JPS6319886A - Magnetro resistance element - Google Patents

Magnetro resistance element

Info

Publication number
JPS6319886A
JPS6319886A JP61164314A JP16431486A JPS6319886A JP S6319886 A JPS6319886 A JP S6319886A JP 61164314 A JP61164314 A JP 61164314A JP 16431486 A JP16431486 A JP 16431486A JP S6319886 A JPS6319886 A JP S6319886A
Authority
JP
Japan
Prior art keywords
film
thin film
insulating film
insulating
magnetically sensitive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61164314A
Other languages
Japanese (ja)
Inventor
Yoshi Yoshino
吉野 好
Kenichi Ao
建一 青
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP61164314A priority Critical patent/JPS6319886A/en
Publication of JPS6319886A publication Critical patent/JPS6319886A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices

Landscapes

  • Hall/Mr Elements (AREA)

Abstract

PURPOSE:To prevent the oxidation of and damage to a magnetosensitive thin film and to improve the reliability of the title element by a method wherein a first insulating film formed by sputtering and a second insulating film formed by a CVD method are provided on the magnetosensitive thin film. CONSTITUTION:A magnetosensitive thin film 2 consisting of Ni-Fe, Ni-Co and so on is formed on an insulating substrate 1 and an Si oxide film 4 is formed on the surfaces of the magnetosensitive thin film 2 and the insulating substrate 1. Subsequently, an Si nitride film 5 is formed on the Si oxide film 4 by a plasma CVD method. Thereby, the Si oxide film 4 formed by sputtering is used as a film to directly protect the magnetosensitive thin film 2 and as the film is formed in a vacuum, the magnetosensitive thin film 2 is not oxidized and even through fine pinholes which are defect remains in the Si oxide film 4, the Si nitride film 5 which is formed thereon has little defect since it is formed by a plasma CVD method and the pinholes can be filled.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、感磁性薄膜を用いた磁気抵抗素子の保護膜に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a protective film for a magnetoresistive element using a magnetically sensitive thin film.

〔従来の技術〕[Conventional technology]

一般に感磁性薄膜を用いた磁気抵抗素子は、その断面図
を第4図に示すように、絶縁基板1上に真空蒸着、スパ
ッタリング等によりN i −F e、Ni−Co等の
薄膜を形成し、その薄膜を所望のパターンにエツチング
して感磁性薄膜2を形成している。ここで、Ni−Fe
、Ni−Co等の薄膜は非常に活性であるために酸化さ
れ易く、又、傷が付き易いものである。従って、感磁性
薄膜2の保護膜が必要であるが、従来ではその保護膜と
して例えばPIQ等の有機材料3を用いている。
Generally, a magnetoresistive element using a magnetically sensitive thin film is produced by forming a thin film of Ni-Fe, Ni-Co, etc. on an insulating substrate 1 by vacuum evaporation, sputtering, etc., as shown in the cross-sectional view of FIG. The magnetically sensitive thin film 2 is formed by etching the thin film into a desired pattern. Here, Ni-Fe
, Ni--Co, etc. are very active and therefore easily oxidized and easily scratched. Therefore, a protective film for the magnetically sensitive thin film 2 is required, and conventionally, an organic material 3 such as PIQ is used as the protective film.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、保護膜として有機材料を用いた場合、有
機材料は表面が柔らかいために感磁性薄膜2表面に傷が
付き易く、又、これを硬化させる際に高温ヘーキング処
理を必要とするために惑Eit性コ膜が酸化してしまう
という問題がある。
However, when an organic material is used as a protective film, the surface of the magnetically sensitive thin film 2 is easily scratched because the organic material has a soft surface, and it is difficult to use because it requires high-temperature haking treatment when hardening the organic material. There is a problem that the sexual membrane becomes oxidized.

そこで本発明は、保護膜を改良する事により感磁性薄膜
の酸化、損傷を防止し、信頼性の高い磁気抵抗素子を提
供する事を目的としている。
Therefore, an object of the present invention is to prevent oxidation and damage to the magnetically sensitive thin film by improving the protective film, and to provide a highly reliable magnetoresistive element.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

上記の目的を達成する為に本発明の磁気抵抗素子は基板
と、該基板上に形成された感磁性薄膜と、少なくとも該
恣磁性薄膜上にスパッタリング処理により形成された第
1の絶縁膜と、該第1の絶縁膜上にCVD処理により形
成された第2の絶縁膜とを備える事を特徴としている。
In order to achieve the above object, the magnetoresistive element of the present invention includes a substrate, a magnetically sensitive thin film formed on the substrate, a first insulating film formed at least on the magnetically sensitive thin film by sputtering treatment, It is characterized by comprising a second insulating film formed by CVD treatment on the first insulating film.

