JPH0435076A - Magnetoresistance element and manufacture thereof - Google Patents

Magnetoresistance element and manufacture thereof

Info

Publication number
JPH0435076A
JPH0435076A JP2139979A JP13997990A JPH0435076A JP H0435076 A JPH0435076 A JP H0435076A JP 2139979 A JP2139979 A JP 2139979A JP 13997990 A JP13997990 A JP 13997990A JP H0435076 A JPH0435076 A JP H0435076A
Authority
JP
Japan
Prior art keywords
thin film
ferromagnetic thin
protective film
substrate
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2139979A
Other languages
Japanese (ja)
Inventor
Satooka Ishiyama
里丘 石山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
F M C KK
Original Assignee
F M C KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by F M C KK filed Critical F M C KK
Priority to JP2139979A priority Critical patent/JPH0435076A/en
Publication of JPH0435076A publication Critical patent/JPH0435076A/en
Pending legal-status Critical Current

Links

Landscapes

  • Hall/Mr Elements (AREA)
  • Magnetic Heads (AREA)

Abstract

PURPOSE:To make the title element excellent in moisture resistance and to prevent cracks and to thermal impact by heating a substrate with a ferromagnetic thin film and by overspreading the substrate with a first passivation film of silicon oxide and further with a second passivation film made of synthetic resin. CONSTITUTION:A substrate 11 of glass or a ceramic such as alumina is overspread with a ferromagnetic thin film 12 made of Ni-Fe alloy or Co-Fe alloy. Here, the substrate 11 with the ferromagnetic thin film 12 is heated for 30-12min to desorb water molecules adsorbed by the surface of the ferromagnetic thin film 12. The next step is to overspread the ferromagnetic thin film 12 with a first passivation film 15 made of silicon oxide, which protects the ferromagnetic thin film. The further step is to overspread the first passivation layer 15 with a second passivation film 16 made of a synthetic resin such as polyimide resin such, epoxy resin, or polyamide resin. This design allows coating of microcracks and pin holes developed in the first protection film 15.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、磁気抵抗素子及びその製造方法に関し、更に
詳しくは、磁気エンコーグ用の保護膜で被覆された磁気
抵抗素子及びその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a magnetoresistive element and a method for manufacturing the same, and more particularly to a magnetoresistive element coated with a protective film for magnetic encoding and a method for manufacturing the same.

(従来の技術) 従来、磁気抵抗素子は、第2図に示される構造になって
いる。すなわち、ガラス、アルミナなどのセラミックス
などの基板」二に、Ni−Fe合金、N i −Co合
金などからなる強磁性薄lI@2が形成され、その強磁
性薄膜2の」二に保護膜3が形成されている。保護膜3
としては、ケイ素酸化物をCVD法、スパッタリングな
どによって形成された10〜3011mの膜厚のケイ素
酸化物層、あるいは、ポリイミド樹脂、エポキシ樹脂ま
たはポリアミド樹脂などの非透水性樹脂からなる膜厚5
〜10μmの薄膜が一般に広(用いられている。そして
強磁性薄膜2の端部には、半田4によりリード線5が接
続され、半田4による取付部は樹脂6で被覆されている
(Prior Art) Conventionally, a magnetoresistive element has a structure shown in FIG. That is, a ferromagnetic thin lI@2 made of Ni-Fe alloy, Ni-Co alloy, etc. is formed on a substrate made of glass, ceramics such as alumina, etc., and a protective film 3 is formed on the ferromagnetic thin film 2. is formed. Protective film 3
For example, a silicon oxide layer with a thickness of 10 to 3011 m formed by CVD or sputtering of silicon oxide, or a film with a thickness of 5 m made of non-water permeable resin such as polyimide resin, epoxy resin or polyamide resin.
A thin film of ~10 .mu.m is generally used. Lead wires 5 are connected to the ends of the ferromagnetic thin film 2 with solder 4, and the parts to which the solder 4 is attached are covered with resin 6.

