JP2005039010A - Magnetic sensor - Google Patents

Magnetic sensor Download PDF

Info

Publication number
JP2005039010A
JP2005039010A JP2003199280A JP2003199280A JP2005039010A JP 2005039010 A JP2005039010 A JP 2005039010A JP 2003199280 A JP2003199280 A JP 2003199280A JP 2003199280 A JP2003199280 A JP 2003199280A JP 2005039010 A JP2005039010 A JP 2005039010A
Authority
JP
Japan
Prior art keywords
magnetic sensor
bias magnet
magnetoresistive effect
effect element
protective film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003199280A
Other languages
Japanese (ja)
Other versions
JP4013853B2 (en
Inventor
Yukio Wakui
幸夫 涌井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Corp
Original Assignee
Yamaha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Corp filed Critical Yamaha Corp
Priority to JP2003199280A priority Critical patent/JP4013853B2/en
Priority to KR1020040055048A priority patent/KR100697123B1/en
Priority to EP04016744A priority patent/EP1498744B1/en
Priority to US10/891,451 priority patent/US7394086B2/en
Priority to TW093121410A priority patent/TWI283082B/en
Priority to CN200420065974.XU priority patent/CN2755623Y/en
Priority to CNB2004100699690A priority patent/CN100529789C/en
Publication of JP2005039010A publication Critical patent/JP2005039010A/en
Priority to US11/704,366 priority patent/US7633132B2/en
Application granted granted Critical
Publication of JP4013853B2 publication Critical patent/JP4013853B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Hall/Mr Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetic sensor in which adhesive properties between bias magnet layers and protective layers are improved and which is excellent in environmental resistance. <P>SOLUTION: In the magnetic sensor 10, a spin valve type magnetoresistive effect element 12 is provided on a substrate 11, and the bias magnet layers 14 composed of permanent magnet layers are connected to both ends of the element 12. At the same time, the protective films 17 are formed so as to cover the magnetoresistive effect element 12 and the top surfaces 14a of the magnet layers 14. The element 12 is installed so that bottom surfaces 12a of both ends of the element 12 may cover almost all areas of top surfaces 14a of the bias magnet layers 14. In peripheral edges of the bias magnet layers 14, intervals between side faces of both ends of the element 12 and side faces of the magnet layers 14 are adjusted so that the intervals may become ≤3 μm when the element 12 is viewed from the protective film 17 side. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、耐環境性に優れる磁気センサに関するものである。
【0002】
【従来の技術】
従来、巨大磁気抵抗素子(以下、「GMR素子」とも称する。)などの抵抗値を呈するスピンバルブ型の磁気抵抗効果素子を用いた磁気センサが提案され、実用に供されている。
このGMR素子は、磁化の向きが所定の向きにピン止めされたピンド層と、磁化の向きが外部磁界に対応して変化するフリー層とを備え、外部磁界が加わった場合に、ピンド層の磁化の向きとフリー層の磁化の向きとの相対関係に応じた抵抗値を呈するもので、この抵抗値を測定することで外部磁界を検出するようになっている。
【0003】
図11は、従来の磁気センサの概略構成を示す断面図である。