〔作用〕[Effect]

そして、上記の手段によると、スパッタリング処理によ
って第1の絶縁膜を形成するので感磁性薄膜の酸化を防
止できる。ここで、スパッタリング処理によって形成す
ると無欠陥の絶縁膜を得る事は困難であるが、たとえ第
1の絶縁膜に欠陥である微小のピンホールが残存したと
しても、CVD処理により形成される欠陥の少ない第2
の絶縁膜をその上に形成する事によって、そのピンホー
ルを埋める事ができる。又、第2の絶縁膜は比較的硬質
であるので感磁性薄膜の損傷を防止できる。
According to the above means, since the first insulating film is formed by sputtering treatment, oxidation of the magnetically sensitive thin film can be prevented. Here, it is difficult to obtain a defect-free insulating film when formed by sputtering, but even if tiny pinholes, which are defects, remain in the first insulating film, the defects formed by CVD may be removed. less second
The pinhole can be filled by forming an insulating film on top of it. Furthermore, since the second insulating film is relatively hard, damage to the magnetically sensitive thin film can be prevented.

〔実施例〕〔Example〕

以下、本発明を図面に示す実施例を用いて説明する。第
1図は本発明の一実施例の断面図である。
Hereinafter, the present invention will be explained using embodiments shown in the drawings. FIG. 1 is a sectional view of an embodiment of the present invention.

図において、1は絶′4&基板であり、その上に真空蒸
着、スパッタリング等によりNt  F e % N 
1−Co等よりなる感磁性薄膜2を従来技術と同様にし
て形成する。そして、感磁性薄膜2及び絶縁基板1の表
面上にスパッタリング処理により形成され、その膜厚が
0.3μm以上のシリコン酸化膜4を形成する。引続き
そのシリコン酸化膜4上にプラズマCVD処理により形
成され、その膜厚が0.5〜2.5μmのシリコン窒化
膜5を形成する。
In the figure, reference numeral 1 denotes a substrate, on which NtFe%N is deposited by vacuum evaporation, sputtering, etc.
A magnetically sensitive thin film 2 made of 1-Co or the like is formed in the same manner as in the prior art. Then, a silicon oxide film 4 having a thickness of 0.3 μm or more is formed on the surfaces of the magnetically sensitive thin film 2 and the insulating substrate 1 by sputtering. Subsequently, a silicon nitride film 5 having a thickness of 0.5 to 2.5 μm is formed on the silicon oxide film 4 by plasma CVD processing.

そこで上記構成によると、感Ii性薄膜2を直接保護す
る膜としてスパッタリング処理により形成されたシリコ
ン酸化膜4を使用している事から、その膜は真空中にて
形成されるので、感磁性薄膜2が酸化する事がなくなる
。又、シリコン酸化膜4に欠陥である微小のピンホール
が残存したとしても、その上に形成されるシリコン窒化
膜5はプラズマCVD処理により形成された膜であり、
その膜は欠陥が少なく、そのピンホールを埋める事がで
きる。又、プラズマCVD処理によって形成された膜は
比較的硬質であり、!li性薄膜2の損傷を防止できる
Therefore, according to the above structure, since the silicon oxide film 4 formed by sputtering is used as a film to directly protect the Ii-sensitive thin film 2, the film is formed in a vacuum, so the magnetically sensitive thin film 2 is 2 will not be oxidized. Further, even if a minute pinhole, which is a defect, remains in the silicon oxide film 4, the silicon nitride film 5 formed thereon is a film formed by plasma CVD processing,
The film has fewer defects and can fill in the pinholes. Also, the film formed by plasma CVD treatment is relatively hard! Damage to the Li thin film 2 can be prevented.

ここで、第2図に示す膜厚とクラック発生率との関係図
かられかるように、シリコン酸化膜4上にシリコン窒化
膜5を形成した場合、シリコン酸化膜4の膜厚が0.3
μmより小さくなるとクランクが生じる可能性があるが
、本例においてはその膜厚が0.3μm以上であるので
クラックが生じる事がなくなる。
Here, as can be seen from the relationship diagram between film thickness and crack occurrence rate shown in FIG. 2, when silicon nitride film 5 is formed on silicon oxide film 4, the film thickness of silicon oxide film 4 is 0.3
If the thickness is less than .mu.m, cracks may occur, but in this example, since the film thickness is 0.3 .mu.m or more, cracks will not occur.