(発明が解決しようとする問題点) しかしながら、ケイ素酸化物からなる保護膜3には、微
細なりラックやピンホールが存在するため、これらのク
ラックやピンホールを通して水分が侵入し、Ni−Co
合金などからなる強磁性薄膜2が腐食されるという問題
があった。このため従来では保護膜3の膜厚な10〜3
0μmに厚くして微細なりラックやピンホールを減少さ
せて耐湿性を向上させることが行われているが、クラッ
クやピンホールを完全になくすことはできず依然として
水分により強磁性薄膜2が腐食されるという問題があっ
た。
(Problems to be Solved by the Invention) However, since the protective film 3 made of silicon oxide has minute racks and pinholes, moisture enters through these cracks and pinholes, and the Ni-Co
There was a problem in that the ferromagnetic thin film 2 made of an alloy or the like was corroded. For this reason, in the past, the thickness of the protective film 3 was 10 to 3
Although attempts have been made to increase the thickness to 0 μm to reduce minute racks and pinholes to improve moisture resistance, cracks and pinholes cannot be completely eliminated and the ferromagnetic thin film 2 is still corroded by moisture. There was a problem that

また、保護膜3の膜厚を厚くすることは、強磁性薄膜2
と検知しようとする発磁体との距離が広がることになり
、検出出力が低下したり、金属からなる強磁性薄膜2と
セラミックスからなる基板1や保護膜3とは熱膨張率が
大きく異なるので熱衝撃により基板や保護膜3にクラッ
クが発生し易くなるなどの問題もあった。
In addition, increasing the thickness of the protective film 3 means that the ferromagnetic thin film 2
This increases the distance between the magnet and the magnet to be detected, resulting in a decrease in detection output.The ferromagnetic thin film 2 made of metal and the substrate 1 and protective film 3 made of ceramics have significantly different coefficients of thermal expansion. There was also a problem that cracks were likely to occur in the substrate and the protective film 3 due to impact.

また、ポリイミド樹脂、エポキシ樹脂またはボッアミド
樹脂などの非透水性樹脂からなる保護膜3を強磁性薄膜
2上に形成させる場合には、大気中で樹脂を塗布するた
め、強磁性薄膜2上に吸着した水分子が樹脂により封入
され、その水分子によりまたは樹脂中に微量台まれる水
により、強磁性薄膜2が腐食されるという問題があった
In addition, when forming the protective film 3 made of water-impermeable resin such as polyimide resin, epoxy resin, or boamide resin on the ferromagnetic thin film 2, since the resin is applied in the atmosphere, it is adsorbed onto the ferromagnetic thin film 2. There is a problem in that the ferromagnetic thin film 2 is corroded by the water molecules or by a small amount of water contained in the resin.

本発明は、上記問題点を解決し、耐湿性に優れ、保護膜
の膜厚を薄くすることによって検出出力を増大し、熱衝
撃によるクラックが発生しない磁気抵抗素子及びその製
造方法を提供することを目的とする。
The present invention solves the above-mentioned problems, and provides a magnetoresistive element that has excellent moisture resistance, increases detection output by reducing the thickness of the protective film, and does not generate cracks due to thermal shock, and a method for manufacturing the same. With the goal.

(問題点を解決するだめの手段) 本発明の磁気抵抗素子は、基板と、該基板上に形成され
た強磁性薄膜と、該強磁性薄膜上に形成されたケイ素酸
化物(S i O、、ただし0.5≦x≦2)からなる
第一保護膜と、該第一保護膜上に形成された合成樹脂か
らなる第二保護膜とからなることを特徴とする。
(Means for Solving the Problems) The magnetoresistive element of the present invention includes a substrate, a ferromagnetic thin film formed on the substrate, and a silicon oxide (S i O, , provided that 0.5≦x≦2), and a second protective film made of a synthetic resin formed on the first protective film.

本発明の磁気抵抗素子の製造方法は、強磁性薄膜が形成
された基板を真空中で150〜350℃で加熱する第一
工程と、該基板の該強磁性薄膜の上にケイ素酸化物(S
 i O,、ただし0.5≦x≦2)の第一保護膜を形
成する第二工程と、該第一保護膜上に合成樹脂からなる
第二保護膜を形成する第三工程とからなることを特徴と
する。
The method for manufacturing a magnetoresistive element of the present invention includes a first step of heating a substrate on which a ferromagnetic thin film is formed at 150 to 350°C in a vacuum, and a silicon oxide (S) layer on the ferromagnetic thin film of the substrate.
i O, where 0.5≦x≦2); a second step of forming a first protective film; and a third step of forming a second protective film made of synthetic resin on the first protective film. It is characterized by

