JPS63310187A - Manufacture of ferromagnetic magneto resistance element - Google Patents

Manufacture of ferromagnetic magneto resistance element

Info

Publication number
JPS63310187A
JPS63310187A JP62145357A JP14535787A JPS63310187A JP S63310187 A JPS63310187 A JP S63310187A JP 62145357 A JP62145357 A JP 62145357A JP 14535787 A JP14535787 A JP 14535787A JP S63310187 A JPS63310187 A JP S63310187A
Authority
JP
Japan
Prior art keywords
film
thickness
terminal
wiring
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62145357A
Other languages
Japanese (ja)
Inventor
Ichiro Shibazaki
一郎 柴崎
Yoshiyasu Sugimoto
杉本 善保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP62145357A priority Critical patent/JPS63310187A/en
Publication of JPS63310187A publication Critical patent/JPS63310187A/en
Pending legal-status Critical Current

Links

Landscapes

  • Hall/Mr Elements (AREA)

Abstract

PURPOSE:To improve the durability of a magnetoresistance element without reducing its output by covering the whole surfaces of a magnetic sensor and a wiring and a predetermined position of a terminal with an SiO2 film of 2-4mum thickness by means of sputtering. CONSTITUTION:A magnetic sensor 2, a wiring 3 and a terminal 4 of desired shapes and sizes are formed on a glass substrate 1, and the whole surfaces of the sensor 2 and the wiring 3 and a predetermined part of the terminal 4 are covered with an SiO2 layer or an SiON layer of 2-4mum thickness as a protective film 7 by means of an RF magnetron sputtering method. The SiO3 or SiON has a preferable contact with a ferromagnetic material of the sensor 2. Thus, the durability of an element can be enhanced under high temperature and high moisture environment. Further, the thickness of the film is thinner than the protective film of resin, the sensor 2 can be approached to a magnetic field to be detected, and no output is reduced due to the approach.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、磁界の検出のために用いられる強磁性体磁気
抵抗素子の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing a ferromagnetic magnetoresistive element used for detecting a magnetic field.

[従来の技術] 従来の磁気抵抗素子は、その断面を第6図に示すように
、ガラス基板1上にFe−Ni合金などからなる厚さ数
百〜数千人の感磁部(センサ一部)2、感磁部と同一材
質または異なる材質からなる配線部3および外部接続用
の端子部4が設けられ、保護膜として樹脂層5が、基板
1.感磁部2、配線部3.端子部4およびリード線10
を覆って設けられていた。この様に保護膜として樹脂層
を用いると、一般に樹脂は透湿性が高いので、高温高湿
度の環境下で、素子の充分な信頼性を確保するためには
、樹脂層5を数百μm以上の厚さにする必要がある。そ
のために感磁部2と被検出磁界とを充分に接近させるこ
とが不可能となり、出力の低下が避けられず、微弱な磁
界の検出が困難であった。例えばモータの回転速度を検
出・制御する場合、センサ一部2をモータの着磁ロータ
に充分近づけることができず、そのために着磁ピッチの
狭い微弱な磁界を検出してモータの回転速度を検出・制
御することができなかった。
[Prior Art] A conventional magnetoresistive element, as shown in FIG. Part) 2, a wiring part 3 and a terminal part 4 for external connection made of the same material as or a different material from the magnetically sensitive part are provided, and a resin layer 5 as a protective film is provided on the substrate 1. Magnetic sensing part 2, wiring part 3. Terminal section 4 and lead wire 10
It was set up to cover. When a resin layer is used as a protective film in this way, since resin generally has high moisture permeability, in order to ensure sufficient reliability of the element in a high temperature and high humidity environment, the resin layer 5 must be several hundred μm thick or more. It needs to be as thick as . For this reason, it has become impossible to bring the magnetic sensing section 2 and the magnetic field to be detected sufficiently close to each other, and a decrease in output is unavoidable, making it difficult to detect weak magnetic fields. For example, when detecting and controlling the rotational speed of a motor, it is not possible to bring the sensor part 2 close enough to the magnetized rotor of the motor, so the rotational speed of the motor is detected by detecting a weak magnetic field with a narrow magnetization pitch. - Could not be controlled.

