JP2527745B2 - Method for manufacturing ferromagnetic magnetoresistive element - Google Patents

Method for manufacturing ferromagnetic magnetoresistive element

Info

Publication number
JP2527745B2
JP2527745B2 JP62145358A JP14535887A JP2527745B2 JP 2527745 B2 JP2527745 B2 JP 2527745B2 JP 62145358 A JP62145358 A JP 62145358A JP 14535887 A JP14535887 A JP 14535887A JP 2527745 B2 JP2527745 B2 JP 2527745B2
Authority
JP
Japan
Prior art keywords
film
sio
magnetoresistive element
thickness
magnetic sensing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62145358A
Other languages
Japanese (ja)
Other versions
JPS63310186A (en
Inventor
一郎 柴崎
善保 杉本
Original Assignee
旭化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成工業株式会社 filed Critical 旭化成工業株式会社
Priority to JP62145358A priority Critical patent/JP2527745B2/en
Publication of JPS63310186A publication Critical patent/JPS63310186A/en
Application granted granted Critical
Publication of JP2527745B2 publication Critical patent/JP2527745B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、磁界の検出のために用いられる強磁性体磁
気抵抗素子の製造方法に関するものである。
TECHNICAL FIELD The present invention relates to a method of manufacturing a ferromagnetic magnetoresistive element used for detecting a magnetic field.

[従来の技術] 従来の磁気抵抗素子は、その断面を第4図に示すよう
に、ガラス基板1上にFe−Ni合金などからなる厚さ数百
〜数千Åの感磁部(センサー部)2,感磁部と同一材質ま
たは異なる材質からなる配線部3および外部接続用の端
子部4が設けられ、保護膜として樹脂層5が、基板1,感
磁部2,配線部3,端子部4およびリード線10を覆って設け
られていた。この様に保護膜として樹脂層を用いると、
一般に樹脂は透湿性が高いので、高温高湿度の環境下
で、素子の充分な信頼性を確保するためには、樹脂層5
を数百μm以上の厚さにする必要がある。そのために感
磁部2と被検出磁界とを充分に接近させることが不可能
となり、出力の低下が避けられず、微弱な磁界の検出が
困難であった。例えばモータの回転速度を検出・制御す
る場合、センサー部2をモータの着磁ロータに充分近づ
けることができず、そのために着磁ピッチの狭い微弱な
磁界を検出してモータの回転速度を検出・制御すること
ができなかった。
[Prior Art] A conventional magnetoresistive element has a cross section thereof as shown in FIG. 4, and a magnetic sensitive section (sensor section) made of Fe—Ni alloy or the like and having a thickness of several hundred to several thousand Å is formed on a glass substrate 1. ) 2, a wiring part 3 made of the same material as or a material different from that of the magnetic sensing part and a terminal part 4 for external connection are provided, and the resin layer 5 as a protective film includes the substrate 1, the magnetic sensing part 2, the wiring part 3, the terminal. It was provided so as to cover the portion 4 and the lead wire 10. When the resin layer is used as the protective film in this way,
Generally, the resin has a high moisture permeability, so in order to ensure sufficient reliability of the device under an environment of high temperature and high humidity, the resin layer 5
Is required to have a thickness of several hundred μm or more. Therefore, it becomes impossible to sufficiently bring the magnetic sensitive section 2 and the magnetic field to be detected close to each other, and it is inevitable that the output is lowered, and it is difficult to detect a weak magnetic field. For example, when detecting and controlling the rotation speed of the motor, the sensor unit 2 cannot be brought sufficiently close to the magnetized rotor of the motor. Therefore, a weak magnetic field with a narrow magnetization pitch is detected to detect the rotation speed of the motor. I couldn't control it.