本発明の磁気抵抗素子を第1図に基づいて説明する。ガ
ラス、アルミナなどのセラミックスなどからなる基板1
1上に、Ni−Fe合金、Co−Fe合金などからなる
強磁性薄膜12が形成されている。強磁性薄膜12の端
部には、半田14によりリード線13が接続され、半田
14による取付部は、樹脂で被覆されている。強磁性薄
膜12の上には、ケイ素酸化物(S i O、、ただし
0.5≦x≦2)からなる第一保護膜15が形成され、
強磁性薄膜12を保護する。Xが0.5より小さい場合
には導電性を有するのでようになり、2より大きい場合
には酸素過剰となり好ましくない。好ましくは0.8≦
x≦1.5である。
The magnetoresistive element of the present invention will be explained based on FIG. Substrate 1 made of glass, ceramics such as alumina, etc.
A ferromagnetic thin film 12 made of a Ni--Fe alloy, a Co--Fe alloy, or the like is formed on the ferromagnetic film 1 . Lead wires 13 are connected to the ends of the ferromagnetic thin film 12 with solder 14, and the attachment portions with solder 14 are covered with resin. A first protective film 15 made of silicon oxide (S i O, where 0.5≦x≦2) is formed on the ferromagnetic thin film 12.
Protects the ferromagnetic thin film 12. If X is less than 0.5, the material has electrical conductivity, and if it is larger than 2, oxygen becomes excessive, which is not preferable. Preferably 0.8≦
x≦1.5.

また、第一保護膜I5の膜厚としては0.1〜10μm
が好ましい。膜厚が0.1μmより薄い場合には薄すぎ
て水分子が自由に透過するようになり、10μmより厚
い場合には強磁性薄膜12と発磁体との距離が太き(な
るからである。
Further, the thickness of the first protective film I5 is 0.1 to 10 μm.
is preferred. If the film thickness is less than 0.1 μm, it is too thin and water molecules can freely pass through it, and if it is thicker than 10 μm, the distance between the ferromagnetic thin film 12 and the magnetizing body becomes large.

更に好ましくは0.5〜2umである。More preferably, it is 0.5 to 2 um.

また第一保護層15の上には、ポリイミド樹脂、エポキ
シ樹脂、ポリエーテルアミド樹脂またはナイロンなどの
ポリアミド樹脂等の合成樹脂からなる第二保護膜16が
形成され、第一保護膜15に生じた微細なりラックやピ
ンホールを被覆する。第二保護膜16の膜厚は1〜10
μmが好ましい。膜厚がlLLmより薄い場合には耐水
性が悪くなり、10μmより厚い場合には強磁性薄膜1
2と発磁体との距離が大きくなるからである。
Further, on the first protective layer 15, a second protective film 16 made of a synthetic resin such as polyimide resin, epoxy resin, polyetheramide resin, or polyamide resin such as nylon is formed. Covers minute racks and pinholes. The thickness of the second protective film 16 is 1 to 10
μm is preferred. If the film thickness is thinner than 1LLm, the water resistance will be poor, and if it is thicker than 10 μm, the ferromagnetic thin film 1
This is because the distance between No. 2 and the magnetizing body becomes large.

更に好ましくは1.5〜5LLmである。More preferably, it is 1.5 to 5 LLm.

本発明の磁気抵抗素子は、次のようにして製造される。The magnetoresistive element of the present invention is manufactured as follows.

第一工程として、先ず、強磁性薄膜12が形成された基
板を、真空中において150〜350°Cて30〜12
0分間加熱して強磁性薄膜12の表面に吸着している水
分子を脱着させる。次に、第二工程として、基板11に
CVD法あるいはスパッタリングにより、強磁性薄膜1
2上にケイ素酸化物(S i O,、ただし0.5≦x
≦2)からなる膜厚01〜10μmの第一保護膜15を
形成する。
As the first step, first, the substrate on which the ferromagnetic thin film 12 is formed is heated in a vacuum at 150 to 350°C for 30 to 12 hours.
The water molecules adsorbed on the surface of the ferromagnetic thin film 12 are desorbed by heating for 0 minutes. Next, as a second step, a ferromagnetic thin film 1 is deposited on the substrate 11 by CVD or sputtering.
2 on silicon oxide (S i O, where 0.5≦x
≦2) and has a thickness of 01 to 10 μm.