この磁気センサは、所定の厚みを有する石英またはシリコンウエハからなる基板101と、この基板101上に配されたGMR素子からなる磁気抵抗効果素子102と、この磁気抵抗効果素子102の両端にそれぞれ接続され、基板101上に非磁性材料からなる下地膜103を介して配された永久磁石膜からなるバイアス磁石層104と、磁気抵抗素子102およびバイアス磁石層104の上面を全て被覆するように設けられた酸化ケイ素膜からなる第一保護膜105と、窒化ケイ素膜からなる第二保護膜106とから概略構成されている(例えば、特許文献1参照。)。
ここで、第一保護膜105と第二保護膜106を併せて保護膜107と言うこともある。
【0004】
この磁気センサでは、磁気抵抗効果素子102の両端の下面が、バイアス磁石層104の上面の全域を覆っていない。そのため、バイアス磁石層104の上面の一部にかかった状態で接続されている。このような磁気センサは、熱冷サイクル試験などによって、バイアス磁石層104と保護膜107の界面において、保護膜107が剥離することがあった。
【0005】
【特許文献1】
特開平12−137906号公報
【0006】
【発明が解決しようとする課題】
本発明は、前記事情に鑑みてなされたもので、耐環境性に優れる磁気センサを提供することを課題とする。
【0007】
【課題を解決するための手段】
本発明は、上記課題を解決するために、基板上にスピンバルブ型の磁気抵抗効果素子が配され、該磁気抵抗効果素子の両端部には永久磁石膜からなるバイアス磁石層がそれぞれ接続されており、該磁気抵抗効果素子および該バイアス磁石層の上面を被覆するように保護膜が設けられた磁気センサにおいて、前記磁気抵抗効果素子の両端部の下面が、前記バイアス磁石層の上面の略全域を覆っている磁気センサを提供する。
【0008】
上記構成の磁気センサにおいて、前記バイアス磁石層の周縁部において、前記保護膜側から前記磁気抵抗効果素子を見たとき、前記磁気抵抗効果素子の両端部の側面と、前記バイアス磁石層の側面との間隔が3μmを超えないことが好ましい。
【0009】
【発明の実施の形態】
以下、本発明の磁気センサについて図面に基づき詳細に説明する。
図1は、本発明の磁気センサの一実施形態を示す概略断面図である。図2は、本発明の磁気センサの一実施形態における保護膜側から磁気抵抗効果素子を見た状態を示す概略平面図であり、(a)は全体図、(b)はバイアス磁石の周縁部を示す部分図である。
【0010】
この実施形態の磁気センサ10は、所定の厚みを有する石英またはシリコンウエハからなる基板11と、この基板11上に配されたGMR素子をなす磁気抵抗効果素子12と、この磁気抵抗効果素子12の両端部にそれぞれ接続され、基板11上に非磁性材料からなる下地膜13を介して配された永久磁石膜からなるバイアス磁石層14と、磁気抵抗素子12およびバイアス磁石層14の上面を全て被覆するように設けられた第一保護膜15と、この第一保護膜15の上面に設けられた第二保護膜16とから概略構成されている。
ここで、第一保護膜15と第二保護膜16を併せて保護膜17と言うこともある。
【0011】
磁気センサ10では、磁気抵抗効果素子12の両端部の下面12aが、バイアス磁石層14の上面14aのほぼ全域を覆うように設けられている。
【0012】
ここで、磁気抵抗効果素子12の両端部の下面12aが、バイアス磁石層14の上面14aのほぼ全域を覆うとは、次のようなことを示している。すなわち、図2に示すように、バイアス磁石層14の周縁部14dにおいて、磁気抵抗効果素子12の側面12bと、バイアス磁石層14の側面14bが同一面上に配されることなく、かつ、磁気抵抗効果素子12の側面12cと、バイアス磁石層14の側面14cが同一面上に配されることなく、磁気抵抗効果素子12の両端の下面12aが、上面14aを覆っていることを示している。
【0013】
また、磁気センサ10では、バイアス磁石層14の周縁部14dにおいて、保護膜17側から磁気抵抗効果素子12を見たときに、磁気抵抗効果素子12の両端部の側面と、バイアス磁石層14の側面との間隔が3μmを超えないように、磁気抵抗効果素子12の両端の下面12aが、上面14aを覆っている。すなわち、図2(b)に示すように、バイアス磁石層14の周縁部14dにおいて、磁気抵抗効果素子12の側面12bと、バイアス磁石層14の側面14bとの間隔d、および、磁気抵抗効果素子12の側面12cと、バイアス磁石層14の側面14cとの間隔dが3μmを超えないようになっている。
【0014】
磁気抵抗効果素子12の両端部の側面と、バイアス磁石層14の側面との間隔が3μmを超えると、バイアス磁石層14と保護膜17との密着性が不十分となり、熱冷サイクル試験などによって、外部から剪断応力を繰り返し加えた場合、バイアス磁石層14と保護膜17の界面において、保護膜17が剥離するおそれがある。
【0015】
磁気抵抗効果素子12は、例えば、フリー層、銅(Cu)からなる導電性のスペーサ層、コバルト−鉄(CoFe)合金からなるピンド層、白金−マンガン(PtMn)合金からなるピニング層、チタン(Ti)、タンタル(Ta)などの金属薄膜からなるキャッピング層が順次積層されてなるものである。
【0016】
フリー層は、外部磁界の向きに応じて磁化の向きが変化する層であり、例えば、コバルト−ジルコニウム−ニオブ(CoZrNb)アモルファス磁性層と、CoZrNbアモルファス磁性層上に積層されたニッケル−鉄(NiFe)磁性層と、NiFe磁性層上に積層されたコバルト−鉄(CoFe)層とから構成されている。
このフリー層には、その一軸異方性を維持するために、所定の方向にバイアス磁石層14によりバイアス磁界が付与されている。
【0017】
CoZrNbアモルファス磁性層とNiFe磁性層は、軟質の強磁性体であり、CoFe層はNiFe磁性層のニッケルおよびスペーサ層の銅の拡散を防止するものである。
【0018】
スペーサ層は、銅もしくは銅合金からなる金属薄膜である。
ピンド層は、コバルト−鉄(CoFe)磁性層により構成されている。このCoFe磁性層は、後述する反強磁性膜に交換結合的に裏打されることにより磁化の向きがピン止め(固着)されている。
【0019】
ピニング層は、CoFe磁性層上に積層された白金を45〜55mol%含むPtMn合金からなる反強磁性膜により構成されている。
これらピンド層とピニング層を併せてピン層と称する。
【0020】
下地膜13は、膜厚40nm程度のクロム(Cr)からなる金属薄膜である。
バイアス磁石層14は、膜厚90nm程度のコバルト−白金−クロム(CoCrPt)合金からなる金属薄膜である。
【0021】
第一保護膜15は、酸化ケイ素(SiO膜)からなる薄膜である。
第二保護膜16は、窒化ケイ素(SiN膜)からなる薄膜である。
【0022】
次に、図3および図4〜図10を用いて本発明に係る磁気センサの製造方法について説明する。
図3は、本発明に係る磁気センサの製造方法の手順を示すフローチャートである。図4〜図10は、本発明に係る磁気センサの製造方法を示す概略断面図である。
【0023】
