764 A JP2003303764 A JP 2003303764A JP 2005070682 A JP2005070682 A JP 2005070682A
Authority
JP
Japan
Prior art keywords
optical
optical device
substrate
optical element
metal oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003303764A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Shigeoka
義之 重岡
Michitaka Okuda
通孝 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003303764A priority Critical patent/JP2005070682A/en
Publication of JP2005070682A publication Critical patent/JP2005070682A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Polarising Elements (AREA)
  • Joining Of Glass To Other Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical device which includes an optical element and a substrate firmly adhered via a metal oxide film, which can be made small in size and easily assembled, and which has favorable insertion loss and an extinction ratio and high reliability, and to provide a method for manufacturing the device. <P>SOLUTION: The optical device having an optical element at least one face of which is adhered to a substrate is characterized in that the optical element is joined to the substrate and a metal oxide film is formed on the joined face of the optical element or the substrate. The method for manufacturing the optical device is also presented. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、基板上に配列した複数の光学素子を有する光学デバイスにおいて、該光学素子と該基板が金属酸化膜を介して接合して成る光学デバイスおよびその製造方法に関するものである。   The present invention relates to an optical device having a plurality of optical elements arranged on a substrate, and an optical device in which the optical element and the substrate are bonded via a metal oxide film, and a method for manufacturing the optical device.

近年、WDM(Wavelength Division Multiplex、波長分割多重)の多波長化により、光通信システムの高集積化が進み、そこに使用する光学デバイスの小型化に対する要求も強くなってきている。   In recent years, with the increase in wavelength of WDM (Wavelength Division Multiplex), the integration of optical communication systems has progressed, and the demand for downsizing of optical devices used therein has also increased.

光学デバイスは多くの場合、固定部材に光学素子を接合し、これらを組み合わせることにより構成されているが、この方法では、固定部材が邪魔になり光学デバイスの小型化の妨げとなっているため、固定部材を排除して、光学素子同士を接着する方法が検討されている。   In many cases, an optical device is configured by joining an optical element to a fixing member and combining them, but in this method, the fixing member becomes an obstacle and hinders downsizing of the optical device. A method of eliminating the fixing member and bonding the optical elements to each other has been studied.

光学デバイスの小型化には、光学素子の透光面同士を接合すると効果的であり、このような光学素子同士の接合において最も簡単な方法は、有機接着剤を使用して接合を行うことである。   For the miniaturization of optical devices, it is effective to join the light-transmitting surfaces of optical elements. The simplest method for joining optical elements is to use an organic adhesive. is there.

しかしながら、有機接着剤は、アウトガスがレーザーダイオードに悪影響を及ぼす上に、高出力レーザーの照射や高温高湿雰囲気下での暴露に弱く、デバイスの信頼性に欠けるといった欠点を有する。   However, the organic adhesive has disadvantages that the outgas has an adverse effect on the laser diode, is weak against high-power laser irradiation and exposure in a high-temperature and high-humidity atmosphere, and lacks device reliability.

そこで、有機接着剤を使用することなく、光学素子同士を接合する方法が望まれ、種々検討されており、例えば無機接合材として低融点ガラスや半田が挙げられる。   Therefore, a method for bonding optical elements without using an organic adhesive is desired and various studies have been made. Examples of the inorganic bonding material include low melting point glass and solder.

図3に示す従来の光学デバイス20は、光学素子26が偏光ガラス22、検光子23とビスマス置換鉄ガーネット製のファラデー回転子21を接合材25で基板24上に接合している構成が示されている。   The conventional optical device 20 shown in FIG. 3 has a configuration in which an optical element 26 is a polarizing glass 22, an analyzer 23, and a Faraday rotator 21 made of bismuth-substituted iron garnet bonded to a substrate 24 with a bonding material 25. ing.

接合材25として例えば低融点ガラスは、PbO、Bi、TeO等の低融点材料を主成分としたものであるが、接合時に軟化点よりも高温に加熱する必要があるため、軟化の際に光学素子26に施した反射防止膜と低融点ガラス25が反応してしまい、反射防止機能が損なわれるといった問題があったため、透光面同士の接合に低融点ガラスを使用するのは困難とされている。 For example, the low-melting glass as the bonding material 25 is mainly composed of a low-melting-point material such as PbO, Bi 2 O 3 , or TeO 2. At this time, the antireflective film applied to the optical element 26 and the low melting point glass 25 react with each other, and there is a problem that the antireflection function is impaired. Therefore, the low melting point glass is used for joining the light transmitting surfaces. It is considered difficult.

一方、接合材25として例えば半田を使用する場合、透光性が全く無いため透光面に直接配置することができないので、透光面の外枠に選択的メタライズを施し、メタライズ部のみに半田が介在するような接合方法が採られているが、複雑なメタライズ工程を必要とし、歩留りの低下およびコスト上昇が避け難いとされている。   On the other hand, when solder is used as the bonding material 25, for example, since there is no translucency, it cannot be placed directly on the translucent surface. Therefore, selective metallization is applied to the outer frame of the translucent surface, and only the metallized portion is soldered. However, a complicated metallization process is required, and it is difficult to avoid a decrease in yield and an increase in cost.