CVD法によるケイ素酸化物(S 10x、ただし0.
5≦x≦2)からなる第一保護膜15の製造は、第一工
程により得られた基板11を反応炉中に載置し、ここに
原料ガスとしてシラン(S i H、)と酸素(02)
の混合ガス及びアルゴン(Ar)などのキャリヤガスを
流し、反応させればよい。
Silicon oxide (S 10x, but 0.
5≦x≦2), the substrate 11 obtained in the first step is placed in a reaction furnace, and silane (S i H, ) and oxygen ( 02)
What is necessary is to flow a mixed gas of and a carrier gas such as argon (Ar) to cause a reaction.

スパッタリングによるケイ素酸化物(Sin、、ただし
0.5≦x≦2)からなる第一保護膜15の製造は、第
一工程により得られた基板11と蒸着原材料としてケイ
素酸化物(S i Oyただし0.9<y<1.1)を
容器内の所定位置に載置した後、l X I O−3〜
I X 10−7Torrの圧力まで排気し、スパッタ
リングを行えばよい。スパッタ電圧は500〜3000
V、スパッタ電流は50〜300mA、時間は0.1〜
2hrである。
The first protective film 15 made of silicon oxide (Sin, where 0.5≦x≦2) is manufactured by sputtering using the substrate 11 obtained in the first step and silicon oxide (SiOy, but not shown) as a vapor deposition raw material. 0.9<y<1.1) at a predetermined position in the container, l X I O-3~
Sputtering may be performed by evacuation to a pressure of I.times.10.sup.-7 Torr. Sputtering voltage is 500-3000
V, sputtering current is 50~300mA, time is 0.1~
It is 2 hours.

次に、第三工程として、第二工程により得られた第一保
護膜15上にポリイミド樹脂、エポキシ樹脂、ポリエー
テルアミド樹脂またはナイロンなどのポリアミド樹脂等
の非透水性樹脂からなる膜厚l〜10μmの第二保護膜
16を均一に塗布または、薄膜を接着することにより形
成すればよい。
Next, as a third step, a film of a non-water permeable resin such as a polyimide resin, an epoxy resin, a polyetheramide resin, or a polyamide resin such as nylon is formed on the first protective film 15 obtained in the second step to a thickness l~ It may be formed by uniformly applying the second protective film 16 of 10 μm or by adhering a thin film.

(作用) 第一工程において、強磁性薄膜12が形成された基板1
1を加熱することにより、強磁性薄膜12上に吸着した
水分子を脱着させることで、従来の強磁性薄膜層12上
に吸着された水分による強磁性薄膜層12の腐食が防止
できる。
(Function) In the first step, the substrate 1 on which the ferromagnetic thin film 12 is formed
By heating the ferromagnetic thin film 1, water molecules adsorbed on the ferromagnetic thin film 12 are desorbed, thereby preventing corrosion of the ferromagnetic thin film layer 12 due to water adsorbed on the conventional ferromagnetic thin film layer 12.

また、ポリイミド、エポキシ樹脂、ポリエーテルアミド
樹脂またはポリアミド樹脂などの非透水性樹脂からなる
第二保護膜16を第一保護膜15上に形成したので、第
一保護膜15の微細なりラックやピンホールを被覆でき
るので、大気中の水分子がクラックやピンホールを通し
て侵入することはな(、強磁性薄膜12が腐食されるこ
とはない。また、樹脂中に含まれる微量の水分により強
磁性薄膜12が腐食されることはない。
In addition, since the second protective film 16 made of a water-impermeable resin such as polyimide, epoxy resin, polyetheramide resin, or polyamide resin is formed on the first protective film 15, minute racks and pins of the first protective film 15 are formed. Since the holes can be covered, water molecules in the atmosphere will not enter through cracks or pinholes (and the ferromagnetic thin film 12 will not be corroded). 12 will not be corroded.