又、シリコン窒化膜5の膜厚においては、第3図に示す
膜厚とピンホール数との関係図かられかるように、シリ
コン窒化膜5の膜厚が0.5μmより小さいとシリコン
酸化膜4に残存するピンホールを充分に埋める事ができ
ない。又、その膜厚が2.5μmより大きいとシリコン
窒化膜5の表面にクラックが生じて保護膜として使用で
きなくなるが、本例においてはその膜厚が0.5〜2.
5μmの範囲内であるのでそのような不具合を解消でき
る。
Regarding the thickness of the silicon nitride film 5, as can be seen from the relationship diagram between the film thickness and the number of pinholes shown in FIG. The remaining pinholes in 4 cannot be filled sufficiently. If the film thickness is greater than 2.5 μm, cracks will occur on the surface of the silicon nitride film 5, making it unusable as a protective film, but in this example, the film thickness is 0.5 to 2.5 μm.
Since it is within the range of 5 μm, such problems can be eliminated.

尚、本発明は上記実施例に限定される事なく、その主旨
から逸脱しない限り、例えば以下に示す如(種々変形可
能である。
It should be noted that the present invention is not limited to the above embodiments, and can be modified in various ways, for example as shown below, without departing from the spirit thereof.

f11本発明のいう第1の絶縁膜としては、スパッタリ
ング処理により形成されておればよく、シリコン酸化膜
4に限定される事なく、例えばシリコン窒化膜等であっ
てもよい。同様に第2の絶縁膜としては、CVD処理に
より形成されておればよく、プラズマCVD処理により
形成されるシリコン窒化膜5に限定される事なく、例え
ばシリコン酸化膜等であってもよい。
f11 The first insulating film referred to in the present invention may be formed by a sputtering process, and is not limited to the silicon oxide film 4, and may be, for example, a silicon nitride film. Similarly, the second insulating film may be formed by CVD processing, and is not limited to the silicon nitride film 5 formed by plasma CVD processing, and may be, for example, a silicon oxide film.

(2)感磁性薄膜としては上記実施例に示すNi −F
ex Ni−Co等の強磁性薄膜に限定される事なく、
InSb、MnB1.、Gd−Fe、YIG等のガーネ
ット等の多結晶薄膜、あるいは、Gd−Co、Tb−F
e、Co−Cr等のアモルファスの薄膜等であっても上
記実施例と同様の効果が得られる。
(2) The magnetically sensitive thin film is Ni-F shown in the above example.
Not limited to ferromagnetic thin films such as ex Ni-Co,
InSb, MnB1. , Gd-Fe, YIG, etc., polycrystalline thin films such as garnet, or Gd-Co, Tb-F
Even with an amorphous thin film such as e, Co--Cr, etc., the same effects as in the above embodiments can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によれば惑(fl性薄膜をス
パッタリング処理により形成された第1の絶縁膜及びC
VD処理により形成された第2の絶縁膜によって保護し
ているので、感磁性薄膜の酸化、損傷を防止し、信頼性
の高い磁気抵抗素子を提供できるという効果がある。
As described above, according to the present invention, the first insulating film and the C
Since it is protected by the second insulating film formed by the VD process, the magnetically sensitive thin film is prevented from being oxidized and damaged, and a highly reliable magnetoresistive element can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の磁気抵抗素子の断面図、第
2図はシリコン酸化膜の膜厚とクラック発生率との関係
図、第3図はシリコン窒化膜の膜厚とピンホール数との
関係図、第4図は従来の磁気抵抗素子の断面図である。 1・・・絶縁基板、2・・・感磁性薄膜、4・・・シリ
コン酸化膜、5・・・シリコン窒化膜。 代理人弁理士 岡  部   隆 第1図 スへ”・・lクリン7°゛処理1=F3>+〕>管殻イ
cR1LcJtWしく、am)第2図 ジq コ JイcFlir AH(/lAm )第3図 第4図
Fig. 1 is a cross-sectional view of a magnetoresistive element according to an embodiment of the present invention, Fig. 2 is a relationship between the thickness of a silicon oxide film and the rate of crack occurrence, and Fig. 3 is a diagram showing the relationship between the thickness of a silicon nitride film and pinholes. FIG. 4 is a cross-sectional view of a conventional magnetoresistive element. DESCRIPTION OF SYMBOLS 1... Insulating substrate, 2... Magnetically sensitive thin film, 4... Silicon oxide film, 5... Silicon nitride film. Representative Patent Attorney Takashi Okabe Go to Fig. 1"...lClin7°゛Processing 1=F3>+〕>Tube shell IcR1LcJtW, am) Fig. 2 Jikko JicFlir AH (/lAm) Figure 3 Figure 4