上記に鑑みて、近年では接合材25を一切使用しないで光学素子26同士を直接接合する方法がある(特許文献1,2参照)。   In view of the above, in recent years, there is a method of directly bonding the optical elements 26 without using any bonding material 25 (see Patent Documents 1 and 2).

この方法は、光学素子26の表面を親水化処理した後に、親水化面同士を貼り合せるもので、半導体ではSOI(Silicon On Insulator)ウエーハの製造工程で実用化されている。   In this method, the surfaces of the optical element 26 are subjected to a hydrophilic treatment, and the hydrophilic surfaces are bonded to each other. In semiconductors, this method is put into practical use in the manufacturing process of SOI (Silicon On Insulator) wafers.

図4(a)にて、ファラデー回転子1の両面に金属酸化膜5を形成し、偏光ガラス2、3の片面に金属酸化膜5を形成した後、図4(b)に示すように偏光ガラス2、3の接合面6とファラデー回転子1の両表面の接合面6が金属酸化膜5を介して接合され、光学素子30として一体化した構成を示している。   In FIG. 4A, after forming the metal oxide film 5 on both surfaces of the Faraday rotator 1 and forming the metal oxide film 5 on one surface of the polarizing glasses 2 and 3, polarization is performed as shown in FIG. 1 shows a configuration in which the joining surfaces 6 of the glasses 2 and 3 and the joining surfaces 6 on both surfaces of the Faraday rotator 1 are joined together via a metal oxide film 5 and integrated as an optical element 30.

この直接接合方法は、被接合物の形状および物性に大きく依存し、例えば、反りに関しては、曲率半径で数百m以上あることが望ましく、また、被接合物の算術平均表面粗さは、Ra=0.3nm以下であることが望ましいと言われており、さらに、被接合物間の線膨張係数の差にも大きく影響する。
特開平7−220923号公報。 特開2000−56265号公報。
This direct bonding method greatly depends on the shape and physical properties of the objects to be bonded. For example, with respect to warpage, it is desirable that the radius of curvature is several hundreds m or more, and the arithmetic average surface roughness of the objects to be bonded is Ra. = 0.3 nm or less is said to be desirable, and also greatly affects the difference in coefficient of linear expansion between objects to be joined.
JP-A-7-220923. JP 2000-56265 A.

しかしながら、上記特許文献1,2ような接合方法では、次に述べるような問題点があり、実用化が困難な状況である。   However, the joining methods as described in Patent Documents 1 and 2 have the following problems and are difficult to put into practical use.

例えば、光学デバイスで一般的に使用する光学素子の一つである鉄系ガーネット等は、厚さ方向に応力分布を有するため大きな反りを伴うことが多いという問題があった。   For example, an iron-based garnet or the like, which is one of optical elements generally used in an optical device, has a problem that it often involves a large warp because it has a stress distribution in the thickness direction.

また、偏光ガラス2,3は、ガラスに銀や銅等の金属微粒子を分散させた構造であるため算術平均表面粗さを制御することが困難であり、このような光学素子26同士を直接接合した場合、接合面6での剥離が発生しやすく密着性、耐久性は低いという問題があった。   Further, since the polarizing glasses 2 and 3 have a structure in which fine metal particles such as silver and copper are dispersed in the glass, it is difficult to control the arithmetic average surface roughness, and such optical elements 26 are directly bonded to each other. In such a case, there is a problem that peeling at the joint surface 6 is likely to occur and adhesion and durability are low.

さらに、これら光学素子26の線膨張係数は、材料によって大きく異なる場合が多く、被接合物間の線膨張係数には大きな差が生じ、このような線膨張係数の異なる材料を直接接合した場合、異種材料間に熱応力が発生し、それが接合部6に集中することによって光学歪が生じやすくなり、消光比等の光学特性を低下するという問題があった。   Furthermore, the linear expansion coefficients of these optical elements 26 are often greatly different depending on the material, and there is a large difference in the linear expansion coefficient between objects to be joined. When materials having different linear expansion coefficients are directly bonded, There is a problem that thermal stress is generated between different kinds of materials, and the optical stress is easily generated by concentrating the thermal stress on the joint portion 6, and the optical characteristics such as the extinction ratio are deteriorated.

上記に鑑みて本発明はこれらの課題を解決するためのものであり、基板上に配列した複数の光学素子を有する光学デバイスにおいて、前記光学素子と該基板が金属酸化膜を介して接合して成ることを特徴とするものである。   In view of the above, the present invention is for solving these problems. In an optical device having a plurality of optical elements arranged on a substrate, the optical element and the substrate are bonded via a metal oxide film. It is characterized by comprising.

また、前記金属酸化膜がAl、TiO、SiOから選択する1種以上であることを特徴とするものである。 Further, the metal oxide film is one or more selected from Al 2 O 3 , TiO 2 , and SiO 2 .

さらに、前記金属酸化膜の厚みが1nm以上250nm以下であることを特徴とするものである。   Furthermore, the thickness of the metal oxide film is 1 nm or more and 250 nm or less.

また、前記光学素子が偏光ガラスおよび/またはビスマス置換鉄ガーネット製ファラデー回転子であり、前記基板がガラス製であることを特徴とするものである。   The optical element is a Faraday rotator made of polarizing glass and / or bismuth-substituted iron garnet, and the substrate is made of glass.