また、第一保護膜15の膜厚と第二保護膜16の膜厚を
従来の磁気抵抗素子の保護膜の膜厚をより薄くしても従
来以上の耐湿性が得られるので、強磁性薄膜12と検知
しようとする発磁体との距離が短くなり、大きな検出出
力が得られるようになる。
Further, even if the thickness of the first protective film 15 and the second protective film 16 are made thinner than the protective films of the conventional magnetoresistive element, moisture resistance higher than that of the conventional magnetoresistive element can be obtained. The distance between 12 and the magnetic body to be detected is shortened, and a large detection output can be obtained.

更に、5iOXからなる第一保護膜15を薄くし、その
外側に樹脂からなる第二保護膜16を形成させることに
より熱衝撃により発生する熱応力を緩和し、基板11や
第一保護膜15のクラック発生を防止できる。
Furthermore, by thinning the first protective film 15 made of 5iOX and forming a second protective film 16 made of resin on the outside thereof, thermal stress caused by thermal shock is alleviated, and the substrate 11 and the first protective film 15 are made thinner. Cracks can be prevented from occurring.

(実施例) 実施例1 膜厚がO,lumのN187重量%、Fe13重量%か
らなるNi−Fe合金からなる強磁性薄膜が形成された
ガラスからなる基板を反応容器に入れ、I X l 0
−5Torrの圧力下で、300°Cで60分間加熱し
て加熱処理を行なった。
(Example) Example 1 A substrate made of glass on which a ferromagnetic thin film made of a Ni-Fe alloy consisting of 187% by weight of N and 13% by weight of Fe with a film thickness of O.lum was formed was placed in a reaction vessel, and I
Heat treatment was performed by heating at 300° C. for 60 minutes under a pressure of −5 Torr.

次に、反応容器中にS i H4と0□の混合ガスとキ
ャリヤガスとしてArを送り込み、250℃、圧力1 
x 100−3atで1時間反応を行なわせ、強磁性薄
膜層上に膜厚1μmのSiOからなる第一保護膜をCV
D法で形成した。
Next, a mixed gas of S i H4 and 0□ and Ar as a carrier gas were fed into the reaction vessel at 250°C and a pressure of 1.
Reaction was carried out at x 100-3at for 1 hour, and a first protective film made of SiO with a thickness of 1 μm was deposited on the ferromagnetic thin film layer by CVD.
It was formed by method D.

次に、第一保護膜が形成された基板を反応容器から取出
し、ポリエーテルアミド樹脂(日立化成工業■製、商品
名HIMAL  HL−1210)を厚さ2LLmに塗
布し、180°C11時間で硬化させた。
Next, the substrate on which the first protective film was formed was taken out from the reaction vessel, and polyetheramide resin (manufactured by Hitachi Chemical Co., Ltd., trade name: HIMAL HL-1210) was applied to a thickness of 2 LLm, and cured at 180°C for 11 hours. I let it happen.

上記方法により得られた磁気抵抗素子を3個用意し、8
0°C1相対湿度80%で耐湿性試験をしたところ、強
磁性薄膜層が腐食されたものは0個であった。また、得
られた磁気抵抗素子を磁気エンコーダとして使用したと
ころ、検出出力は56mVであった。
Three magnetoresistive elements obtained by the above method were prepared, and 8
When a moisture resistance test was conducted at 0° C. and 80% relative humidity, there were no samples in which the ferromagnetic thin film layer was corroded. Furthermore, when the obtained magnetoresistive element was used as a magnetic encoder, the detection output was 56 mV.

更に、得られた磁気抵抗素子3個を用意し、150°C
の恒温槽から室温に引き出して熱衝撃を加えたところ、
クラックが生じたものは0個であった。
Furthermore, three of the obtained magnetoresistive elements were prepared and heated at 150°C.
When we pulled it out of a constant temperature bath to room temperature and applied a thermal shock,
There were no cracks.

また、得られた磁気抵抗素子3を2000時間放置し、
基板上に吸着されていた水分や樹脂中の水分による強磁
性薄膜層の腐食の有無を試験したところ、強磁性薄膜層
が腐食されたものは0個であった。
Further, the obtained magnetoresistive element 3 was left for 2000 hours,
When testing whether the ferromagnetic thin film layer was corroded by the moisture adsorbed on the substrate or the moisture in the resin, no ferromagnetic thin film layer was found to be corroded.