第5図に従来の強磁性体磁気抵抗素子の他の例の断面
図を示す。この従来例では、感磁部2,配線部3および端
子部4の一部を真空蒸着法によって形成した厚さ5μm
以上のSiOまたはSiO2からなる保護膜6で覆い、樹脂8
で封止している。この従来例は、SiOまたはSiO2膜は透
湿性が至って低く、その厚さも第4図の従来例における
樹脂保護層5に比べて薄くできることを利用して、セン
サー部2と被検出磁界との距離を充分に短くし、出力の
低下を招くことなく高温高湿の環境下における素子の信
頼性を保とうとするものである。
FIG. 5 shows a sectional view of another example of the conventional ferromagnetic magnetoresistive element. In this conventional example, the magnetic sensitive portion 2, the wiring portion 3 and a part of the terminal portion 4 are formed by a vacuum deposition method and have a thickness of 5 μm.
The resin 8 is covered with the above protective film 6 made of SiO or SiO 2.
It is sealed with. In this conventional example, the moisture permeability of the SiO or SiO 2 film is extremely low, and the thickness thereof can be made thinner than that of the resin protective layer 5 in the conventional example of FIG. The objective is to make the distance sufficiently short so as to maintain the reliability of the device under a high temperature and high humidity environment without lowering the output.

しかし真空蒸着法は第6図に示すように段差部の被覆
性が悪く、保護膜6には厚さの薄い部分6Aを生じ易い。
そのための充分な耐久性を確保するためには、膜厚を5
μm以上にする必要がある。しかし厚さ5μm以上もの
SiO膜またはSiO2膜を形成すると、膜にクラックが生じ
易くなり、必ずしも充分な耐久性を得ることはできなか
った。
However, the vacuum deposition method has a poor step coverage as shown in FIG. 6, and a thin portion 6A is likely to be formed on the protective film 6.
In order to secure sufficient durability for that, the film thickness should be 5
It must be at least μm. However, a thickness of 5 μm or more
When the SiO film or the SiO 2 film is formed, cracks are easily generated in the film, and sufficient durability cannot always be obtained.

[発明が解決しようとする問題点] 本発明は、従来のこのような欠点を解消し、薄く、し
かも耐久性の優れた保護膜を有する強磁性体磁気抵抗素
子を提供することを目的とする。
[Problems to be Solved by the Invention] An object of the present invention is to provide a ferromagnetic magnetoresistive element having a protective film which is thin and has excellent durability, which solves the above-mentioned conventional drawbacks. .

[問題点を解決するための手段] かかる目的を達成するために、本発明は、絶縁性基板
上に所定の形状および寸法の感磁部、配線部および端子
部を形成し、感磁部および配線部の全面と、前記端子部
の所要の部位に、SiO2層およびSiON層のうちの一種をプ
ラズマCVD法によって0.5〜4μmの膜厚で直接形成する
ことを特徴とする。
[Means for Solving the Problems] In order to achieve such an object, the present invention forms a magnetic sensing part, a wiring part and a terminal part of a predetermined shape and size on an insulating substrate, One of the SiO 2 layer and the SiON layer is directly formed in a thickness of 0.5 to 4 μm on the entire surface of the wiring portion and a required portion of the terminal portion by a plasma CVD method.

さらに、本発明は、絶縁性基板上に所定の形状および
寸法の感磁部、配線部および端子部を形成し、感磁部お
よび配線部の全面と、前記端子部の所要の部位に、SiO2
層およびSiON層のうちの一種をプラズマCVD法によって
0.5〜4μmの膜厚で直接形成し、さらに絶縁性無機薄
膜および耐熱性高分子薄膜の少なくとも1種を形成する
ことを特徴とする。
Further, according to the present invention, a magnetic sensing part, a wiring part and a terminal part having a predetermined shape and dimensions are formed on an insulating substrate, and the entire surface of the magnetic sensing part and the wiring part and a desired part of the terminal part are covered with SiO 2. 2
Layer and SiON layer by plasma CVD method
It is characterized in that it is directly formed with a film thickness of 0.5 to 4 μm, and at least one of an insulating inorganic thin film and a heat resistant polymer thin film is further formed.