さらに、光学デバイスにおける光学素子または基板の接合面の少なくとも一方に金属酸化膜を形成した後に接合することを特徴とするものである。   Further, the bonding is performed after forming a metal oxide film on at least one of the bonding surface of the optical element or the substrate in the optical device.

また、前記金属酸化膜を親水化処理、洗浄、乾燥する第一工程と、前記光学素子と基板を直接または水を介して接合して熱処理する第二工程からなることを特徴とするものである。   Further, the method includes a first step of hydrophilizing, cleaning, and drying the metal oxide film, and a second step of heat-treating the optical element and the substrate directly or via water. .

さらに、前記熱処理は80℃以上300℃以下の温度範囲で行なうことを特徴とするものである。   Further, the heat treatment is performed in a temperature range of 80 ° C. or higher and 300 ° C. or lower.

以上のように本発明によれば、光学素子と基板の接合が容易でかつ強固な接合強度が得られるとともに、アウトガスの発生や接合面の劣化がなく、小型で高信頼性の光デバイスを安価に提供することが可能となる。   As described above, according to the present invention, it is easy to bond an optical element and a substrate and a strong bonding strength is obtained, and there is no outgas generation or deterioration of a bonding surface, and a small and highly reliable optical device is inexpensive. Can be provided.

また、光学素子を基板上に仮固定できるため精度良い光学調整が可能となり、光学デバイスを組み立てが容易に出来る。   Further, since the optical element can be temporarily fixed on the substrate, the optical adjustment can be performed with high accuracy, and the optical device can be easily assembled.

さらに、半田等を使用する場合のように高温処理する必要がないので基板の反りの心配がないため基板を薄くすることができ、また、光軸方向の長さも短くできる。   Further, since it is not necessary to perform high temperature processing as in the case of using solder or the like, there is no fear of warping of the substrate, so that the substrate can be made thin and the length in the optical axis direction can be shortened.

本発明者等は、小型で信頼性の高い光学デバイスを安価に提供することを種々検討した結果、該光学素子と該基板が金属酸化膜を介して接合して成ることとすれば、光学素子と基板との接合強度も十分強固で確実なものとなり、また小型化にも有利であることを見出し、接合に関する諸条件を精査して本発明を完成させた。   As a result of various investigations to provide a small and highly reliable optical device at a low cost, the present inventors have determined that the optical element and the substrate are bonded via a metal oxide film. The present inventors have found that the bonding strength between the substrate and the substrate is sufficiently strong and reliable, and that it is advantageous for downsizing, and the present invention has been completed by examining various conditions relating to bonding.

以下、本発明の実施の形態を図面を参照して詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本発明の接合による光学素子と基板の接合として完成した光デバイスを示す斜視断面図である。   FIG. 1 is a perspective sectional view showing an optical device completed as a joint between an optical element and a substrate according to the present invention.

図1に示した光学デバイス10は、光学素子15同士との間にそれぞれ空隙部t、t’を設け、基板4上にほぼ平行に配列したものであり、光学素子15と基板4が金属酸化膜5を介して接合されている。   The optical device 10 shown in FIG. 1 is provided with gaps t and t ′ between the optical elements 15 and arranged almost in parallel on the substrate 4, and the optical element 15 and the substrate 4 are oxidized by metal. They are joined via the film 5.

光学素子15はファラデー回転子1、偏光ガラス2、3からなり、光学素子15または基板4上の接合面6の少なくとも一方に金属酸化膜5を形成した後に接合されている。   The optical element 15 includes a Faraday rotator 1 and polarizing glasses 2 and 3, and is bonded after forming the metal oxide film 5 on at least one of the optical element 15 or the bonding surface 6 on the substrate 4.

好ましくは光学素子15が相対する基板4、4’の接合面6の少なくとも一方に金属酸化膜5、5’をAl、TiO、SiOから選択する1種以上で形成したこととし、該金属酸化膜5、5’を単層または多層に積層することで親水化処理後の接合力を高めることができる。 Preferably, the metal oxide films 5 and 5 ′ are formed of at least one selected from Al 2 O 3 , TiO 2 and SiO 2 on at least one of the bonding surfaces 6 of the substrates 4 and 4 ′ opposed to the optical element 15. The metal oxide films 5 and 5 ′ can be laminated in a single layer or multiple layers to increase the bonding strength after the hydrophilic treatment.

基板4、4’の接合面6、6’に形成する金属酸化膜5、5’は、通常の電子ビーム蒸着法で行なうことができ、光学素子15または基板4、4’の接合面6、6’の少なくとも一方に金属酸化膜5、5’を形成した後に接合するができる。   The metal oxide films 5 and 5 ′ formed on the bonding surfaces 6 and 6 ′ of the substrates 4 and 4 ′ can be performed by a normal electron beam evaporation method, and the bonding surfaces 6 and 6 of the optical element 15 or the substrates 4 and 4 ′. Bonding can be performed after the metal oxide films 5 and 5 'are formed on at least one of 6'.

金属酸化膜層5、5’の膜厚は、単層膜または多層膜となる厚さが1nm以上250nm以下まで蒸着するのが好ましく、1nm未満では接合力が少なくなり、250nmより大きいと反りが大きくなるため密着させるのが困難になる。   The metal oxide film layers 5 and 5 ′ are preferably deposited to a thickness of 1 nm or more and 250 nm or less, so that the thickness of the single layer film or the multilayer film is less than 1 nm. Since it becomes large, it becomes difficult to adhere.