この磁気センサの製造方法では、まず石英またはシリコンウエハからなる基板11を用意する。基板11には、あらかじめ磁気センサ制御用のLSI部分を形成しておくことができる。その場合には、工程Aにおいて、公知の方法にてトランジスタなどの素子、および配線、絶縁膜、コンタクトなどを形成し保護膜を形成し、この保護膜に接続用の開口部を形成しておく。
【0024】
次いで、図4に示すように、石英またはシリコンウエハからなる基板11の上面にスパッタリング法により、膜厚40nm程度のクロムからなる下地膜13を形成する。続いて、下地膜13の上面にスパッタリング法により、膜厚90nm程度のコバルト−白金−クロム合金からなるバイアス磁石層14を形成する(工程B−1)。
【0025】
次いで、図5に示すように、バイアス磁石層14の上面に、スピンコート法、ディップコート法などにより任意の厚みのフォトレジストを塗布し、このフォトレジストの表面に任意のパターンのマスクを配置して露光した後、現像処理を行って不必要なフォトレジストを除去する。続いて、フォトレジストを加熱してリフローさせ、両端部が曲面をなすようにレジスト膜20を形成する(工程B−2)。
【0026】
次いで、図6に示すように、イオンミリングにより、レジスト膜20で覆われていない部分の下地膜13およびバイアス磁石層14を除去すると同時に、下地膜13およびバイアス磁石層14を所定の形状に形成する(工程B−3)。この工程B−3において、レジスト膜20の両端部の曲面形状に応じて、イオンミリングにより、下地膜13およびバイアス磁石層14の側面が基板11に対して傾斜するように形成される。
【0027】
次いで、図7に示すように、アセトン、N−メチル−2−ピロリドンなどの洗浄液でレジスト膜20を除去し、バイアス磁石層14の表面を洗浄し、レジスト膜20を除去する(工程B−4)。
【0028】
次いで、図8に示すように、基板11の上面、下地膜13の側面、バイアス磁石層14の上面および側面に、イオンビームスパッタ法、マグネトロンスパッタ法などにより、磁気抵抗効果素子12を形成する(工程B−5)。
【0029】
次いで、外部空間に設けたマグネットアレイを、バイアス磁石層14に対して所定の位置に配置し、ピン層に対して所定の方向に磁場を印加する(工程B−6)。
【0030】
次いで、マグネットアレイと、バイアス磁石層14との配置を固定したまま、真空中にて、280℃で4時間熱処理する。これにより、磁気抵抗効果素子12のピン層のうち、ピニング層の規則化熱処理を行う(工程B−7)。
【0031】
次いで、マグネットアレイを所定の位置から取り外す(工程B−8)。
【0032】
次いで、図9に示すように、磁気抵抗効果素子12の上面に、スピンコート法、ディップコート法などにより任意の厚みのフォトレジストを塗布し、このフォトレジストの表面に任意のパターンのマスクを配置して露光した後、現像処理を行って不必要なフォトレジストを除去する。続いて、フォトレジストを加熱してリフローさせ、両端部が曲面をなすようにレジスト膜21を形成する(工程B−9)。
【0033】
次いで、イオンミリングにより、レジスト膜21で覆われていない部分の磁気抵抗効果素子12を除去すると同時に、磁気抵抗効果素子12を所定の形状に形成する(工程B−10)。この工程B−10において、レジスト膜21の両端部の曲面形状に応じて、イオンミリングにより、磁気抵抗効果素子12の側面が基板11に対して傾斜するように形成される。
【0034】
次いで、アセトン、N−メチル−2−ピロリドンなどの洗浄液でレジスト膜21を除去し、磁気抵抗効果素子12の表面を洗浄し、レジスト膜21を除去する(工程B−11)。
【0035】
次いで、磁気抵抗効果素子12の上面に、プラズマCVD法により、膜厚150nm程度の酸化ケイ素膜からなる第一保護膜15を形成する(工程B−12)。
【0036】
次いで、第一保護膜15の上面に、プラズマCVD法により、膜厚300nm程度の窒化ケイ素膜からなる第二保護膜16を形成する(工程B−13)。
ここで、第一保護膜15および第二保護膜16の上に、さらにポリイミド樹脂からなる第三保護膜を設けてもよい。
【0037】
次いで、工程Cにおいて、第一保護膜15および第二保護膜16の所定の箇所において開口し、パッドを形成した後、ウエハをダイシングして個々のチップに切断する。そして、個々のチップは樹脂により封止される。
【0038】
以下、実施例により本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。
【0039】
(実施例)
上述の本発明に係る磁気センサの製造方法に従って、膜厚5nmの磁気抵抗効果素子を有する磁気センサを作製した。
この際、バイアス磁石層の周縁部において、保護膜(素子の上面)側から磁気抵抗効果素子を見たとき、磁気抵抗効果素子の両端部の側面と、バイアス磁石層の側面との間隔dが1μm、2μm、3μmの磁気センサを作製した。
また、得られた磁気センサを用いて、プラスチックモールドパッケージを作製した。
【0040】
(1)密着性試験
磁気センサの上面(保護膜が設けられている側の面)にスコッチ3M社製のメンディングテープを貼付した後、このメンディングテープを引き剥がして、磁気センサのバイアス磁石層と保護膜の界面における剥離の有無を調べた。同様の試験を磁気センサ100個について行い、界面における剥離が生じた磁気センサの数を数えた。結果を表1に示す。
【0041】
(2)熱冷サイクル試験
磁気センサのプラスチックモールドパッケージを、−65℃で30分間保持、5分間で室温まで昇温、室温で30分間保持、5分間で150℃まで昇温、150℃で30分間保持、5分間で室温まで降温、室温で30分間保持、5分間で−65℃まで降温の温度サイクルを1サイクルとして500回繰り返し温度変化させる環境に放置した。
その後、このプラスチックモールドパッケージを、発煙硝酸を用いるエッチングにより開封し、磁気センサのバイアス磁石層と保護膜の界面における剥離の有無を調べた。同様の試験を磁気センサのプラスチックモールドパッケージ20個について行い、界面における剥離が生じた磁気センサの数を数えた。結果を表1に示す。
【0042】
(比較例)
上述の本発明に係る磁気センサの製造方法に準じて、膜厚50nmの磁気抵抗効果素子を有する磁気センサを作製した。
この際、バイアス磁石層の周縁部において、保護膜側から磁気抵抗効果素子を見たとき、磁気抵抗効果素子の両端部の側面と、バイアス磁石層の側面との間隔dが15μmの磁気センサを作製した。
また、得られた磁気センサを用いて、プラスチックモールドパッケージを作製した。
【0043】
実施例と同様にして、得られた磁気センサおよび磁気センサのプラスチックモールドパッケージについて、密着性試験および熱冷サイクル試験を行った。結果を表1に示す。
【0044】
【表1】