[作用] 本発明によれば、プラズマCVD法によってSiO2またはS
iON保護膜を形成する。SiO2およびSiONは感磁部を構成
する強磁性体材料との密着が良好で、高温高湿の環境下
における素子の耐久性を高める役割りを果たす。さらに
プラズマCVD法によって膜を形成すると、真空蒸着法に
よる膜より段差部の被覆性がすぐれており、薄い膜厚で
耐久性を確保できる。さらに膜厚が薄いので、内部応力
が小さく、クラックの発生がないので、クラックによる
耐久性の劣化がない。
[Operation] According to the present invention, SiO 2 or S is formed by the plasma CVD method.
iON protective film is formed. SiO 2 and SiON have good adhesion to the ferromagnetic material forming the magnetically sensitive portion, and play a role of enhancing the durability of the device under a high temperature and high humidity environment. Further, when the film is formed by the plasma CVD method, the step coverage is superior to that of the film formed by the vacuum deposition method, and the durability can be secured with a thin film thickness. Further, since the film thickness is thin, the internal stress is small and no cracks occur, so that the durability is not deteriorated by the cracks.

さらにプラズマCVD法によるSiO2膜またはSiON膜上に
絶縁性無機物薄膜,耐熱性高分子薄膜を形成して、実装
時におけるこすり強度等を高めることもできる。
Furthermore, an insulating inorganic thin film and a heat-resistant polymer thin film can be formed on the SiO 2 film or SiON film by the plasma CVD method to enhance the rubbing strength at the time of mounting.

[実施例] 以下に図面を参照して本発明の実施例を説明する。Embodiment An embodiment of the present invention will be described below with reference to the drawings.

第1図に本発明によって作製した強磁性体磁気抵抗素
子の一例の断面図を示す。
FIG. 1 shows a sectional view of an example of a ferromagnetic magnetoresistive element manufactured according to the present invention.

ガラス基板1上に所望の形状,寸法の感磁部2,配線部
3および端子部4を形成した。これら各部を形成する材
料は、従来用いられているいかなる材料でも良く、制限
を受けない。これら各部の形成法は、スパッタ法,めっ
き法その他任意の方法を用いることができる。
A magnetic sensitive part 2, a wiring part 3 and a terminal part 4 having a desired shape and size were formed on a glass substrate 1. The material forming each of these portions may be any conventionally used material and is not limited. As a method for forming each of these portions, a sputtering method, a plating method, or any other method can be used.

次に感磁部2,配線部3の全面および端子部4の所定部
分を覆うように、プラズマCVD法によってSiO2膜7を形
成した。SiO2の成膜条件は以下の通りとした。
Next, a SiO 2 film 7 was formed by a plasma CVD method so as to cover the entire surface of the magnetic sensing portion 2, the wiring portion 3 and a predetermined portion of the terminal portion 4. The SiO 2 film forming conditions were as follows.

基板温度 250℃ 圧力 47Pa 反応ガスと流量 N2で80vol%に希釈したN2Oを1800SCCM N2で20vol%に希釈したSiH4を250SCCM 次に端子部4にリード線10を接続し、最後にエポキシ
系樹脂8によって接続部をモールドした。
Connect the substrate temperature 250 ° C. Pressure 47Pa reactive gas and the flow rate N 2 leads 10 N 2 O diluted to 80 vol% of SiH 4 diluted to 20 vol% at 1800 sccm N 2 250 SCCM next terminal unit 4, finally The connection part was molded with the epoxy resin 8.