本発明の光学デバイス10を構成するファラデー回転子1をビスマス置換鉄ガーネット製、偏光ガラス2,3や基板4をガラス製とすれば、金属酸化膜5との密着性がよくなるため、信頼性が向上し、光学特性に影響を及ぼすことなく有効に機能するものとなる。   If the Faraday rotator 1 constituting the optical device 10 of the present invention is made of bismuth-substituted iron garnet and the polarizing glasses 2 and 3 and the substrate 4 are made of glass, the adhesion with the metal oxide film 5 is improved, so that the reliability is improved. It will improve and function effectively without affecting the optical properties.

次に本願の光デバイスの製造方法について説明する。   Next, the manufacturing method of the optical device of this application is demonstrated.

図2は本発明の光学デバイスの光学素子と基板が、金属酸化膜を介して接合するまでの製造方法の実施形態を示す断面斜視図である。   FIG. 2 is a cross-sectional perspective view showing an embodiment of a manufacturing method until an optical element and a substrate of an optical device of the present invention are bonded through a metal oxide film.

図2(a)に示すように、2枚の基板4、4’間に配列した複数の光学素子15が互いに空隙寸法t、t’、sで配置され、光学素子15と2枚の基板4、4’が金属酸化膜5を介して接合する構造を有している。   As shown in FIG. 2 (a), a plurality of optical elements 15 arranged between the two substrates 4, 4 ′ are arranged with gap sizes t, t ′, s, and the optical element 15 and the two substrates 4 are arranged. 4 'has a structure joined through the metal oxide film 5.

光学素子15または基板4、4’の接合面6、6’との接合は、親水化処理、洗浄、乾燥する第一工程を施した後、該光学素子15と該基板4、4’を直接または水を介して接合し、その後熱処理をする第二工程を施すことによって行なわれる。   The optical element 15 or the substrates 4 and 4 ′ are bonded to the bonding surfaces 6 and 6 ′ by performing a hydrophilic treatment, a first step of washing and drying, and then directly connecting the optical element 15 and the substrates 4 and 4 ′. Or it joins through water and performs by performing the 2nd process of heat-processing after that.

前処理工程として鏡面研磨を行ない、光学素子15または基板4、4’の接合面6、6’を好ましい算術平均表面粗さ(Ra(nm))、反り(曲率半径(m))の目標値とし、例えば対偏光ガラス2、3はRa=4nm以下、反り=70nm以上、ファラデー回転子4、4’は、Ra=3nm以下、反り=40nm以上となるように通常の湿式鏡面研磨を行ない、次に通常の湿式洗浄、さらに短波長紫外線処理(UV処理)やプラズマ処理を併用するとより効果的である。   Mirror polishing is performed as a pretreatment step, and the target values of the arithmetic average surface roughness (Ra (nm)) and warpage (curvature radius (m)) of the optical element 15 or the joint surfaces 6 and 6 ′ of the substrates 4 and 4 ′ are preferable. For example, the counter-polarizing glasses 2 and 3 are subjected to normal wet mirror polishing so that Ra = 4 nm or less, warpage = 70 nm or more, and the Faraday rotators 4 and 4 ′ are Ra = 3 nm or less and warpage = 40 nm or more. Next, it is more effective to use ordinary wet cleaning together with short-wave ultraviolet treatment (UV treatment) or plasma treatment.

第一工程として、光学素子15または基板4、4’の接合面6、6’に親水化処理を行う(ファラデー回転子1については接合面6、6’に金属酸化膜5、5’を形成した後に、洗浄、親水化処理を行なう)。   As a first step, a hydrophilic treatment is performed on the bonding surfaces 6 and 6 ′ of the optical element 15 or the substrates 4 and 4 ′ (for the Faraday rotator 1, metal oxide films 5 and 5 ′ are formed on the bonding surfaces 6 and 6 ′. After that, washing and hydrophilization are performed).

親水化処理には、半導体SOIウエーハプロセスで一般的に利用されているアンモニア過水(アンモニア水、過酸化水素水、純水の混合液)や硝酸、塩酸の希釈液もしくはこれら希釈液に過酸化水素水を添加した水溶液が有効である。   For hydrophilization treatment, ammonia perwater (a mixture of ammonia water, hydrogen peroxide water, and pure water), nitric acid, hydrochloric acid diluted solution, or these diluted solutions that are generally used in semiconductor SOI wafer processes are peroxidized. An aqueous solution to which hydrogen water is added is effective.

そして純水による洗浄を行い親水化処理液を除去し、スピンドライヤ等でむらなく乾燥することが望ましい。   Then, it is desirable that the hydrophilic treatment liquid is removed by washing with pure water and dried uniformly with a spin dryer or the like.

このようにして得られた前処理済み光学素子15または基板4、4’上の接合面6、6’の少なくとも一方に金属酸化膜5、5’を形成した後にそれぞれを密着させ、図2(b)に示すように光学素子15または基板4、4’上の接合面6、6’の少なくとも一方に金属酸化膜5、5’を形成した後に接合する。   After the metal oxide films 5 and 5 ′ are formed on at least one of the bonded surfaces 6 and 6 ′ on the pre-processed optical element 15 or the substrates 4 and 4 ′ obtained in this way, each is brought into close contact, and FIG. As shown in b), the metal oxide films 5 and 5 ′ are formed on at least one of the optical elements 15 or the bonding surfaces 6 and 6 ′ on the substrates 4 and 4 ′, and then bonded.