Figure 2005039010
【0045】
表1の結果から、実施例の磁気センサは、バイアス磁石層と保護膜との密着性に優れ、耐環境性にも優れたものであることが確認された。
一方、比較例の磁気センサは、バイアス磁石層と保護膜との密着性が不十分であるため、耐環境性にも劣るものであることが確認された。
【0046】
【発明の効果】
以上説明したように、本発明の磁気センサは、磁気抵抗効果素子の両端部の下面が、バイアス磁石層の上面の略全域を覆うように、磁気抵抗効果素子を設けることにより、バイアス磁石層と保護膜との密着性が向上し、耐環境性、特に温度変化に対する耐性に優れ、信頼性の高いものとなる。
【図面の簡単な説明】
【図1】本発明の磁気センサの一実施形態を示す概略断面図である。
【図2】本発明の磁気センサの一実施形態における保護膜側から磁気抵抗効果素子を見た状態を示す概略平面図であり、(a)は全体図、(b)はバイアス磁石の周縁部を示す部分図である。
【図3】本発明に係る磁気センサの製造方法の手順を示すフローチャートである。
【図4】本発明に係る磁気センサの製造方法を示す概略断面図である。
【図5】本発明に係る磁気センサの製造方法を示す概略断面図である。
【図6】本発明に係る磁気センサの製造方法を示す概略断面図である。
【図7】本発明に係る磁気センサの製造方法を示す概略断面図である。
【図8】本発明に係る磁気センサの製造方法を示す概略断面図である。
【図9】本発明に係る磁気センサの製造方法を示す概略断面図である。
【図10】本発明に係る磁気センサの製造方法を示す概略断面図である。
【図11】従来の磁気センサの概略構成を示す断面図である。
【符号の説明】
10・・・磁気センサ、11・・・基板、12・・・磁気抵抗効果素子、13・・・下地膜、14・・・バイアス磁石層、14d・・・周縁部、15・・・第一保護膜、16・・・第二保護膜、17・・・保護膜、20,21・・・レジスト膜。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a magnetic sensor having excellent environmental resistance.
[0002]
[Prior art]
Conventionally, a magnetic sensor using a spin-valve magnetoresistive element exhibiting a resistance value such as a giant magnetoresistive element (hereinafter also referred to as “GMR element”) has been proposed and put into practical use.
This GMR element includes a pinned layer whose magnetization direction is pinned in a predetermined direction, and a free layer whose magnetization direction changes in response to an external magnetic field, and when an external magnetic field is applied, It exhibits a resistance value corresponding to the relative relationship between the magnetization direction and the magnetization direction of the free layer, and an external magnetic field is detected by measuring this resistance value.
[0003]
FIG. 11 is a cross-sectional view showing a schematic configuration of a conventional magnetic sensor.
This magnetic sensor is connected to a substrate 101 made of a quartz or silicon wafer having a predetermined thickness, a magnetoresistive effect element 102 made of a GMR element disposed on the substrate 101, and both ends of the magnetoresistive effect element 102. The bias magnet layer 104 made of a permanent magnet film disposed on the substrate 101 through the base film 103 made of a nonmagnetic material, and the upper surface of the magnetoresistive element 102 and the bias magnet layer 104 are all covered. The first protective film 105 made of a silicon oxide film and the second protective film 106 made of a silicon nitride film are roughly configured (see, for example, Patent Document 1).
Here, the first protective film 105 and the second protective film 106 may be collectively referred to as a protective film 107.
[0004]
In this magnetic sensor, the lower surfaces of both ends of the magnetoresistive effect element 102 do not cover the entire upper surface of the bias magnet layer 104. Therefore, the bias magnet layer 104 is connected so as to cover a part of the upper surface. In such a magnetic sensor, the protective film 107 may peel off at the interface between the bias magnet layer 104 and the protective film 107 due to a thermal cooling cycle test or the like.
[0005]
[Patent Document 1]
JP-A-12-137906 [0006]
[Problems to be solved by the invention]
This invention is made | formed in view of the said situation, and makes it a subject to provide the magnetic sensor excellent in environmental resistance.
[0007]
[Means for Solving the Problems]
In order to solve the above problems, the present invention provides a spin-valve magnetoresistive element on a substrate, and a bias magnet layer made of a permanent magnet film is connected to both ends of the magnetoresistive element. In the magnetic sensor provided with a protective film so as to cover the magnetoresistive effect element and the upper surface of the bias magnet layer, the lower surface of both end portions of the magnetoresistive effect element is substantially the entire upper surface of the bias magnet layer. A magnetic sensor covering the surface is provided.
[0008]
In the magnetic sensor having the above-described configuration, when the magnetoresistive effect element is viewed from the protective film side at the periphery of the bias magnet layer, the side surfaces of both end portions of the magnetoresistive effect element, the side surfaces of the bias magnet layer, It is preferable that the interval of the distance does not exceed 3 μm.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the magnetic sensor of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic sectional view showing an embodiment of the magnetic sensor of the present invention. FIG. 2 is a schematic plan view showing a state in which the magnetoresistive effect element is viewed from the protective film side in one embodiment of the magnetic sensor of the present invention, (a) is an overall view, and (b) is a peripheral portion of the bias magnet. FIG.
[0010]
The magnetic sensor 10 of this embodiment includes a substrate 11 made of a quartz or silicon wafer having a predetermined thickness, a magnetoresistive effect element 12 constituting a GMR element disposed on the substrate 11, and the magnetoresistive effect element 12. A bias magnet layer 14 made of a permanent magnet film connected to both ends and disposed on a substrate 11 via a base film 13 made of a nonmagnetic material, and the upper surfaces of the magnetoresistive element 12 and the bias magnet layer 14 are all covered. The first protective film 15 provided in such a manner and the second protective film 16 provided on the upper surface of the first protective film 15 are schematically configured.
Here, the first protective film 15 and the second protective film 16 may be collectively referred to as a protective film 17.
[0011]
In the magnetic sensor 10, the lower surfaces 12 a at both ends of the magnetoresistive effect element 12 are provided so as to cover almost the entire area of the upper surface 14 a of the bias magnet layer 14.
[0012]
Here, the fact that the lower surfaces 12a at both ends of the magnetoresistive effect element 12 cover almost the entire area of the upper surface 14a of the bias magnet layer 14 indicates the following. That is, as shown in FIG. 2, the side surface 12b of the magnetoresistive effect element 12 and the side surface 14b of the bias magnet layer 14 are not arranged on the same surface in the peripheral portion 14d of the bias magnet layer 14, and magnetically The side surface 12c of the resistive effect element 12 and the side surface 14c of the bias magnet layer 14 are not arranged on the same plane, and the lower surface 12a at both ends of the magnetoresistive effect element 12 covers the upper surface 14a. .
[0013]
Further, in the magnetic sensor 10, when the magnetoresistive effect element 12 is viewed from the protective film 17 side at the peripheral edge 14 d of the bias magnet layer 14, the side surfaces of both ends of the magnetoresistive effect element 12 and the bias magnet layer 14. The lower surface 12a at both ends of the magnetoresistive effect element 12 covers the upper surface 14a so that the distance from the side surface does not exceed 3 μm. That is, as shown in FIG. 2B, in the peripheral portion 14d of the bias magnet layer 14, the distance d 1 between the side surface 12b of the magnetoresistive effect element 12 and the side surface 14b of the bias magnet layer 14, and the magnetoresistive effect and the side 12c of the element 12, the distance d 2 between the side surface 14c of the bias magnetic layer 14 is adapted to not exceed 3 [mu] m.