プラズマCVD法によって形成したSiO2保護膜は、第2
図にその断面を示すように、段差部の被覆性にすぐれ、
形成された保護膜7の厚さは、平坦部と段差部とで大き
な差がない。そのために保護層の厚さを薄くしても、下
地である感磁部,配線部に対する保護機能が高い。
The SiO 2 protective film formed by the plasma CVD method is the second
As shown in the cross section in the figure, the step coverage is excellent,
The thickness of the formed protective film 7 is not so different between the flat portion and the step portion. Therefore, even if the thickness of the protective layer is reduced, the protective function for the magnetic sensitive portion and the wiring portion, which are the base, is high.

SiO2膜に替え、保護膜として酸素の一部を窒素で置換
したSiON膜をプラズマCVD法によって形成してもよい。
Instead of the SiO 2 film, a SiON film in which a part of oxygen is replaced with nitrogen may be formed as a protective film by the plasma CVD method.

この場合には反応ガスとして、SiH4/N2 900SCCM,NH3
200SCCM,N2 500SCCM,N2O 400SCCMとする。
In this case, the reaction gas is SiH 4 / N 2 900SCCM, NH 3
200SCCM, N 2 500SCCM, N 2 O 400SCCM.

形成されたSiON膜の段差部の被覆機能はSiO2膜と同様
である。
The function of covering the stepped portion of the formed SiON film is similar to that of the SiO 2 film.

第1表に本発明によって作製した素子と従来の蒸着法
による素子の85℃,相対湿度85%環境下における5V通電
1000時間後の耐久試験結果を比較して示した。
Table 1 shows the device manufactured by the present invention and the device manufactured by the conventional vapor deposition method at 5 V under the environment of 85 ° C and relative humidity of 85%.
The endurance test results after 1000 hours are compared and shown.

第1表に示した結果は100素子の平均値とばらつきで
ある。表に見られるように、本発明による素子は、従来
法に比べ、抵抗値変化で1/40以下、中点電位変化で1/10
以下とすぐれた耐久性を示している。
The results shown in Table 1 are the average values and variations of 100 elements. As can be seen from the table, the element according to the present invention has a resistance change of 1/40 or less and a midpoint potential change of 1/10 as compared with the conventional method.
It shows excellent durability as follows.

プラズマCVD法によるSiO2膜またはSiON膜の膜厚が0.5
μmに満たないと充分な耐久性は確保できない。また逆
に膜厚が4μmを越えると内部応力が大きくなり、SiO2
膜にクラックが発生し易く、素子に対する保護機能,素
子作製の歩留りの両者が共に低下する。従ってプラズマ
CVD法によるSiO2膜およびSiON膜の最適な膜厚は0.5〜4
μmである。
The thickness of SiO 2 film or SiON film by plasma CVD is 0.5
If it is less than μm, sufficient durability cannot be secured. On the other hand, if the film thickness exceeds 4 μm, the internal stress increases and SiO 2
The film is likely to be cracked, and both the protective function for the device and the yield of device fabrication are reduced. Therefore plasma
The optimum film thickness of SiO 2 film and SiON film by the CVD method is 0.5 to 4
μm.

第3図に本発明の他の実施例を示す。本実施例はプラ
ズマCVD法によるSiO2膜7の上に、さらに厚さ1〜数μ
mのアルコラート系絶縁膜9をコーティングした構造と
なっている。このように多層膜構造にすることによっ
て、素子の耐湿性以外に、感磁部表面のこすり等に対す
る機械的強度を向上させることができる。アルコラート
系膜に替えてポリイミドなどの耐熱性の高分子薄膜を形
成しても、機械的強度を向上させることができる。
FIG. 3 shows another embodiment of the present invention. In this embodiment, a thickness of 1 to several μ is further formed on the SiO 2 film 7 formed by the plasma CVD method.
It has a structure coated with an alcoholate insulating film 9 of m. With such a multilayer film structure, in addition to the moisture resistance of the element, it is possible to improve mechanical strength against rubbing or the like on the surface of the magnetic sensing part. Even if a heat-resistant polymer thin film such as polyimide is formed instead of the alcoholate-based film, the mechanical strength can be improved.