この場合特に水を介して接合するのが好ましく、より容易に接合することができる。   In this case, it is particularly preferable to join via water, and it can be joined more easily.

接合はレーザ光を光学素子15に対して垂直に透過させ、その消光比が最大になる角度で固定させるのがよい。   In the bonding, it is preferable that laser light is transmitted perpendicularly to the optical element 15 and fixed at an angle at which the extinction ratio is maximized.

次に第二工程として、上記の手順で接合した光学素子15と基板4、4’を数時間熱処理することで必要十分な接合力が得られ、80℃以上300℃以下程度の温度とすることが好ましい。   Next, as a second step, a necessary and sufficient bonding force is obtained by heat-treating the optical element 15 and the substrates 4 and 4 ′ bonded in the above procedure for several hours, and the temperature is set to about 80 ° C. or more and 300 ° C. or less. Is preferred.

ここで80℃未満だと接合強度が強まる効果を得ることができず、300℃を超えると光学素子15の反りが発生してくるため互いに密着が困難になる。   If the temperature is less than 80 ° C., the effect of increasing the bonding strength cannot be obtained. If the temperature exceeds 300 ° C., the optical element 15 is warped, so that it is difficult to adhere to each other.

この時、熱処理工程における昇温速度が速や過ぎると、昇温中に接合面6で剥離が発生する恐れがあり、20℃/h以下の昇温速度に設定することが望ましい。   At this time, if the heating rate in the heat treatment process is too high, peeling may occur on the bonding surface 6 during the heating, and it is desirable to set the heating rate to 20 ° C./h or less.

また、熱処理時の雰囲気は、大気中であっても問題はないが、減圧雰囲気もしくは水素を含む雰囲気であるとより望ましい。   Further, the atmosphere during the heat treatment does not matter even if it is in the air, but it is more preferable that the atmosphere is a reduced pressure atmosphere or an atmosphere containing hydrogen.

以上の工程を経て光学素子15と基板4、4’が金属酸化膜5、5’を介して接合を完結し、光学デバイス10を完成することができる。   Through the above steps, the optical element 15 and the substrates 4 and 4 ′ are completely bonded to each other through the metal oxide films 5 and 5 ′, so that the optical device 10 can be completed.

この光学デバイス10は、図2(c)に示すように、基板4、4’に配列した複数の光学素子15が空隙寸法t、t’、sをもって配置されており、ブロック状に切断して多数個切り出すこともできる(図中点線は切断部を示す)。   In this optical device 10, as shown in FIG. 2C, a plurality of optical elements 15 arranged on the substrates 4, 4 ′ are arranged with gap dimensions t, t ′, s, and cut into blocks. A large number can be cut out (dotted lines in the figure indicate cut parts).

本発明の光学デバイスの実施例とし図1の光学デバイス10の試作を行った。   As an example of the optical device of the present invention, the optical device 10 of FIG. 1 was prototyped.

複数の光学素子15を互いに空隙寸法t、t’、sをもって、基板4、4’に接合した。   The plurality of optical elements 15 were bonded to the substrates 4 and 4 ′ with gap sizes t, t ′, and s, respectively.

光学素子15は、偏光ガラス2,3が15mm×2.05mm×t0.195mmで屈折率が1.47、ファラデー回転子1が15mm×2.05mm×t0.420mmで屈折率が2.35、基板4、4’が15mm×15mm×t0.5mmで屈折率が1.5である。   The optical element 15 has a polarizing glass 2 and 3 of 15 mm × 2.05 mm × t 0.195 mm and a refractive index of 1.47, a Faraday rotator 1 of 15 mm × 2.05 mm × t 0.420 mm and a refractive index of 2.35, The substrates 4 and 4 ′ are 15 mm × 15 mm × t 0.5 mm and the refractive index is 1.5.

各光学素子15の空隙寸法t、t’が0.01mmであり、空隙寸法sが0.03mmである。   The gap dimensions t and t 'of each optical element 15 are 0.01 mm, and the gap dimension s is 0.03 mm.

各光学素子15の接合面6、6’を十分に研磨した後、各光学素子15と基板4、4’の接合面6、6’の表面上に金属酸化膜5、5’をTiO、Al、SiOにて屈折率1.5の多層積層膜(150nm)を形成した。 After sufficiently polishing the bonding surfaces 6 and 6 ′ of the optical elements 15, the metal oxide films 5 and 5 ′ are formed on the surfaces of the bonding surfaces 6 and 6 ′ of the optical elements 15 and the substrates 4 and 4 ′ with TiO 2 , A multilayer laminated film (150 nm) having a refractive index of 1.5 was formed of Al 2 O 3 and SiO 2 .

また、レーザ光が各光学素子15の接合面6以外(不図示)の面を透過し、透過面は光軸に対して垂直であり、透過面側にSiOを120nmだけ成膜している。 Further, the laser light passes through a surface other than the joint surface 6 (not shown) of each optical element 15, the transmission surface is perpendicular to the optical axis, and SiO 2 is deposited on the transmission surface side by 120 nm. .