Claims (3)

【特許請求の範囲】[Claims] (1)基板と、該基板上に形成された感磁性薄膜と、少
なくとも該感磁性薄膜上にスパッタリング処理により形
成された第1の絶縁膜と、該第1の絶縁膜上にCVD処
理により形成された第2の絶縁膜とを備える事を特徴と
する磁気抵抗素子。
(1) A substrate, a magnetically sensitive thin film formed on the substrate, a first insulating film formed at least on the magnetically sensitive thin film by sputtering treatment, and a first insulating film formed on the first insulating film by CVD treatment. A magnetoresistive element comprising a second insulating film.
(2)上記第1の絶縁膜の膜厚が0.3μm以上であり
、上記第2の絶縁膜の膜厚が0.5〜2.5μmである
特許請求の範囲第1項記載の磁気抵抗素子。
(2) The magnetoresistance according to claim 1, wherein the first insulating film has a thickness of 0.3 μm or more, and the second insulating film has a thickness of 0.5 to 2.5 μm. element.
(3)上記第1の絶縁膜がシリコン酸化膜であり、上記
第2の絶縁膜がシリコン窒化膜である特許請求の範囲第
1項又は第2項のいずれかに記載の磁気抵抗素子。
(3) The magnetoresistive element according to claim 1 or 2, wherein the first insulating film is a silicon oxide film, and the second insulating film is a silicon nitride film.
JP61164314A 1986-07-11 1986-07-11 Magnetro resistance element Pending JPS6319886A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61164314A JPS6319886A (en) 1986-07-11 1986-07-11 Magnetro resistance element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61164314A JPS6319886A (en) 1986-07-11 1986-07-11 Magnetro resistance element

Publications (1)

Publication Number Publication Date
JPS6319886A true JPS6319886A (en) 1988-01-27

Family

ID=15790792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61164314A Pending JPS6319886A (en) 1986-07-11 1986-07-11 Magnetro resistance element

Country Status (1)

Country Link
JP (1) JPS6319886A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63310186A (en) * 1987-06-12 1988-12-19 Asahi Chem Ind Co Ltd Manufacture of ferromagnetic magneto resistance element
JP2012064903A (en) * 2010-09-17 2012-03-29 Toshiba Corp Magnetoresistance effect element, magnetic memory and method of manufacturing magnetoresistance effect element

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60257582A (en) * 1984-06-04 1985-12-19 Nippon Denso Co Ltd Magnetoresistive device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60257582A (en) * 1984-06-04 1985-12-19 Nippon Denso Co Ltd Magnetoresistive device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63310186A (en) * 1987-06-12 1988-12-19 Asahi Chem Ind Co Ltd Manufacture of ferromagnetic magneto resistance element
JP2012064903A (en) * 2010-09-17 2012-03-29 Toshiba Corp Magnetoresistance effect element, magnetic memory and method of manufacturing magnetoresistance effect element
US8502331B2 (en) 2010-09-17 2013-08-06 Kabushiki Kaisha Toshiba Magnetoresistive effect element, magnetic memory

Similar Documents

Publication Publication Date Title
JPS6319886A (en) Magnetro resistance element
JPS60257582A (en) Magnetoresistive device
JPS5933962B2 (en) magnetic bubble domain chip
JP2504160B2 (en) Magnetoresistive head and method of manufacturing the same
JP2613876B2 (en) Method for manufacturing thin-film magnetic head
US4369209A (en) Method of manufacturing a magnetic bubble memory element
JP4013853B2 (en) Magnetic sensor
JPS6045922A (en) Magneto-resistance effect type magnetic head
KR970002878A (en) Pattern flattening method of thin film head
JP4640370B2 (en) Magnetic sensor
JPH02125679A (en) Magnetoresistance element
JP2601141B2 (en) Magnetoresistive element
JPS60113310A (en) Manufacture of magnetic head
JPH03219506A (en) Accumulation method for thin film
JPS60160676A (en) Dry type etching method of magnetoresistance effect element
JPS6295712A (en) Formation of magnetic pole for thin film magnetic head
JPS61104482A (en) Preparation of magnetic bubble memory element
JPS59168913A (en) Gap forming method of thin film magnetic head
JPH03257977A (en) Manufacture of magnetoresistance element
JPH10241934A (en) Magneto-resistance effect film and its manufacture
JPH04298808A (en) Thin-film magnetic head
JPS5880127A (en) Production of magneto-resistance effect type magnetic head
JPH05198864A (en) Magnetoresistance element
JPS59200425A (en) Treating method of semiconductor base body
JPH06204217A (en) Manufacturing method of semiconductor device