[発明の効果] 以上説明したように、本発明によれば、強磁性体磁気
抵抗素子の感磁部と配線部の全面および端子部の所要部
位を0.5〜4μmのプラズマCVD法によるSiO2またはSiON
で覆うことにより、素子の耐久性を大幅に向上させると
いう効果がある。また、膜厚が薄いので膜形成時間が短
く、生産性が高い。
[Effects of the Invention] As described above, according to the present invention, the entire surface of the magneto-sensitive part and the wiring part of the ferromagnetic magnetoresistive element and the required part of the terminal part are covered with SiO 2 by the plasma CVD method of 0.5 to 4 μm. SiON
By covering with, there is an effect that the durability of the element is significantly improved. Further, since the film thickness is thin, the film formation time is short and the productivity is high.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例による強磁性体磁気抵抗素子の
断面図、 第2図は本発明によるプラズマCVD SiO2膜の段差部の被
覆状況を示す断面図、 第3図は本発明の他の実施例における強磁性体磁気抵抗
素子の断面図、 第4図は保護膜として樹脂を用いた場合の従来例の断面
図、 第5図は保護膜として蒸着によるSiOまたはSiO2を用い
た場合の従来例の断面図、 第6図は従来の真空蒸着法による段差部の被覆状況を示
す断面図である。 1……ガラス基板、2……感磁部、3……配線部、4…
…端子部、5……保護膜(樹脂)、6……保護膜(蒸着
SiOまたはSiO2)、7……保護膜、8……モールド樹
脂、9……アルコラート系コーティング膜、10……リー
ド線。
FIG. 1 is a sectional view of a ferromagnetic magnetoresistive element according to an embodiment of the present invention, FIG. 2 is a sectional view showing a state of coating a step portion of a plasma CVD SiO 2 film according to the present invention, and FIG. 3 is a sectional view of the present invention. FIG. 4 is a cross-sectional view of a ferromagnetic magnetoresistive element in another embodiment, FIG. 4 is a cross-sectional view of a conventional example when a resin is used as a protective film, and FIG. 5 is a protective film made of vapor-deposited SiO or SiO 2 . FIG. 6 is a cross-sectional view of a conventional example of the case, and FIG. 6 is a cross-sectional view showing a covering state of a step portion by a conventional vacuum deposition method. 1 ... Glass substrate, 2 ... Magnetic sensitive part, 3 ... Wiring part, 4 ...
… Terminal part, 5 …… Protective film (resin), 6 …… Protective film (vapor deposition)
SiO or SiO 2 ), 7 ... Protective film, 8 ... Mold resin, 9 ... Alcolate coating film, 10 ... Lead wire.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】絶縁性基板上に所定の形状および寸法の感
磁部、配線部および端子部を形成し、感磁部および配線
部の全面と、前記端子部の所要の部位に、SiO2層および
SiON層のうちの一種をプラズマCVD法によって0.5〜4μ
mの膜厚で直接形成することを特徴とする強磁性体磁気
抵抗素子の製造方法。
1. A magnetic sensing part, a wiring part, and a terminal part having a predetermined shape and dimensions are formed on an insulating substrate, and SiO 2 is formed on the entire surface of the magnetic sensing part and the wiring part and a desired part of the terminal part. Layers and
0.5 ~ 4μ of one kind of SiON layer by plasma CVD method
A method of manufacturing a ferromagnetic magnetoresistive element, which comprises directly forming a film having a thickness of m.
【請求項2】絶縁性基板上に所定の形状および寸法の感
磁部、配線部および端子部を形成し、感磁部および配線
部の全面と、前記端子部の所要の部位に、SiO2層および
SiON層のうちの一種をプラズマCVD法によって0.5〜4μ
mの膜厚で直接形成し、さらに絶縁性無機薄膜および耐
熱性高分子薄膜の少なくとも1種を形成することを特徴
とする強磁性体磁気抵抗素子の製造方法。
2. A magnetic sensing part, a wiring part and a terminal part having a predetermined shape and dimensions are formed on an insulating substrate, and SiO 2 is formed on the entire surface of the magnetic sensing part and the wiring part and a required part of the terminal part. Layers and
0.5 ~ 4μ of one kind of SiON layer by plasma CVD method
A method of manufacturing a ferromagnetic magnetoresistive element, which comprises directly forming a film having a thickness of m and further forming at least one of an insulating inorganic thin film and a heat-resistant polymer thin film.
JP62145358A 1987-06-12 1987-06-12 Method for manufacturing ferromagnetic magnetoresistive element Expired - Lifetime JP2527745B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62145358A JP2527745B2 (en) 1987-06-12 1987-06-12 Method for manufacturing ferromagnetic magnetoresistive element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62145358A JP2527745B2 (en) 1987-06-12 1987-06-12 Method for manufacturing ferromagnetic magnetoresistive element