実施例2 第一保護膜をCVD法の代わりに、ケイ素酸化物(Si
n)をターゲットとして、圧力1×10−3Torr、
電圧25 ’00 v、電流150mA、時間1時間で
スバ・ンクリングをして05LLmのSiOからなる第
一保護膜を形成したことを除いては、実施例1と同様に
して磁気抵抗素子を製造した。
Example 2 The first protective film was formed using silicon oxide (Si
n) as a target, the pressure is 1 x 10-3 Torr,
A magnetoresistive element was manufactured in the same manner as in Example 1, except that the first protective film made of SiO of 0.5 LLm was formed by submerging at a voltage of 25'00 V, a current of 150 mA, and a time of 1 hour. .

得られた磁気抵抗素子を実施例1と同様にして試験した
ところ、耐湿性試験で強磁性薄膜層が腐食されたものは
3細巾O個であった。熱衝撃を加えて、クラックが生じ
たものは、3個中0個であった。検出出力は63mVで
あった。
When the obtained magnetoresistive elements were tested in the same manner as in Example 1, the ferromagnetic thin film layer was corroded in 3 O pieces in the moisture resistance test. 0 out of 3 pieces developed cracks due to thermal shock. The detection output was 63 mV.

また、得られた磁気抵抗素子の、基板上に吸着されてい
た水分や樹脂中の水分による強磁性薄膜層の腐食の有無
を実施例1と同様にして試験したところ、強磁性薄膜層
が腐食されたものは3細巾O個であった。
In addition, when testing the obtained magnetoresistive element for the presence or absence of corrosion of the ferromagnetic thin film layer due to moisture adsorbed on the substrate or moisture in the resin in the same manner as in Example 1, it was found that the ferromagnetic thin film layer was corroded. There were O pieces of 3 strips.

(比較例1) 実施例1で使用した基板上に、5104と02の混合ガ
スとArのキャリヤガスを反応容器に送り込み、温度2
50″C1圧力I X 10−”atmで1時間反応さ
せて強磁性薄膜層上に膜厚1μmのSiOからなる保護
膜をCVD法で形成した。
(Comparative Example 1) On the substrate used in Example 1, a mixed gas of 5104 and 02 and a carrier gas of Ar were sent into a reaction vessel, and the temperature was 2.
A reaction was carried out for 1 hour at a pressure of 50"C1 and a pressure of I.times.10-"atm, and a protective film of SiO having a thickness of 1 μm was formed on the ferromagnetic thin film layer by CVD.

得られた磁気抵抗素子を実施例1と同様にして耐湿性試
験をしたところ、強磁性薄膜層が腐食されたものは3個
中3個であった。熱衝撃を加えてクラックが生したもの
は、3個中2個であった。
When the obtained magnetoresistive elements were subjected to a moisture resistance test in the same manner as in Example 1, the ferromagnetic thin film layer was corroded in three out of three. Two out of three pieces developed cracks due to thermal shock.

検出出力は53mVであった。The detection output was 53 mV.

(比較例2) 加熱処理を行なわずに、実施例1で使用した基板上に、
ポリエーテルアミド樹脂(日立化成工業■製、商品名H
IMAL  HL−1210)を塗布し、硬化させて2
LLmの保護膜を形成した。
(Comparative Example 2) On the substrate used in Example 1 without heat treatment,
Polyetheramide resin (manufactured by Hitachi Chemical Co., Ltd., product name H
Apply IMAL HL-1210) and cure it.
A protective film of LLm was formed.

得られた磁気抵抗素子を実施例1と同様にして耐湿性試
験をしたところ、強磁性薄膜層が腐食されたのは1個で
あった。また、得られた磁気抵抗素子を磁気エンコーダ
として使用したところ、検出出力は59mVであった。
When the obtained magnetoresistive elements were subjected to a moisture resistance test in the same manner as in Example 1, the ferromagnetic thin film layer of one element was found to be corroded. Furthermore, when the obtained magnetoresistive element was used as a magnetic encoder, the detection output was 59 mV.

(比較例3) 実施例1で使用した基板上に、ケイ素酸化物(S i 
O)をターゲットとして圧力1×10Torr、電圧2
500V、時間2時間でスパッタリングをして15um
のSiOからなる保護膜を形成した。
(Comparative Example 3) Silicon oxide (Si
O) as a target, pressure 1 x 10 Torr, voltage 2
15um by sputtering at 500V for 2 hours
A protective film made of SiO was formed.