[0014]
When the distance between the side surfaces of both end portions of the magnetoresistive effect element 12 and the side surface of the bias magnet layer 14 exceeds 3 μm, the adhesion between the bias magnet layer 14 and the protective film 17 becomes insufficient, and a thermal cooling cycle test or the like is performed. When the shear stress is repeatedly applied from the outside, the protective film 17 may be peeled off at the interface between the bias magnet layer 14 and the protective film 17.
[0015]
The magnetoresistive effect element 12 includes, for example, a free layer, a conductive spacer layer made of copper (Cu), a pinned layer made of a cobalt-iron (CoFe) alloy, a pinning layer made of a platinum-manganese (PtMn) alloy, titanium ( A capping layer made of a metal thin film such as Ti) or tantalum (Ta) is sequentially laminated.
[0016]
The free layer is a layer whose magnetization direction changes in accordance with the direction of the external magnetic field. ) A magnetic layer and a cobalt-iron (CoFe) layer laminated on the NiFe magnetic layer.
A bias magnetic field is applied to the free layer by the bias magnet layer 14 in a predetermined direction in order to maintain the uniaxial anisotropy.
[0017]
The CoZrNb amorphous magnetic layer and the NiFe magnetic layer are soft ferromagnets, and the CoFe layer prevents diffusion of nickel in the NiFe magnetic layer and copper in the spacer layer.
[0018]
The spacer layer is a metal thin film made of copper or a copper alloy.
The pinned layer is composed of a cobalt-iron (CoFe) magnetic layer. The direction of magnetization of this CoFe magnetic layer is pinned (fixed) by being backed by an exchange coupling to an antiferromagnetic film described later.
[0019]
The pinning layer is composed of an antiferromagnetic film made of a PtMn alloy containing 45 to 55 mol% of platinum laminated on the CoFe magnetic layer.
These pinned layer and pinning layer are collectively referred to as a pinned layer.
[0020]
The base film 13 is a metal thin film made of chromium (Cr) having a thickness of about 40 nm.
The bias magnet layer 14 is a metal thin film made of a cobalt-platinum-chromium (CoCrPt) alloy having a thickness of about 90 nm.
[0021]
The first protective film 15 is a thin film made of silicon oxide (SiO x film).
The second protective film 16 is a thin film made of silicon nitride (SiN y film).
[0022]
Next, a method for manufacturing a magnetic sensor according to the present invention will be described with reference to FIGS. 3 and 4 to 10.
FIG. 3 is a flowchart showing the procedure of the method of manufacturing the magnetic sensor according to the present invention. 4-10 is schematic sectional drawing which shows the manufacturing method of the magnetic sensor based on this invention.
[0023]
In this magnetic sensor manufacturing method, a substrate 11 made of quartz or a silicon wafer is first prepared. An LSI portion for controlling a magnetic sensor can be formed in advance on the substrate 11. In that case, in step A, an element such as a transistor, a wiring, an insulating film, a contact, and the like are formed by a known method to form a protective film, and a connection opening is formed in the protective film. .
[0024]
Next, as shown in FIG. 4, a base film 13 made of chromium having a thickness of about 40 nm is formed on the upper surface of the substrate 11 made of quartz or a silicon wafer by sputtering. Subsequently, a bias magnet layer 14 made of a cobalt-platinum-chromium alloy having a thickness of about 90 nm is formed on the upper surface of the base film 13 by a sputtering method (step B-1).
[0025]
Next, as shown in FIG. 5, a photoresist having an arbitrary thickness is applied to the upper surface of the bias magnet layer 14 by a spin coating method, a dip coating method, or the like, and a mask having an arbitrary pattern is disposed on the surface of the photoresist. After the exposure, development processing is performed to remove unnecessary photoresist. Subsequently, the photoresist is heated and reflowed, and a resist film 20 is formed so that both end portions are curved (step B-2).
[0026]
Next, as shown in FIG. 6, the base film 13 and the bias magnet layer 14 that are not covered with the resist film 20 are removed by ion milling, and at the same time, the base film 13 and the bias magnet layer 14 are formed in a predetermined shape. (Step B-3). In this step B-3, the side surfaces of the base film 13 and the bias magnet layer 14 are formed so as to be inclined with respect to the substrate 11 by ion milling according to the curved surface shapes at both ends of the resist film 20.
[0027]
Next, as shown in FIG. 7, the resist film 20 is removed with a cleaning liquid such as acetone or N-methyl-2-pyrrolidone, the surface of the bias magnet layer 14 is washed, and the resist film 20 is removed (step B-4). ).
[0028]
Next, as shown in FIG. 8, the magnetoresistive effect element 12 is formed on the upper surface of the substrate 11, the side surface of the base film 13, and the upper and side surfaces of the bias magnet layer 14 by ion beam sputtering, magnetron sputtering, or the like ( Step B-5).
[0029]
Next, the magnet array provided in the external space is disposed at a predetermined position with respect to the bias magnet layer 14, and a magnetic field is applied to the pinned layer in a predetermined direction (step B-6).
[0030]
Next, heat treatment is performed at 280 ° C. for 4 hours in a vacuum while the arrangement of the magnet array and the bias magnet layer 14 is fixed. Thereby, the ordering heat treatment of the pinning layer among the pinned layers of the magnetoresistive effect element 12 is performed (step B-7).
[0031]
Next, the magnet array is removed from a predetermined position (step B-8).
[0032]
Next, as shown in FIG. 9, a photoresist having an arbitrary thickness is applied to the upper surface of the magnetoresistive element 12 by a spin coating method, a dip coating method, or the like, and a mask having an arbitrary pattern is disposed on the surface of the photoresist. After the exposure, development processing is performed to remove unnecessary photoresist. Subsequently, the photoresist is heated and reflowed, and a resist film 21 is formed so that both end portions are curved (step B-9).
[0033]
Next, the portion of the magnetoresistive effect element 12 that is not covered with the resist film 21 is removed by ion milling, and at the same time, the magnetoresistive effect element 12 is formed into a predetermined shape (step B-10). In Step B-10, the side surface of the magnetoresistive effect element 12 is formed so as to be inclined with respect to the substrate 11 by ion milling according to the curved surface shape of both end portions of the resist film 21.