Publications (2)

Publication Number Publication Date
JPS63310186A JPS63310186A (en) 1988-12-19
JP2527745B2 true JP2527745B2 (en) 1996-08-28

Family

ID=15383346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62145358A Expired - Lifetime JP2527745B2 (en) 1987-06-12 1987-06-12 Method for manufacturing ferromagnetic magnetoresistive element

Country Status (1)

Country Link
JP (1) JP2527745B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0438485A (en) * 1990-06-01 1992-02-07 Matsushita Electric Ind Co Ltd Magnetic sensor
JP2836474B2 (en) * 1993-12-15 1998-12-14 日本電気株式会社 Magnetoresistive element and manufacturing method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60257582A (en) * 1984-06-04 1985-12-19 Nippon Denso Co Ltd Magnetoresistive device
JPS62128578A (en) * 1985-11-29 1987-06-10 Asahi Chem Ind Co Ltd Ferromagnetic magnetoresistance element and manufacture of the same
JPS6319886A (en) * 1986-07-11 1988-01-27 Nippon Denso Co Ltd Magnetro resistance element

Also Published As

Publication number Publication date
JPS63310186A (en) 1988-12-19

Similar Documents

Publication Publication Date Title
JP3626469B2 (en) Magnetoresistive sensor device
US7675286B2 (en) Magnetoresistive sensor device
JPH0758270B2 (en) Method for manufacturing moisture sensitive element
JP2527745B2 (en) Method for manufacturing ferromagnetic magnetoresistive element
US5543775A (en) Thin-film measurement resistor and process for producing same
EP1536490A1 (en) Magnetoresistance effect element and production method and application method therefor
JP2005227134A (en) Magnetic sensor
CN88102279A (en) Aluminium titanium film resistor temperature sensor and preparation method
JP3385087B2 (en) Pt thin film integrated with substrate, thin film heater using the same, temperature detecting element and gas sensor
JPS63313880A (en) Ferromagnetic substance magnetic sensor
US5916694A (en) Magneto-resistance element
JPS62222137A (en) Diaphragm for pressure sensor
JP2001057358A (en) Method of fabricating sensor with thin film
JP3756373B2 (en) Protective film for insulating substrate, thin film laminate, and thin film sensor
JPS63310187A (en) Manufacture of ferromagnetic magneto resistance element
JPH0435076A (en) Magnetoresistance element and manufacture thereof
JP3047553B2 (en) Magnetoresistive element
JP3239505B2 (en) Mounting method of thin film sensor
JPS61233382A (en) Protective film for magneto-resistance sensor
JP3588952B2 (en) Semiconductor thin film magnetoresistive element
JPH08116108A (en) Magnetic type sensor
WO2023139807A1 (en) Strain gauge
JPH0590660A (en) Magneto-resistance element
JPH05335653A (en) Magnetic resistance element
JPH0371795B2 (en)