尚、SiOの屈折率は1.45で、反射防止膜は波長1.55μmで最適化した。 The refractive index of SiO 2 was optimized at 1.45, and the antireflection film was optimized at a wavelength of 1.55 μm.

次に各光学素子15を低圧水銀灯によるUV(紫外線)処理後、純水による超音波洗浄を行なった。   Next, each optical element 15 was subjected to UV (ultraviolet) treatment with a low-pressure mercury lamp and then subjected to ultrasonic cleaning with pure water.

次に第一工程として、親水化処理としてアンモニア水:過酸化水素水:純水=1:1:4のアンモニア過水に浸漬し、純水による超音波洗浄にてアンモニア過水を洗い流し、IPA蒸気乾燥により乾燥を行なった。   Next, as a first step, as a hydrophilization treatment, ammonia water: hydrogen peroxide water: pure water = 1: 1: 4 is immersed in ammonia overwater, and the ammonia overwater is washed away by ultrasonic cleaning with pure water. Drying was performed by steam drying.

次に第二工程として、複数の偏光ガラス2、3の間に複数のファラデー回転子1を挟み、それぞれの接合面6、6’に水を介して、複数の偏光ガラス2、3と複数のファラデー回転子1を互いに空隙t、t’、sをもって基板4、4’に配置した。   Next, as a second step, the plurality of Faraday rotators 1 are sandwiched between the plurality of polarizing glasses 2 and 3, and the plurality of polarizing glasses 2 and 3 and the plurality of the plurality of polarizing glasses 2 and 6 ′ are interposed via water. The Faraday rotator 1 was disposed on the substrates 4 and 4 ′ with gaps t, t ′ and s.

この時複数の偏光ガラス2,3の偏波方向が互いに45°になるように角度調整を行い、基板4、4’に静置し、120℃、12時間、0.4気圧の水素雰囲気中で真空乾燥を行い、各光学素子15と基板4、4’との接合面6、6’からの脱水を行ない、この時昇温速度は4℃/hとした。   At this time, the angle is adjusted so that the polarization directions of the plurality of polarizing glasses 2 and 3 are 45 ° to each other, and the substrates are placed on the substrates 4 and 4 ′, and in a hydrogen atmosphere at 120 ° C. for 12 hours and 0.4 atm. Then, vacuum drying was performed to perform dehydration from the joint surfaces 6 and 6 ′ between the optical elements 15 and the substrates 4 and 4 ′. At this time, the heating rate was 4 ° C./h.

上記手順で光学デバイス10を構成し、複数の光学素子15と基板4、4’をダイシングによって0.85×1×t1.5mmのチップ状に切断し、更に小さな光学デバイス10を完成させたこの光学デバイス10の光透過方向の長さは0.85mmとすることができた。   The optical device 10 is configured according to the above procedure, and a plurality of optical elements 15 and the substrates 4 and 4 ′ are cut into chips of 0.85 × 1 × t1.5 mm by dicing to complete a smaller optical device 10. The length of the optical device 10 in the light transmission direction could be 0.85 mm.

一方、比較例として図3のように用いた光学素子26は、これらの各光学素子26の側面の一辺には金の蒸着層を設け、接合材25として半田による固定が可能になるようにし、また、基板24にはステンレス(SUS304)製平板1.05mm×3.2mm×t0.5mmを用い、表面に金メッキを行い半田付けが可能になるようにした。   On the other hand, the optical element 26 used as a comparative example as shown in FIG. 3 is provided with a gold deposition layer on one side of each optical element 26 so that the bonding material 25 can be fixed by soldering. In addition, a stainless steel (SUS304) flat plate 1.05 mm × 3.2 mm × t 0.5 mm was used for the substrate 24, and the surface was plated with gold so that soldering became possible.

上記基板24上の各部材が固定する場所に金−錫系の高温半田箔(融点:280℃)を載せ、その上に偏光ガラス22、検光子23、ファラデー回転子21を配置した。   A gold-tin high temperature solder foil (melting point: 280 ° C.) was placed on the substrate 24 where each member was fixed, and a polarizing glass 22, an analyzer 23, and a Faraday rotator 21 were placed thereon.

このとき偏光ガラス22、検光子23、ファラデー回転子21の空隙寸法はt2、t3を0.05mm間隔で配置して基板24と高周波加熱で350℃に加熱し、接合材25として半田接合して光学デバイス20を完成させた。   At this time, the gap dimensions of the polarizing glass 22, the analyzer 23, and the Faraday rotator 21 are t2 and t3 arranged at intervals of 0.05 mm, heated to 350 ° C. by high-frequency heating with the substrate 24, and soldered as a bonding material 25. The optical device 20 was completed.

この光学デバイス20の光透過方向の長さは1.05mmであったが、これは半田が光学素子26間の空隙に表面張力で充填されてしまうのを防ぐため設けられた最低限の寸法t2、t3の和に依存するものである。   The length of the optical device 20 in the light transmission direction was 1.05 mm, which is the minimum dimension t2 provided to prevent the solder from filling the gap between the optical elements 26 with surface tension. , T3.