[0034]
Next, the resist film 21 is removed with a cleaning liquid such as acetone or N-methyl-2-pyrrolidone, the surface of the magnetoresistive effect element 12 is washed, and the resist film 21 is removed (step B-11).
[0035]
Next, a first protective film 15 made of a silicon oxide film having a thickness of about 150 nm is formed on the upper surface of the magnetoresistive effect element 12 by a plasma CVD method (step B-12).
[0036]
Next, a second protective film 16 made of a silicon nitride film having a film thickness of about 300 nm is formed on the upper surface of the first protective film 15 by plasma CVD (step B-13).
Here, a third protective film made of polyimide resin may be further provided on the first protective film 15 and the second protective film 16.
[0037]
Next, in Step C, openings are formed at predetermined locations of the first protective film 15 and the second protective film 16 to form pads, and then the wafer is diced and cut into individual chips. Each chip is sealed with resin.
[0038]
EXAMPLES Hereinafter, although an Example demonstrates this invention further more concretely, this invention is not limited to a following example.
[0039]
(Example)
A magnetic sensor having a magnetoresistive effect element having a film thickness of 5 nm was manufactured according to the method for manufacturing a magnetic sensor according to the present invention described above.
At this time, when the magnetoresistive element is viewed from the side of the protective film (the upper surface of the element) at the periphery of the bias magnet layer, the distance d between the side surfaces of both ends of the magnetoresistive element and the side surfaces of the bias magnet layer is Magnetic sensors of 1 μm, 2 μm and 3 μm were produced.
Also, a plastic mold package was produced using the obtained magnetic sensor.
[0040]
(1) Adhesion test After applying a scotch 3M mending tape to the upper surface (the surface on which the protective film is provided) of the magnetic sensor, the mending tape is peeled off, and the bias magnet of the magnetic sensor The presence or absence of peeling at the interface between the layer and the protective film was examined. A similar test was performed on 100 magnetic sensors, and the number of magnetic sensors in which peeling at the interface occurred was counted. The results are shown in Table 1.
[0041]
(2) Thermal Cooling Cycle Test The plastic mold package of the magnetic sensor is held at −65 ° C. for 30 minutes, raised to room temperature in 5 minutes, held at room temperature for 30 minutes, raised to 150 ° C. in 5 minutes, and 30 ° C. at 30 ° C. The temperature cycle was held for 5 minutes, lowered to room temperature in 5 minutes, held at room temperature for 30 minutes, lowered to -65 ° C in 5 minutes, and left in an environment where the temperature was changed 500 times repeatedly.
Thereafter, the plastic mold package was opened by etching using fuming nitric acid, and the presence or absence of peeling at the interface between the bias magnet layer and the protective film of the magnetic sensor was examined. A similar test was performed on 20 plastic mold packages of the magnetic sensor, and the number of magnetic sensors in which peeling at the interface occurred was counted. The results are shown in Table 1.
[0042]
(Comparative example)
A magnetic sensor having a magnetoresistive effect element having a film thickness of 50 nm was manufactured according to the above-described method for manufacturing a magnetic sensor according to the present invention.
At this time, when the magnetoresistive element is viewed from the protective film side at the periphery of the bias magnet layer, a magnetic sensor having a distance d of 15 μm between the side surfaces of both ends of the magnetoresistive element and the side surface of the bias magnet layer is used. Produced.
Also, a plastic mold package was produced using the obtained magnetic sensor.
[0043]
In the same manner as in the examples, the adhesion test and the thermal cooling cycle test were performed on the obtained magnetic sensor and the plastic mold package of the magnetic sensor. The results are shown in Table 1.
[0044]
[Table 1]
Figure 2005039010
[0045]
From the results in Table 1, it was confirmed that the magnetic sensor of the example was excellent in adhesion between the bias magnet layer and the protective film and excellent in environmental resistance.
On the other hand, it was confirmed that the magnetic sensor of the comparative example was inferior in environmental resistance due to insufficient adhesion between the bias magnet layer and the protective film.
[0046]
【The invention's effect】
As described above, the magnetic sensor according to the present invention includes the magnetoresistive effect element and the bias magnet layer so that the lower surfaces of both ends of the magnetoresistive effect element cover substantially the entire upper surface of the bias magnet layer. Adhesion with the protective film is improved, and the environment resistance, in particular, resistance to temperature change is excellent and the reliability is high.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing an embodiment of a magnetic sensor of the present invention.
2A and 2B are schematic plan views showing a state in which a magnetoresistive element is viewed from the protective film side in an embodiment of the magnetic sensor of the present invention, wherein FIG. 2A is an overall view, and FIG. 2B is a peripheral portion of a bias magnet. FIG.
FIG. 3 is a flowchart showing a procedure of a method for manufacturing a magnetic sensor according to the present invention.
FIG. 4 is a schematic cross-sectional view showing a method for manufacturing a magnetic sensor according to the present invention.
FIG. 5 is a schematic cross-sectional view showing a method for manufacturing a magnetic sensor according to the present invention.
FIG. 6 is a schematic cross-sectional view showing a method for manufacturing a magnetic sensor according to the present invention.
FIG. 7 is a schematic cross-sectional view showing a method for manufacturing a magnetic sensor according to the present invention.
FIG. 8 is a schematic cross-sectional view showing a method for manufacturing a magnetic sensor according to the present invention.
FIG. 9 is a schematic cross-sectional view showing a method for manufacturing a magnetic sensor according to the present invention.
FIG. 10 is a schematic cross-sectional view showing a method for manufacturing a magnetic sensor according to the present invention.
FIG. 11 is a cross-sectional view showing a schematic configuration of a conventional magnetic sensor.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Magnetic sensor, 11 ... Board | substrate, 12 ... Magnetoresistive element, 13 ... Underlayer, 14 ... Bias magnet layer, 14d ... Peripheral part, 15 ... 1st Protective film, 16 ... second protective film, 17 ... protective film, 20, 21 ... resist film.