第7図に従来の強磁性体磁気抵抗素子の他の例の断面図
を示す。この従来例では、感磁部2.配線部3および端
子部4の一部を真空蒸着法によって形成した厚さ5μm
以上のSiOまたは5i02からなる保護膜6て覆い、
樹脂8で封止している。この従来例は、SiOまたは5
in2膜は透湿性が至って低く、その厚さも第5図の従
来例における樹脂保護層5に比べて薄くできることを利
用して、センサ一部2と被検出磁界との距離を充分に短
くし、出力の低下を招くことなく高温高湿の環境下にお
ける素子の信頼性を保とうとするものである。しかし、
真空蒸着法による皮膜は段差部の被覆性が悪いのでSi
Oまたは5i02膜の厚さを5μm以上にしなければな
らず、そのために膜にクラックが発生し易い。
FIG. 7 shows a cross-sectional view of another example of a conventional ferromagnetic magnetoresistive element. In this conventional example, the magnetic sensing part 2. A part of the wiring part 3 and the terminal part 4 is formed with a thickness of 5 μm by vacuum evaporation method.
Covered with a protective film 6 made of the above SiO or 5i02,
It is sealed with resin 8. This conventional example uses SiO or 5
Taking advantage of the fact that the in2 film has very low moisture permeability and can be made thinner than the resin protective layer 5 in the conventional example shown in FIG. 5, the distance between the sensor part 2 and the detected magnetic field is made sufficiently short. The aim is to maintain the reliability of the device in a high temperature, high humidity environment without causing a decrease in output. but,
Films produced by vacuum evaporation have poor coverage of stepped areas, so Si
The thickness of the O or 5i02 film must be 5 μm or more, and therefore cracks are likely to occur in the film.

強磁性体磁気抵抗素子は、リソグラフ工程により、一枚
の基板上に多数の素子が形−成されるが、SiOまたは
5i(htiにクラックの生じた部分の素子は使用する
ことができず、製品の歩留りが悪かった。また5μm以
上の厚さの膜を蒸着によって形成するには多大な時間を
要し、生産性が低いという欠点があった。
A large number of ferromagnetic magnetoresistive elements are formed on a single substrate through a lithography process, but elements with cracks in SiO or 5i (hti) cannot be used. The yield of the product was poor.Furthermore, it took a lot of time to form a film with a thickness of 5 μm or more by vapor deposition, resulting in low productivity.

[発明が解決しようとする問題点] 上述したように、従来の強磁性体磁気抵抗素子では、素
子の信頼性と、センサ一部と被検出磁界との接近を両立
させることは不可能であった。本発明は、従来の欠点を
解消し、クラックのない、薄く、しかも耐久性の優れた
保護膜を有する強磁性体磁気抵抗素子を提供することを
目的とする。
[Problems to be Solved by the Invention] As described above, with conventional ferromagnetic magnetoresistive elements, it is impossible to achieve both reliability of the element and proximity of a part of the sensor to the detected magnetic field. Ta. SUMMARY OF THE INVENTION An object of the present invention is to eliminate the conventional drawbacks and provide a ferromagnetic magnetoresistive element having a crack-free, thin, and highly durable protective film.

[問題点を解決するための手段] かかる目的を達成するために、本発明は絶縁性基板上に
所定の形状および寸法の感磁部、配線部および端子部を
形成し、感磁部および配線部の全面と、端子部の所要の
部位に、スパッタリングによって膜厚2〜4μmのSi
O□層または5iON層を形成することを特徴とする。
[Means for Solving the Problems] In order to achieve the above object, the present invention forms a magnetically sensitive part, a wiring part, and a terminal part with predetermined shapes and dimensions on an insulating substrate, and forms a magnetically sensitive part, a wiring part, and a terminal part on an insulating substrate. A Si film with a thickness of 2 to 4 μm is deposited on the entire surface of the terminal part and the required parts of the terminal part by sputtering.
It is characterized by forming an O□ layer or a 5iON layer.