本発明実施例と比較例の光学デバイス10、20のサンプルをそれぞれ11個作製し、それらについて光学特性(順方向挿入損失、逆方向挿入損失)を測定した。   Eleven samples of the optical devices 10 and 20 of the examples of the present invention and the comparative example were produced, and optical characteristics (forward insertion loss and reverse insertion loss) were measured.

光学特性の測定条件は、光波長λを1550nm、レーザの光出力強度を0dBmまたは1mWで行なった。 Measurement conditions of the optical characteristics was carried out optical wavelength lambda c 1550 nm, the optical output intensity of the laser at 0dBm or 1 mW.

測定系には、パワーメータとしてHewlett Packard社のHP8153A光マルチメータ、固定レーザ光源モジュールとしてHP81553SMシリーズ、光パワー・センサ・モジュールとしてHP81531Aシリーズを使用して測定を行った。   For the measurement system, measurement was performed using a Hewlett Packard HP8153A optical multimeter as a power meter, a HP81553SM series as a fixed laser light source module, and a HP81531A series as an optical power sensor module.

以上の測定条件で本発明の実施例、比較例の光学デバイスの光学特性評価結果を表1に示した。

Figure 2005070682
Table 1 shows the optical property evaluation results of the optical devices of the examples and comparative examples of the present invention under the above measurement conditions.
Figure 2005070682

これにより、本発明の実施例の11個の順方向挿入損失の平均は、0.10dBであり、逆方向挿入損失の平均は45dBであった。   Thereby, the average of 11 forward insertion losses of the Example of this invention was 0.10 dB, and the average of backward insertion loss was 45 dB.

また、比較例の11個の順方向挿入損失の平均は、0.13dBであり、逆方向挿入損失の平均は39dBであった。   Moreover, the average of 11 forward insertion losses of the comparative example was 0.13 dB, and the average of backward insertion loss was 39 dB.

比較例よりも十分に良好な光学特性を有し、それらの値も安定していることが確認できた。   It was confirmed that the optical characteristics were sufficiently better than those of the comparative examples, and those values were also stable.

以上の結果から明らかな様に、特に偏光ガラスとファラデー回転子の角度ずれが顕著に表れる逆方向挿入損失の値は、実施例の結果よりもかなり悪くなっており、また光学デバイス個々の値もばらつきが大きかった。   As is clear from the above results, the value of the reverse insertion loss in which the angular deviation between the polarizing glass and the Faraday rotator is particularly significant is considerably worse than the results of the examples, and the values of the individual optical devices are also The variation was large.

これは半田時点で偏光ガラスとファラデー回転子の角度調整がずれたためだと考えられる。   This is thought to be because the angle adjustment between the polarizing glass and the Faraday rotator shifted at the time of soldering.

また、半田を用いた光学デバイスでは大きな熱応力が生じたためにアイソレーション特性が著しく劣化した。   Also, in the optical device using solder, a large thermal stress is generated, so that the isolation characteristic is remarkably deteriorated.

また、本発明による光学デバイスでは、偏光ガラスとファラデー回転子の角度調整の精度が確保されているため、光学特性は良好でありかつ安定していることが判る。   Moreover, in the optical device according to the present invention, it is understood that the optical characteristics are good and stable because the accuracy of the angle adjustment between the polarizing glass and the Faraday rotator is ensured.

また、偏光ガラス、ファラデー回転子を基板上に密着・接合しているため、特に光透過方向での小型化が可能になった。   In addition, since the polarizing glass and the Faraday rotator are adhered and bonded to the substrate, it is possible to reduce the size particularly in the light transmission direction.

以上により、光学素子と基板が金属酸化膜を介して接合して成る光学デバイスの長期安定性が実現した。   As described above, the long-term stability of the optical device in which the optical element and the substrate are bonded via the metal oxide film is realized.

本発明の光学デバイスの一実施形態を示す断面斜視図である。It is a section perspective view showing one embodiment of the optical device of the present invention. (a)〜(d)は本発明の光学デバイスの作製方法を示す断面斜視図である。(a)-(d) is a cross-sectional perspective view which shows the preparation methods of the optical device of this invention. 従来の光学デバイスを示す断面斜視図である。It is a cross-sectional perspective view which shows the conventional optical device. (a)、(b)は従来の光学デバイスを示す断面図である。(a), (b) is sectional drawing which shows the conventional optical device.

符号の説明Explanation of symbols

1、21 ファラデー回転子
2、3、22 偏光ガラス
4、4’ ガラス基板
5、5’ 金属酸化膜
6、6’ 接合面
10、20、30 光学デバイス
15、26 光学素子
23 検光子
24 基板
25 接合材
t、t’、s、t2、t3 空隙寸法
1, 21 Faraday rotator 2, 3, 22 Polarizing glass 4, 4 ′ glass substrate 5, 5 ′ metal oxide film 6, 6 ′ bonding surface 10, 20, 30 Optical device 15, 26 Optical element 23 Analyzer 24 Substrate 25 Bonding material t, t ′, s, t2, t3

Claims (7)