Claims (2)

基板上にスピンバルブ型の磁気抵抗効果素子が配され、該磁気抵抗効果素子の両端部には永久磁石膜からなるバイアス磁石層がそれぞれ接続されており、該磁気抵抗効果素子および該バイアス磁石層の上面を被覆するように保護膜が設けられた磁気センサにおいて、
前記磁気抵抗効果素子の両端部の下面が、前記バイアス磁石層の上面の略全域を覆っていることを特徴とする磁気センサ。
A spin valve type magnetoresistive effect element is disposed on a substrate, and a bias magnet layer made of a permanent magnet film is connected to both ends of the magnetoresistive effect element. The magnetoresistive effect element and the bias magnet layer In a magnetic sensor provided with a protective film so as to cover the upper surface of
The magnetic sensor according to claim 1, wherein lower surfaces of both end portions of the magnetoresistive effect element cover substantially the entire upper surface of the bias magnet layer.
前記バイアス磁石層の周縁部において、前記保護膜側から前記磁気抵抗効果素子を見たとき、前記磁気抵抗効果素子の両端部の側面と、前記バイアス磁石層の側面との間隔が3μmを超えないことを特徴とする請求項1に記載の磁気センサ。When the magnetoresistive effect element is viewed from the protective film side at the peripheral edge of the bias magnet layer, the distance between the side surfaces of both end portions of the magnetoresistive effect element and the side surface of the bias magnet layer does not exceed 3 μm. The magnetic sensor according to claim 1.
JP2003199280A 2003-07-18 2003-07-18 Magnetic sensor Expired - Fee Related JP4013853B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2003199280A JP4013853B2 (en) 2003-07-18 2003-07-18 Magnetic sensor
EP04016744A EP1498744B1 (en) 2003-07-18 2004-07-15 Magnetic sensor and manufacturing method therefor
US10/891,451 US7394086B2 (en) 2003-07-18 2004-07-15 Magnetic sensor and manufacturing method therefor
KR1020040055048A KR100697123B1 (en) 2003-07-18 2004-07-15 Magnetic sensor and manufacturing method therefor
TW093121410A TWI283082B (en) 2003-07-18 2004-07-16 Magnetic sensor and manufacturing method therefor
CN200420065974.XU CN2755623Y (en) 2003-07-18 2004-07-16 Magnetic sensor
CNB2004100699690A CN100529789C (en) 2003-07-18 2004-07-16 Magnetic sensor and manufacturing method therefor
US11/704,366 US7633132B2 (en) 2003-07-18 2007-02-09 Magnetic sensor and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003199280A JP4013853B2 (en) 2003-07-18 2003-07-18 Magnetic sensor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007102148A Division JP4640370B2 (en) 2007-04-09 2007-04-09 Magnetic sensor