[作 用] 本発明によれば、スパッタリング法によって5in2ま
たは5i02の酸素の一部を窒素で置換した5iONか
らなる保護膜を形成する。5i02および5iONは感
磁部を構成する強磁性体との密着性が良好であり、高温
高湿下における素子の耐久性を大幅に向上させることが
できる。樹脂による保護膜と比へて、非常に膜厚が薄く
、感磁部と被検出磁界を接近させることができ、そのた
めに出力の低下を招くことがない。
[Function] According to the present invention, a protective film made of 5iON in which part of the oxygen of 5in2 or 5i02 is replaced with nitrogen is formed by a sputtering method. 5i02 and 5iON have good adhesion to the ferromagnetic material constituting the magnetically sensitive part, and can significantly improve the durability of the element under high temperature and high humidity conditions. Compared to a protective film made of resin, the film thickness is extremely thin, and the magnetic sensing part and the detected magnetic field can be brought close to each other, so that there is no reduction in output.

さらにスパッタリングによっているので、真空蒸着法に
よる保護膜に比べて、段差部の被覆性がよく、薄い膜厚
で信頼性が確保できるので、生産性および量産性が大幅
に向上する。
Furthermore, since it is formed by sputtering, it has better coverage of stepped portions than a protective film formed by vacuum evaporation, and reliability can be ensured with a thin film thickness, which greatly improves productivity and mass production.

さらにスパッタリングによるS【02または5iON@
上にコーティング法等による絶縁性無機物薄膜。
Furthermore, S02 or 5iON@ by sputtering
An insulating inorganic thin film is applied on top using a coating method.

耐熱性高分子薄膜を形成し、実装時におけるこすり強度
等を高めることもできる。
It is also possible to form a heat-resistant polymer thin film to increase the rubbing strength during mounting.

[実施例コ 以下に図面を参照して本発明の詳細な説明する。[Example code] The present invention will be described in detail below with reference to the drawings.

実施例1 第1図に本発明によって作製した強磁性体磁気抵抗素子
の一例の断面図を示す。
Example 1 FIG. 1 shows a cross-sectional view of an example of a ferromagnetic magnetoresistive element manufactured according to the present invention.

ガラス基板1上に所望の形状9寸法の感磁部2、配線部
3および端子部4を形成した。これら各部を形成する材
料は、従来用いられているいかなる材料でも良く、制限
を受けない。これら各部の形成法は、スパッタ法、めっ
き法その他任意の方法を用いることができる。
A magnetically sensitive part 2, a wiring part 3, and a terminal part 4 having a desired shape and nine dimensions were formed on a glass substrate 1. The material forming each of these parts may be any conventionally used material and is not limited to any particular material. These parts can be formed by sputtering, plating, or any other method.

次に5i02をターゲットとし、RFマグネトロンスパ
ッタリング法によって、感磁部2.配線部3の全面およ
び端子部4の所定部分を覆うようにS’i 02保護膜
7を形成した。スパッタリング条件はAYの圧力8 X
 1(1−3TOrr、周波数13.56M)12とし
た。基板を水冷しながら、膜厚1〜8μmの範囲でSi
O□膜を形成した。
Next, using RF magnetron sputtering method using 5i02 as a target, the magnetically sensitive part 2. An S'i 02 protective film 7 was formed to cover the entire surface of the wiring section 3 and a predetermined portion of the terminal section 4. Sputtering conditions are AY pressure 8X
1 (1-3 TOrr, frequency 13.56M). While cooling the substrate with water, Si
An O□ film was formed.

次に端子部4にリード線lOを接続し、最後に接綾部を
エポキシ系樹脂已によってモールドした。
Next, a lead wire 10 was connected to the terminal portion 4, and finally the connecting portion was molded using an epoxy resin.

このようにして作製した素子の5i02膜の膜厚と耐久
時間およびクラック発生密度との関係をそれぞれ第2図
および第3図に示す。ここで耐久時間は85℃、相対湿
度85%の環境下で5vの電圧を印加して通電試験を行
った時に素子の抵抗値が著しく増大するまでの時間で、
 100素子の平均値とそのばらつきを示している。図
中2000時間として示す値は、2000時間の試験で
変化を生ぜず、試験を打切ったものである。なお、5i
02被膜にクラックを生じている素子については、耐久
試験を行わず、第2図に示したデータは全て初期クラッ
クのない素子についての結果である。
The relationship between the film thickness of the 5i02 film, durability time, and crack generation density of the device thus fabricated is shown in FIGS. 2 and 3, respectively. Here, the durability time is the time until the resistance value of the element increases significantly when a voltage of 5V is applied and a current test is performed in an environment of 85°C and 85% relative humidity.
The average value of 100 elements and its dispersion are shown. The value shown as 2000 hours in the figure shows no change after 2000 hours of testing and the test was discontinued. In addition, 5i
No durability tests were conducted on the elements with cracks in the 02 coating, and the data shown in FIG. 2 are all results for elements with no initial cracks.

クラック発生密度は5i02膜に発生したクラックを顕
微鏡観察によって測定した値で、第3図には10基板に
ついての平均値とばらつきを示しである。
The crack generation density is a value measured by microscopic observation of cracks generated in the 5i02 film, and FIG. 3 shows the average value and variation for 10 substrates.

第2図および第3図かられかるように、Sin、スパッ
タ膜の厚さが4μmを越えるとクラックの発生密度が急
増する。一方SiO□スパッタ膜の厚さが2μm未満で
あると耐久時間が著しく短くなる。
As can be seen from FIGS. 2 and 3, when the thickness of the sputtered Sin film exceeds 4 μm, the density of cracks increases rapidly. On the other hand, if the thickness of the SiO□ sputtered film is less than 2 μm, the durability time will be significantly shortened.

従って、5in2スパツタ膜の最適な膜厚は2〜4μm
である。
Therefore, the optimal thickness of the 5in2 sputtered film is 2 to 4 μm.
It is.

5i(h膜は感磁部を構成する強磁性薄膜との密着性が
良好であり、さらにスパッタリング法によって形成した
保護膜は、段差部の被覆性がすぐれているので、真空蒸
着法による膜に比べて膜厚を薄くでき、クラックの発生
を防いで、高い信頼性を確保できる。
The 5i(h film has good adhesion to the ferromagnetic thin film that constitutes the magnetically sensitive part, and the protective film formed by sputtering has excellent coverage of stepped parts, so it is suitable for films made by vacuum evaporation. The film thickness can be made thinner, preventing cracks from forming and ensuring high reliability.

第4図に本発明の他の実施例を示す。本実施例はスパッ
タリングによる5in2膜7の上に、さらに厚さ1〜数
μmのアルコラード系絶縁膜9をコーティングした構造
となっている。このように多層膜構造にすることによ)
て、素子の耐湿性以外に、感磁部表面のこすり等に対°
する機械的強度を向上させることができる。アルコラー
ド系膜に替えてポリイミドなどの耐熱性の高分子薄膜を
形成しても、機械的強度を向上させることができる。
FIG. 4 shows another embodiment of the invention. This embodiment has a structure in which a 5 in 2 film 7 formed by sputtering is further coated with an Alcolade insulating film 9 having a thickness of 1 to several μm. By creating a multilayer structure like this)
In addition to the moisture resistance of the element, it is also resistant to scratches on the surface of the magnetically sensitive part.
The mechanical strength can be improved. Mechanical strength can also be improved by forming a heat-resistant polymer thin film such as polyimide in place of the Alcolade film.

火旌■ユ の 実施例1における保護1!!72sio□にかえ、5i
n2の酸素の一部を窒素で置換した5iON層7を形成
した。
Protection 1 in Example 1 of Huo Yu! ! Changed to 72sio□, 5i
A 5iON layer 7 was formed in which part of the oxygen in n2 was replaced with nitrogen.

ガラス基板上に、実施例1と全く同様の方法で感磁部、
配線部および端子部を形成した。
Magnetically sensitive parts were formed on the glass substrate in exactly the same manner as in Example 1.
A wiring part and a terminal part were formed.

次にSiをターゲットとし、^rガス、02ガス、 N
2ガスを導入した反応性スパッタリング法(RFマグネ
トロン)によって、感磁部と配線部の全面および端子部
の所定部分を覆うように5iON保護膜を形成した。ス
パッタリング条件は、各ガスの圧力比をA、r:02:
N2=5 : 1 : 4とし、スパッタ圧力を3 x
 1O−2Torr、周波数13.56MH2とし、基
板を水冷しながら、膜厚065〜7μmの範囲で5iO
N膜を形成した。
Next, using Si as a target, ^r gas, 02 gas, and N
A 5iON protective film was formed by a reactive sputtering method (RF magnetron) in which two gases were introduced so as to cover the entire surface of the magnetically sensitive part and the wiring part, and a predetermined part of the terminal part. The sputtering conditions were: the pressure ratio of each gas was A, r:02:
N2=5:1:4, sputtering pressure 3x
1O-2Torr, frequency 13.56MH2, and while cooling the substrate with water, 5iO
A N film was formed.

次に端子部にリード線を接続し、最後に接続部をエポキ
シ系樹脂によってモールドした。
Next, lead wires were connected to the terminal portions, and finally the connecting portions were molded with epoxy resin.

このようにして作製した素子の5iON膜の膜厚と耐久
時間との関係を第5図に示した。ここで耐久時間は実施
例1の場合と同様に、85℃、相対湿度85%の環境下
で5■の電圧を印加して通電試験を行った時に素子の抵
抗が著しく増大するまでの時間で、 100素子の平均
値とそのばらつきを示している。図中2000時間と示
す値は、2000時間の試験で変化を生ぜず、試験を打
ち切ったものである。
FIG. 5 shows the relationship between the film thickness and durability time of the 5iON film of the device thus fabricated. Here, the durability time is the time until the resistance of the element increases significantly when a voltage of 5μ is applied and a current test is performed in an environment of 85°C and 85% relative humidity, as in Example 1. , shows the average value of 100 elements and its dispersion. The value indicated as 2000 hours in the figure shows no change after 2000 hours of testing, and the test was discontinued.

この場合も、実施例1の場合と同様に、5iONスパツ
タ膜の厚さが2μm未満であると耐久時間が著しく短く
なっている。
In this case as well, as in Example 1, when the thickness of the 5iON sputtered film was less than 2 μm, the durability time was significantly shortened.

[発明の効果コ 以上説明したように、本発明によれば、強磁性体磁気抵
抗素子の感磁部と配線部の全面および端子部の所要の部
位を2〜4μmのスパッタリングによる5in2膜で被
覆するので、出力の低下を招くことなく、素子の信頼性
および製造歩留りを大幅に向上させるという効果がある
[Effects of the Invention] As explained above, according to the present invention, the magnetic sensing part and the entire surface of the wiring part of the ferromagnetic magnetoresistive element and the required parts of the terminal part are coated with a 5in2 film of 2 to 4 μm by sputtering. Therefore, there is an effect that the reliability and manufacturing yield of the device can be significantly improved without causing a decrease in output.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例による強磁性体磁気抵抗素子の
断面図、 第2図は耐久時間と5i02膜厚との関係を示す線図、 第3図はクラック発生数と5in2膜厚との関係を示す
線図、 第4図は本発明の他の実施例における強磁性体磁気抵抗
素子の断面図、 第5図は耐久時間と5iON膜厚との関係を示す線図、 第6図および第7図はそれぞれ従来の強磁性体磁気抵抗
素子の断面図である。 1・・・ガラス基板、 2・・・感磁部、 3・・・配線部、 4・・・端子部、 5・・・保護膜(樹脂)、 6・・・保護膜(蒸着SiOまたは5iO2)、7・・
・保護膜(スパッタリングSiO□または5iON)、
8・・・モールド樹脂、 9・・・アルコラード系コーテイング膜、lO・・・リ
ード線。 8モ一レト°布灯月旨 第1図 1益ギ更 第4図 第2図 第3図 第5図 第6図 第7図
Figure 1 is a cross-sectional view of a ferromagnetic magnetoresistive element according to an embodiment of the present invention, Figure 2 is a diagram showing the relationship between durability time and 5i02 film thickness, and Figure 3 is a graph showing the relationship between the number of cracks and the 5in2 film thickness. FIG. 4 is a cross-sectional view of a ferromagnetic magnetoresistive element in another embodiment of the present invention. FIG. 5 is a diagram showing the relationship between durability time and 5iON film thickness. FIG. and FIG. 7 are cross-sectional views of conventional ferromagnetic magnetoresistive elements. DESCRIPTION OF SYMBOLS 1... Glass substrate, 2... Magnetically sensitive part, 3... Wiring part, 4... Terminal part, 5... Protective film (resin), 6... Protective film (evaporated SiO or 5iO2 ), 7...
・Protective film (sputtering SiO□ or 5iON),
8...Mold resin, 9...Alcolade coating film, lO... Lead wire. 8 Moichireto °Funtotsutsuji Figure 1 Figure 1 Effect of change Figure 4 Figure 2 Figure 3 Figure 5 Figure 6 Figure 7

Claims (1)

【特許請求の範囲】[Claims] 絶縁性基板上に所定の形状および寸法の感磁部、配線部
および端子部を形成し、前記感磁部および配線部の全面
と、前記端子部の所要の部位に、スパッタリングによっ
て膜厚2〜4μmのSiO_2層またはSiON層を形
成することを特徴とする強磁性体磁気抵抗素子の製造方
法。
A magnetically sensitive part, a wiring part, and a terminal part having predetermined shapes and dimensions are formed on an insulating substrate, and a film with a thickness of 2 to 20% is formed by sputtering on the entire surface of the magnetically sensitive part and wiring part, and at a required part of the terminal part. A method for manufacturing a ferromagnetic magnetoresistive element, characterized by forming a 4 μm SiO_2 layer or a SiON layer.
JP62145357A 1987-06-12 1987-06-12 Manufacture of ferromagnetic magneto resistance element Pending JPS63310187A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62145357A JPS63310187A (en) 1987-06-12 1987-06-12 Manufacture of ferromagnetic magneto resistance element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62145357A JPS63310187A (en) 1987-06-12 1987-06-12 Manufacture of ferromagnetic magneto resistance element

Publications (1)

Publication Number Publication Date
JPS63310187A true JPS63310187A (en) 1988-12-19

Family

ID=15383322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62145357A Pending JPS63310187A (en) 1987-06-12 1987-06-12 Manufacture of ferromagnetic magneto resistance element

Country Status (1)

Country Link
JP (1) JPS63310187A (en)

Similar Documents

Publication Publication Date Title
US5551586A (en) Method for manufacturing an electromagnetic conversion device and a displacement detector which uses an electromagnetic conversion device
US7675286B2 (en) Magnetoresistive sensor device
JPS5998316A (en) Manufacture of magnetic thin film head
JP2005227134A (en) Magnetic sensor
JPS63310187A (en) Manufacture of ferromagnetic magneto resistance element
EP1536490A1 (en) Magnetoresistance effect element and production method and application method therefor
JP2527745B2 (en) Method for manufacturing ferromagnetic magnetoresistive element
US5916694A (en) Magneto-resistance element
CA1047161A (en) Magnetic head using a magnetic-field-sensitive element and method of manufacturing same
GB1597324A (en) Integrated magnetic field sensor
JPS63313880A (en) Ferromagnetic substance magnetic sensor
US4267510A (en) Integrated thin layer magnetic field sensor
JPS6334414B2 (en)
JPS6311672Y2 (en)
JPH0435076A (en) Magnetoresistance element and manufacture thereof
JPS6240455Y2 (en)
JP3206104B2 (en) Magnetoresistive element
KR100256064B1 (en) Thin magnetic head
JP3047553B2 (en) Magnetoresistive element
JPS6161481A (en) Magnetoelectric converter
RU2128819C1 (en) Magnetoresistive element and process of its manufacture
JPH03219683A (en) Magnetoresistance element
JPH05225523A (en) Thin film magnetic head and its production
CN117926173A (en) Flexible magnetic sensor and preparation method thereof
JPH03205574A (en) Magnetic sensor