基板上に配列した複数の光学素子を有する光学デバイスにおいて、前記光学素子と基板が金属酸化膜を介して接合して成ることを特徴とする光学デバイス。 An optical device having a plurality of optical elements arranged on a substrate, wherein the optical element and the substrate are bonded via a metal oxide film. 前記金属酸化膜がAl、TiO、SiOから選択する1種以上であることを特徴とする請求項1に記載の光学デバイス。 The optical device according to claim 1, wherein the metal oxide film is one or more selected from Al 2 O 3 , TiO 2 , and SiO 2 . 前記金属酸化膜の厚みが1nm以上250nm以下であることを特徴とする請求項1または2に記載の光学デバイス。 The optical device according to claim 1, wherein a thickness of the metal oxide film is 1 nm or more and 250 nm or less. 前記光学素子が偏光ガラスおよび/またはビスマス置換鉄ガーネット製ファラデー回転子であり、前記基板がガラス製であることを特徴とする請求項1ないし3のいずれかに記載の光学デバイス。 The optical device according to any one of claims 1 to 3, wherein the optical element is a Faraday rotator made of polarizing glass and / or bismuth-substituted iron garnet, and the substrate is made of glass. 請求項1〜4記載の光学デバイスにおける光学素子または基板の接合面の少なくとも一方に金属酸化膜を形成した後に接合することを特徴とする光学デバイスの製造方法。 5. A method for manufacturing an optical device, comprising: forming a metal oxide film on at least one of an optical element and a bonding surface of a substrate in the optical device according to claim 1; 前記金属酸化膜を親水化処理、洗浄、乾燥する第一工程と、前記光学素子と基板を直接または水を介して接合して熱処理する第二工程からなることを特徴とする請求項5に記載の光学デバイスの製造方法。 6. The method according to claim 5, comprising a first step of hydrophilizing, cleaning and drying the metal oxide film, and a second step of bonding the optical element and the substrate directly or through water to perform heat treatment. Optical device manufacturing method. 前記熱処理は80℃以上300℃以下の温度範囲で行なうことを特徴とする請求項6に記載の光学デバイスの製造方法。 The method of manufacturing an optical device according to claim 6, wherein the heat treatment is performed in a temperature range of 80 ° C. or more and 300 ° C. or less.
JP2003303764A 2003-08-27 2003-08-27 Optical device and its manufacturing method Withdrawn JP2005070682A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003303764A JP2005070682A (en) 2003-08-27 2003-08-27 Optical device and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003303764A JP2005070682A (en) 2003-08-27 2003-08-27 Optical device and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2005070682A true JP2005070682A (en) 2005-03-17

Family

ID=34407640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003303764A Withdrawn JP2005070682A (en) 2003-08-27 2003-08-27 Optical device and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2005070682A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009117707A (en) * 2007-11-08 2009-05-28 Mitsubishi Heavy Ind Ltd Device, and manufacturing method of device
EP1973857A4 (en) * 2006-01-06 2012-07-04 Volodymyr Petrovich Maslov Ceramic bonding of the glassy-crystalline units

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1973857A4 (en) * 2006-01-06 2012-07-04 Volodymyr Petrovich Maslov Ceramic bonding of the glassy-crystalline units
JP2009117707A (en) * 2007-11-08 2009-05-28 Mitsubishi Heavy Ind Ltd Device, and manufacturing method of device
KR101240063B1 (en) * 2007-11-08 2013-03-06 내셔날 인스티튜트 오브 어드밴스드 인더스트리얼 사이언스 앤드 테크놀로지 Device and device manufacturing method
US8936998B2 (en) 2007-11-08 2015-01-20 Mitsubishi Heavy Industries, Ltd. Manufcaturing method for room-temperature substrate bonding

Similar Documents

Publication Publication Date Title
KR100625719B1 (en) Bonded substrate, surface acoustic wave chip, and surface acoustic wave device
KR20040104694A (en) Optical isolators and methods of manufacturing using direct bonding
JP4573722B2 (en) Adhesive peeling method, optical element manufacturing method, prism manufacturing method, and prism manufactured by the manufacturing method
US20190029496A1 (en) Method for manufacturing optical unit for endoscope and endoscope
JP2004354674A (en) Optical module and its manufacture method
JP2002321947A (en) Optical device and method for producing the same
JP3277646B2 (en) Method for manufacturing optical semiconductor device
JP2005070682A (en) Optical device and its manufacturing method
US6806990B2 (en) Optical device and method for producing optical device
JP3194822B2 (en) Manufacturing method of composite substrate material
JP2003161914A (en) Optical device and method for manufacturing optical device
JP2003207744A (en) Method of manufacturing optical device, and optical device
JP4525006B2 (en) Optical waveguide module
JP4959884B2 (en) Optical device manufacturing method
JP2003270438A (en) Method for manufacturing optical device, and optical device
JP5464121B2 (en) Optical element manufacturing method
JP5138848B2 (en) Optical device manufacturing method
JP2003161913A (en) Optical device and method for manufacturing optical device
US20030127176A1 (en) Optical device, optical isolator and method for producing the same
JP2006201372A (en) Optical path conversion mirror, optical path conversion apparatus using the same, and method for manufacturing optical path conversion mirror
JP2003084130A (en) Method for manufacturing optical device and optical device
JP2003084255A (en) Optical device and method of manufacturing the same
JP2003195047A (en) Method for manufacturing optical device and optical device
JP2003227930A (en) Method for manufacturing optical device and optical device
JP4903326B2 (en) Optical device and method for manufacturing optical device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060811

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20081009