得られた磁気抵抗素子を実施例1と同様にして試験した
ところ、耐湿性試験で強磁性薄膜層が腐食されたものは
3個中2個であった。熱衝撃によリフラックが生じたも
のは3個中3個であった。
When the obtained magnetoresistive elements were tested in the same manner as in Example 1, the ferromagnetic thin film layer was corroded in two out of three in the moisture resistance test. Three out of three samples suffered reflux due to thermal shock.

検出出力は20mVであった。The detection output was 20 mV.

(比較例4) 加熱処理を施さない実施例1の基板上にポリエーテルア
ミド樹脂(日立化成工業■製、HIMAL  HL−1
210)を塗布し、硬化させて5μmの保護膜を形成し
た。
(Comparative Example 4) A polyetheramide resin (manufactured by Hitachi Chemical Co., Ltd., HIMAL HL-1) was placed on the substrate of Example 1 which was not subjected to heat treatment.
210) was applied and cured to form a 5 μm protective film.

また得られた磁気抵抗素子の、基板上に吸着されていた
水分や樹脂中の水分による強磁性薄膜層の腐食の有無を
実施例1と同様にして試験したところ、強磁性薄膜層が
腐食されたものは3個中3個であった。
In addition, when the obtained magnetoresistive element was tested for corrosion of the ferromagnetic thin film layer due to moisture adsorbed on the substrate or moisture in the resin, the ferromagnetic thin film layer was tested in the same manner as in Example 1. There were 3 out of 3 items.

(発明の効果) 以上の説明で明らかなように、本発明の磁気抵抗素子は
耐湿性に優れ、また保護膜の膜厚を薄くすることができ
るので強磁性薄膜層と発6R体との距離が短(なり、し
たがって検出出力が増大する。更にケイ素酸化物からな
る第一保護膜を薄(し、その」二に樹脂からなる第二保
護膜を形成したので、熱衝撃によって生じる熱応力を緩
和することがてきる。したがって基板や第一・保護膜に
クラックが発生しにくくなった。
(Effects of the Invention) As is clear from the above explanation, the magnetoresistive element of the present invention has excellent moisture resistance, and since the thickness of the protective film can be made thin, the distance between the ferromagnetic thin film layer and the 6R emitter is In addition, the first protective film made of silicon oxide is made thinner, and the second protective film made of resin is formed on top of it, which reduces thermal stress caused by thermal shock. Therefore, cracks are less likely to occur in the substrate and the first protective film.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来の磁気抵抗素子の断面図、第2図は本発
明の磁気抵抗素子の断面図である。
FIG. 1 is a sectional view of a conventional magnetoresistive element, and FIG. 2 is a sectional view of a magnetoresistive element of the present invention.

Claims (5)

【特許請求の範囲】[Claims] (1)基板と、該基板上に形成された強磁性薄膜と、該
強磁性薄膜上に形成されたケイ素酸化物(SiO_x、
ただし0.5≦x≦2)からなる第一保護膜と、該第一
保護膜上に形成された合成樹脂からなる第二保護膜とか
らなることを特徴とする磁気抵抗素子。
(1) A substrate, a ferromagnetic thin film formed on the substrate, and a silicon oxide (SiO_x,
A magnetoresistive element comprising a first protective film made of a synthetic resin (0.5≦x≦2) and a second protective film made of a synthetic resin formed on the first protective film.
(2)該合成樹脂がポリイミド樹脂、エポキシ樹脂、ポ
リエーテルアミド樹脂またはポリアミド樹脂である請求
項1記載の磁気抵抗素子。
(2) The magnetoresistive element according to claim 1, wherein the synthetic resin is a polyimide resin, an epoxy resin, a polyetheramide resin, or a polyamide resin.
(3)該第一保護膜の膜厚が、0.1〜10μmである
請求項1記載の磁気抵抗素子。
(3) The magnetoresistive element according to claim 1, wherein the first protective film has a thickness of 0.1 to 10 μm.
(4)該第二保護膜の膜厚が、1〜10μmである請求
項1記載の磁気抵抗素子。
(4) The magnetoresistive element according to claim 1, wherein the second protective film has a thickness of 1 to 10 μm.
(5)強磁性薄膜が形成された基板を真空中で150〜
350℃で加熱する第一工程と、該基板の該強磁性薄膜
の上にケイ素酸化物(SiO_x、ただし0.5≦x≦
2)の第一保護膜を形成する第二工程と、該第一保護膜
上に合成樹脂からなる第二保護膜を形成する第三工程と
からなることを特徴とする磁気抵抗素子の製造方法。
(5) The substrate on which the ferromagnetic thin film is formed is heated to
A first step of heating at 350°C and silicon oxide (SiO_x, where 0.5≦x≦
2) A method for manufacturing a magnetoresistive element, comprising a second step of forming a first protective film, and a third step of forming a second protective film made of synthetic resin on the first protective film. .
JP2139979A 1990-05-31 1990-05-31 Magnetoresistance element and manufacture thereof Pending JPH0435076A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2139979A JPH0435076A (en) 1990-05-31 1990-05-31 Magnetoresistance element and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2139979A JPH0435076A (en) 1990-05-31 1990-05-31 Magnetoresistance element and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH0435076A true JPH0435076A (en) 1992-02-05

Family

ID=15258122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2139979A Pending JPH0435076A (en) 1990-05-31 1990-05-31 Magnetoresistance element and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH0435076A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0616317A2 (en) * 1993-03-16 1994-09-21 Sharp Kabushiki Kaisha Thin film magnetic head and method of manufacturing the same
WO2004025745A1 (en) * 2002-09-13 2004-03-25 Matsushita Electric Industrial Co., Ltd. Magnetoresistance effect element and production method and application method therefor
JP4846955B2 (en) * 2000-04-06 2011-12-28 旭化成エレクトロニクス株式会社 Magnetoelectric transducer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0616317A2 (en) * 1993-03-16 1994-09-21 Sharp Kabushiki Kaisha Thin film magnetic head and method of manufacturing the same
EP0616317A3 (en) * 1993-03-16 1995-06-14 Sharp Kk Thin film magnetic head and method of manufacturing the same.
JP4846955B2 (en) * 2000-04-06 2011-12-28 旭化成エレクトロニクス株式会社 Magnetoelectric transducer
WO2004025745A1 (en) * 2002-09-13 2004-03-25 Matsushita Electric Industrial Co., Ltd. Magnetoresistance effect element and production method and application method therefor

Similar Documents

Publication Publication Date Title
KR100232667B1 (en) Exchange coupling film and magnetoresistive element
US6013365A (en) Multi-layer structure and sensor and manufacturing process
CN102867645B (en) Method for improving thermostability of anisotropic magnetoresistance permalloy film
EP3276365B1 (en) A sensor device with a soft magnetic alloy having reduced coercivity, and method for making same
EP0989411A2 (en) Magneto-impedance effect element
US7675286B2 (en) Magnetoresistive sensor device
JPH0435076A (en) Magnetoresistance element and manufacture thereof
EP1536490A1 (en) Magnetoresistance effect element and production method and application method therefor
US5916694A (en) Magneto-resistance element
JPH09148132A (en) Exchange bond film and magnetoresistance effect element
JPS63313880A (en) Ferromagnetic substance magnetic sensor
Takeuchi et al. Ferromagnetic Mn/C/Si films
Jagielinski Magnetic and galvanomagnetic properties of amorphous CoZr thin films
JP2527745B2 (en) Method for manufacturing ferromagnetic magnetoresistive element
US5539372A (en) Magnetic resistance element, method for preparing the same and magnetic sensor using the same
JP3050094B2 (en) Spin valve element
KR20010033533A (en) Magnetoresistant device and a magnetic sensor comprising the same
JPH06140687A (en) Magnetic film for magnetoresistance element and its manufacture
JP3756373B2 (en) Protective film for insulating substrate, thin film laminate, and thin film sensor
KR0180590B1 (en) Granular magnetroresistane element and its manufacture
JPS61233382A (en) Protective film for magneto-resistance sensor
JPH09237716A (en) Exchange bonding film, magnetoresistance effect element and method for manufacturing magnetoresistance effect element
KR100256069B1 (en) Manufacturing method for thin magnetic head
JP2005039010A (en) Magnetic sensor
JPS63310187A (en) Manufacture of ferromagnetic magneto resistance element