Publications (2)

Publication Number Publication Date
JP2005039010A true JP2005039010A (en) 2005-02-10
JP4013853B2 JP4013853B2 (en) 2007-11-28

Family

ID=34208785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003199280A Expired - Fee Related JP4013853B2 (en) 2003-07-18 2003-07-18 Magnetic sensor

Country Status (2)

Country Link
JP (1) JP4013853B2 (en)
CN (1) CN2755623Y (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006261400A (en) * 2005-03-17 2006-09-28 Yamaha Corp Magnetic sensor and its fabrication process
JP2006261401A (en) * 2005-03-17 2006-09-28 Yamaha Corp Magnetic sensor and its fabrication process
JP2010197399A (en) * 2010-04-01 2010-09-09 Mitsubishi Electric Corp Magnetic field detector, and method for regulating the same
US8178361B2 (en) 2005-03-17 2012-05-15 Yamaha Corporation Magnetic sensor and manufacturing method therefor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006261400A (en) * 2005-03-17 2006-09-28 Yamaha Corp Magnetic sensor and its fabrication process
JP2006261401A (en) * 2005-03-17 2006-09-28 Yamaha Corp Magnetic sensor and its fabrication process
US8178361B2 (en) 2005-03-17 2012-05-15 Yamaha Corporation Magnetic sensor and manufacturing method therefor
US9054028B2 (en) 2005-03-17 2015-06-09 Yamaha Corporation Magnetic sensor and manufacturing method therefor
JP2010197399A (en) * 2010-04-01 2010-09-09 Mitsubishi Electric Corp Magnetic field detector, and method for regulating the same

Also Published As

Publication number Publication date
JP4013853B2 (en) 2007-11-28
CN2755623Y (en) 2006-02-01

Similar Documents

Publication Publication Date Title
KR100697123B1 (en) Magnetic sensor and manufacturing method therefor
US8617644B2 (en) Method for making a current-perpendicular-to-the-plane (CPP) magnetoresistive sensor containing a ferromagnetic alloy requiring post-deposition annealing
JP4630544B2 (en) A method of orienting the magnetization direction of a magnetic layer of a selected magnetic element out of a plurality of magnetic elements constituting a bridge structure in a direction opposite to the magnetization direction of a magnetic layer of another magnetic element
US7589528B2 (en) Magnetic sensor formed of magnetoresistance effect elements
JP3959881B2 (en) Method for manufacturing magnetoresistive sensor
JPH0845032A (en) Spin-bulb magnetoresistance element and related apparatus/method
US9076467B2 (en) Current-perpendicular-to-the-plane (CPP) magnetoresistive sensor with multilayer reference layer including a crystalline CoFeX layer and a Heusler alloy layer
JP2008306112A (en) Magneto-resistance effect film, magnetic sensor, and rotation angle detecting device
JP5348080B2 (en) Magnetic sensor and manufacturing method thereof
JP4013853B2 (en) Magnetic sensor
JP4640370B2 (en) Magnetic sensor
JP2001028108A (en) Manufacture of magnetoresistive head
JPH08221719A (en) Spin valve magnetic resistance head and its production
JPH11273033A (en) Magnetoresistance multi-layer film and thin film magnetic head provided with its multi-layer film
US8091209B1 (en) Magnetic sensing device including a sense enhancing layer
JP4549639B2 (en) Magnetic sensor
JP5089853B2 (en) Manufacturing method of magnetic sensor
JP4821687B2 (en) Magnetic sensor and manufacturing method thereof
CN110199352B (en) Magnetoresistive element and method for manufacturing magnetoresistive element
JP4896800B2 (en) Magnetic sensor and manufacturing method thereof
JP2008085185A (en) Magnetoresistance effect element, its manufacturing method, and magnetic storage device
US12044755B2 (en) Magnetic sensor chip and magnetic sensor device
JP2001006932A (en) Magnetoresistive film and magnetic reading sensor using the same
JP2004093576A (en) Magnetic sensor
JP3203553B2 (en) Rotation or position detection device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070409

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070709

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070903

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110921

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120921

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130921

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees