JP2519564B2 - 強誘電性液晶素子 - Google Patents

強誘電性液晶素子

Info

Publication number
JP2519564B2
JP2519564B2 JP2063367A JP6336790A JP2519564B2 JP 2519564 B2 JP2519564 B2 JP 2519564B2 JP 2063367 A JP2063367 A JP 2063367A JP 6336790 A JP6336790 A JP 6336790A JP 2519564 B2 JP2519564 B2 JP 2519564B2
Authority
JP
Japan
Prior art keywords
liquid crystal
general formula
group
compound
ferroelectric liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2063367A
Other languages
English (en)
Other versions
JPH0348220A (ja
Inventor
充浩 向殿
知明 倉立
文明 船田
和彦 坂口
喜和 竹平
豊 塩見
徹 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daisoo Kk
Consejo Superior de Investigaciones Cientificas CSIC
Original Assignee
Daisoo Kk
Consejo Superior de Investigaciones Cientificas CSIC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daisoo Kk, Consejo Superior de Investigaciones Cientificas CSIC filed Critical Daisoo Kk
Priority to JP2063367A priority Critical patent/JP2519564B2/ja
Publication of JPH0348220A publication Critical patent/JPH0348220A/ja
Application granted granted Critical
Publication of JP2519564B2 publication Critical patent/JP2519564B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Liquid Crystal Substances (AREA)

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は強誘電性液晶素子に関し、更に詳しくは、基
板,電圧印加手段,配向制御層,及び強誘電性液晶層を
有する強誘電性液晶素子において、特定の強誘電性液晶
組成物を前述の強誘電性液晶層に含有した強誘電性液晶
素子に関するものである。
(ロ)従来の技術 現在、最も広く用いられている液晶表示素子はネマチ
ック相を利用したものであるが、1000×1000ライン等の
大容量表示が困難という欠点を有している。例えば、通
常のツイステッドネマチック(TN)型液晶表示素子では
ライン数の増加に伴ってコントラストが低下するので、
見栄えのよい1000×1000ラインなどの大容量表示素子を
作ることは事実上可能である。このTN型液晶表示素子の
欠点を改良するためスーパーツイステッドネマチック
(STN)型液晶表示素子,ダブルスーパーツイステッド
ネマチック(DSTN)型液晶表示素子が開発されている
が、ライン数の増加と共にコントラスト,応答速度が低
下するという欠点があり、現状では400×720ライン程度
の表示容量が限界である。一方、基板上に薄膜トランジ
スタ(TFT)を配列したアクティブマトリックス方式の
液晶表示素子も開発され、1000×1000ライン等の大容量
表示も技術的には可能であるが、製造プロセスが長く、
歩留りが悪いため、製造コストが非常に高くなるという
欠点を有している。
以上のべた問題点を改善する手段として有望視されて
いるのが、TN型表示素子とは別な原理による液晶ディス
プレイとして提案された強誘電性液晶素子(N.A.Clark
et al.,Appl.Phys.Lett.,36,899(1980)参照)であ
る。この表示方法は強誘電性液晶であカイラルスメクチ
ックC相,カイラルスメクチックI相などを利用するも
のである。メモリー性を利用する方式であることから、
応答速度の向上にともなって表示の大容量化が可能であ
り、また薄膜トランジスタなどのアクティブ素子を必要
としないことから、製造コストも上がらない。また強誘
電性液晶素子は視角が広いという長所も兼ね備えてお
り、1000×1000ライン等の大容量表示用の素子として大
いに有望視されている。
(ハ)発明が解決しようとする課題 上記のスメクチックC相を利用した強誘電性液晶表示
において、これに用いる液晶材料は室温付近を中心に広
い温度範囲でスメクチックC相を示す必要があるのはも
ちろんのこと、そのほかにも種々の条件を満たすことが
必要である。まず、大容量表示を行うためにデバイス特
性として高速応答性が必要で、この観点から液晶材料に
は高い自発分極と低い粘性とが要求される。また、液晶
セルに適用した場合に良好な配向性と双安定性とが得ら
れることが必要であり、さらに液晶表示のコントラス
ト,明るさに関係するチルト角度にも大きな値が望まれ
る。
しかしながら、現在のところ単一化合物で望まれる条
件を総て満たすことは不可能であり、通常、複数の化合
物を混合して液晶組成物として素子に適用している。実
用可能な条件を満たす液晶組成物を作成するためには多
様な性質をもった数多くの単品液晶化合物が必要とな
り、ときには、それ自身液晶性を示さない化合物が液晶
組成物の成分として有用となる可能性もある。
本発明はこのような条件下でなされたものであり、動
作温度範囲が広く、良好な配向性,メモリ性を示し、室
温で高速応答性を示す強誘電性液晶素子を提供すること
にある。
(ニ)課題を解決するための手段及び作用 本発明の目的は、それぞれ電圧印加手段を設けた一対
の基板の少なくとも一方に配向制御層を設け、該一対の
基板間に強誘電性液晶層を有する強誘電性液晶素子にお
いて、該強誘電性液晶が下記式(I)で表される光学活
性基を有する化合物を少なくとも一種以上、およびネマ
チック相中において誘起する螺旋ピッチの向きが式
(I)で表される光学活性基を有する化合物とは逆であ
る化合物を少なくとも一種含有し、かつ少なくともスメ
クチックC相,スメクチックA相,及び螺旋ピッチが20
μm以上のネマチック相を示すことを特徴とする強誘電
性液晶素子によって達成される。(尚、カイラルスメク
チックC相とノンカイラルのスメクチックC相とは熱力
学的には同じと考えられているので、本発明においては
両者を区別せずにスメクチックC相と標記するものとす
る。同様にカイラルネマチック相とノンカイラルのネマ
チック相も熱力学的に同じと考えられているので本発明
においては両者を区別することなく、ネマチック相と標
記するものとする。) (式(I)中、*はその炭素原子が不斉炭素原子である
ことを示す。) 式(I)で表される光学活性基にはシス体及びトラン
ス体があるが、いずれでも本発明に用いることができ、
両者を混合して用いてもよい。
一般式(I)で表される光学活性基を有する化合物と
しては一般式(II)のような化合物を用いることができ
る。
(一般式(II)中、A1,A2及びA3は置換基を有していて
もよい含六員環基を示し、Xは−O−,−COO−,−OCO
−又は単結合を示し、Y1及びY2は−COO−,−OCO−,−
OCH2−,−CH2O−,−CH2CH2−,−CH=CH−,−C≡C
−又は単結合を示し、R1及びR2は炭素数1〜15の直鎖状
もしくは分岐状アルキル基を示し、p,q及びrは0又は
1であり、*はその炭素原子が不斉炭素原子であること
を示す。) 上記式(II)のR1およびR2には、メチル,エチル,プ
ロピル,i−プロピル,ブチル,i−ブチル,ペンチル,1−
又は2−メチルブチル,ヘキシル,1−又は3−メチルペ
ンチル,ヘプチル,1−又は4−メチルヘキシル,オクチ
ル,1−メチルヘプチル,ノニル,1−又は6−メチルオク
チル,デシル,1−メチルノニル,ウンデシル,1−メチル
デシル,ドデシル,1−メチルウンデシルなどが含まれ
る。これらのアルキル基中で炭素鎖に不斉炭素原子が含
まれてもよい。
一般式(II)のA1,A2,A3にはベンゼン環,ピリジン
環,ピリミジン環,ピラジン環,ピリダジン環,ピペラ
ジン環,シクロヘキサン環,ジオキサシクロヘキサン
環,ビシクロ[2,2,2]オクタン環,ナフタレン環など
の含六員環基などが含まれ、これらの含六員環基のひと
つ又は複数の水素原子がフッ素原子,塩素原子,臭素原
子,シアノ基,ニトロ基,メチル基,メトキシ基などで
置換されていてもよい。
上記一般式(II)で示される化合物の好ましい例とし
ては、下記一般式で示される化合物群が挙げられる。下
記一般式において、e及びfはそれぞれ独立して0又は
1であり、X1はハロゲン原子又はシアノ基である。
また一般式(I)で表される光学活性基を有する化合
物としては、下記一般式(II′)のような化合物を用い
ることができる。
(一般式(II′)中、A7を示し、X2は−O−又は単結合を示し、R10及びR11はそ
れぞれ独立して炭素数1〜15のアルキル基又は炭素数2
〜15のアルケニル基を示し、d及びfはそれぞれ独立し
て0又は1であり、*はその炭素原子が不斉炭素原子で
あることを示す。) 上記一般式(II)−1〜(II)−7及び一般式(I
I′)の化合物の具体例の代表的なものを表1〜2に示
す。
表1〜2中、mpは相転移温度を示し、数値はC→1を
示す。
なお、相転移温度の符号は以下の相を示す。
C:結晶相 SmA:スメクティックA相 SmCカイラルスメクティックC相 N:ネマティック相 I:等方性液体相 SmX:未同定相 SmC:スメクティックC相 上記一般式(II)で表される化合物の他の例として
は、下記一般式(II)−8及び(II)−9が挙げられ
る。
(一般式(II)−8及び(II)−9において、R1,R2
びXは一般式(II)のR1,R2及びXと同じ意味を示す) 上記一般式(II)−8の具体例としては次のものが挙
げられる。
また、一般式(II)−9の具体例としては次のものが
挙げられる。
上記一般式(II)又は(II′)に属さない化合物であ
って、本発明の式(I)で表される光学活性基を有する
化合物のその他の具体例としては下記の化合物が挙げら
れる。
その他、前記式(I)で示される光学活性基を有する
化合物としては、一般式(II)及び(II′)の他に、ア
ゾ,アゾキシ誘導体、縮合多環式炭化水素誘導体、縮合
複素環誘導体、カルコン誘導体、ケイ皮酸誘導体などが
挙げられる。
式(I)で表される光学活性基を含む化合物中、一般
式(II)で表される光学活性化合物は、例えば、 X=単結合,Y1=単結合,Y2=単結合,p=1,q=1,r=0の
化合物を例にとって説明すると光学活性エピクロルヒド
リンとフェノール類を塩基の存在下で反応させて式(V
I) の化合物を得、これを式(VII) R1−CH(COOR6 (VII) (式中、R1,R2は一般式(II)中の定義と同一の意味を
示し、R6はメチル,エチルなどの低級アルキル基を示
す。)のマロン酸エステルを塩基の存在下に反応させる
ことにより得ることができる。上記一般式(II)で表さ
れる光学活性化合物の製法は特願昭63−223345号明細書
に詳細に記載されている。
式(I)で表される光学活性化合物中、一般式(I
I′)で表わされる光学活性化合物の合成は、光学活性
エピクロルヒドリンをアルキル化又はアルコキシ化して
得られた光学活性アルキルエポキシド又はアルキルグリ
シジルエーテルとフェニル酢酸誘導体のジアニオンを反
応させた後分子内環化させることによって達成できる。
上記一般式(II′)の合成法は特願平1−42535号明細
書に詳細に記載されている。
さて、式(I)で表される光学活性基を含む化合物、
および一般式(II)又は(II′)で表される光学活性化
合物は必ずしも液晶相を示さない。また、示す場合にも
相系列、スメクチックC相の温度範囲が必ずしも実用的
であるわけではない。それゆえこれらの化合物は単独で
用いるより他の化合物と組み合わせて用いることの方が
はるかに好ましい。
式(I)で表される光学活性基を含む化合物、および
一般式(II)又は(II′)で表される光学活性化合物は
ノンカイラルスメクチック液晶化合物または組成物、あ
るいはカイラルスメクチック液晶化合物または組成物に
適量添加することによってその組成物の自発分極を増大
させ、強誘電性液晶組成物の応答を高速化させることが
できる。但し、これらの化合物の添加量が多い場合には
添加した化合物が強誘電性液晶組成物中で結晶化する、
SmC→SmA転移温度が低下する、などの実用上の問題が生
じる場合が多いので、添加量は0.1〜20%が好ましく、
さらには0.5〜10%程度が特に好ましい。
さて、式(I)で表される光学活性基を含む化合物、
および一般式(II)又は(II′)で表される光学活性化
合物に組み合わせる化合物としては以下の一般式(VII
I)〜(X)のような化合物を用いることが出来る。
R7−Z1−B1−D1−B2−Z2−R8 (VIII) R7−Z1−B1−D1−B2−D2−B3−Z2−R8 (IX) (式中、B1,B2およびB3はそれぞれ独立して、ベンゼン
環,シクロヘキサン環,ビシクロ[2,2,2]オクタン
環,ピリジン環,ピリミジン環,ピラジン環,ピリダジ
ン環,ピペラジン環,ジオキサシクロヘキサン環,ナフ
タレン環などの含六員環基を示し、これらの含六員環基
中の水素原子はフッ素原子,塩素原子,臭素原子,シア
ノ基,ニトロ基,メチル基,メトキシ基などで置換され
てもよい。D1及びD2は、それぞれ、単結合、又は−COO
−,−OCO−,−CH=CH−,−C≡C−,−CH=CH−COO
−,−OCO−CH=CH−,−CH2CH2−,−OCH2,−CH2O−,
−COS−,もしくは−SCO−の基を示す。Z1及びZ2は、そ
れぞれ、単結合、または−COO−,−OCO−,−O−,−
S−,−OCOO−もしくは−CO−の基を示す。R7及びR8
それぞれ独立して、直鎖状または分岐状で炭素数1〜15
のアルキル基を示し、アルキル基中に不斉炭素が含まれ
ていてもよい。sは1又は2の整数を示す。) これらの化合物を用いて組成物を作成する場合には、
強誘電性液晶素子に適用した場合に良好な特性が得られ
るよう強誘電性液晶組成物の種々の物性・特性を総合的
に考慮しながら作成しなければならない。本発明におい
ては、液晶温度範囲,チルト角,応答特性はもちろんの
こと、これに加えて特に配向性およびメモリ性の良好な
強誘電性液晶素子を得るために、強誘電性液晶が少なく
ともスメクチックC相,スメクチックA相、及び螺旋ピ
ッチが20μm以上のネマチック相を示すように作製し
た。このような相系列を取るように強誘電性液晶組成物
を作製すると、強誘電性液晶素子を作製した後、等方性
液体状態から冷却したとき、まず、ネマチック相におい
てらせんピッチが20μm以上と強誘電性液晶素子のセル
厚(通常15〜8μm程度)に比べて十分長いので、均一
な配無を容易に得ることができる。ネマチック相におい
て均一な配向が得られると、この素子が更に冷却されて
いったときに均一なスメクチックA相の配向が容易に得
られ、更に冷却してスメクチックC相の良好な配向を得
ることができ、良好な方向を得るとメモリ性も良好であ
る。
このようなスメクチックC相,スメクチックA相、及
び螺旋ピッチが20μm以上のネマチック相を示す強誘電
性液晶組成物を作成するには、ネマチック相中で誘起す
る螺旋ピッチの向きが式(I)で表される光学活性基を
含む化合物または一般式(II)又は(II′)で表される
光学活性化合物と逆向きの光学活性化合物を、式(I)
で表される光学活性基を含む化合物または一般式(II)
又は(II′)で表される光学活性化合物とを適切な割合
で組み合わせて用いることで達成できる。混合の方法と
しては、ネマチック相のらせんピッチが20μm以上にな
るように試行錯誤を繰り返して行く方法をはじめとして
種々の方法が可能である。
次ぎに、その一例を示す。ネマチック相のピッチに関
して式(X I)のような線形加法則があることが知られ
ている(J.E.Adams and W.E.L.Haas,Mol.Cryst.Liq.Cry
st.,16,33(1972)参照)。
I/P=Σ(Ci/Pi) (X I) (ただし、ΣCi=1、Pは混合液晶のピッチ、Ciは固有
のピッチPiをもった各成分の重量濃度である。) そこで、まずネマチック相を示す液晶化合物又は組成
物に各種光学活性物を添加してネマチック相のピッチを
測定して、各成分の固有ピッチPiを推定し、次にこの値
を用いて作成する強誘電性液晶組成物のネマチック相の
ピッチが20μm以上になるように各成分の濃度を調整し
た。
このようなピッチの調整に用いる光学活性化合物とし
ては例えば、一般式(VIII),(IX)および(X)で表
される化合物のうちR7,R8のいずれか又は両方に光学活
性な基を有する化合物を用いることができる。また、こ
れらの化合物を用いる場合、できるなら、スメクチック
C相において誘起する自発分極の向きが式(I)で表さ
れる光学活性基を含む化合物または一般式(II)又は
(II′)で表される光学活性化合物と同じで、かつその
値が大きいことが好ましい。強誘電性液晶組成物の自発
分極の値が大きいほうが一般に応答が速いと言われてい
るからである。
このような観点から、式(I)で示される光学活性基
を含む化合物または一般式(II)又は(II′)で表され
る光学活性化合物に対してスメクチックC相において誘
起する自発分極の向きが同じで比較的大きく、ネマチッ
ク相においては誘起する螺旋ピッチの向きが逆である化
合物の例として一般式(III)で表される光学活性基を
有する化合物を挙げることができる。
(一般式(III)中、Zは−COO−,−OCO−,−O−,
−CO−,−OCH2−,−OCH2CH2−又は単結合を示し、R3
は炭素数1〜15のアルキル置換基を有するフェニル基又
はそれぞれ炭素数1〜15の直鎖状もしくは分岐状のアル
キル基,アルキルオキシ基及びアシルオキシ基から選ば
れた基を示し、上記アルキル基,アルキルオキシ基,ア
シルオキシ基中のアルキルは、ハロゲン原子又はシアノ
基を置換基として有していてもよく、また−O−,−CO
O−,二重結合又は三重結合を含んでいてもよく、さら
に不斉炭素を含んでいてもよい。Gはハロゲン原子,−
CN−,−CH3−,−CH2F−,−CHF2又は−CF3を示し、*
はその炭素原子が不斉炭素原子であることを示す。) 上記一般式(III)で表される光学活性基を有する化
合物の好ましい例として下記一般式(X II)で表される
光学活性化合物を挙げることができるが、もとより本発
明に用いることのできる化合物はこれらの化合物に限定
されるものではない。
(一般式(X II)中、Z,R3,G及び*は一般式(III)中
のZ,R3,G及び*と同じ意味を示し、A4,A5及びA6は置換
基を有していてもよい含六員環基又は五員環基を示し、
X3は−O−,−OCO−又は単結合を示し、Y3及びY4は−C
OO−,−OCO−,−OCH2−,−CH2O−,−CH=CH−,−
C≡C−,−CH2CH2−又は単結合を示し、R9は炭素数1
〜15の直鎖状もしくは分岐状アルキル基を示し、a,b及
びcは0又は1である。) 上記A4,A5,A6の含六員環基としては前記一般式(VII
I),(IX)のB1,B2,B3と同様な基を挙げることがで
き、5員環基としては、例えば を挙げることができる。
上記一般式(X II)で表される化合物の好ましい例と
しては、下記一般式で示される化合物群が挙げられる。
下記一般式において、eおよびfは0又は1であり、h
は1又は2である。
具体例 R9=n−C6H13,f=1,e=0,G=CH3,R3=n−C6H13の化合
物 R9=n−C8H17,f=1,e=1,G=CF3,R3=CH2COOC2H5の化
合物 R9=n−C8H17,f=1,e=1,G=CF3,R3=n−C6H13の化合
物 R9=n−C10H21,f=0,e=1,G=CF3,R3=n−C6H13の化
合物 R9=n−C8H17,f=1,e=1,G=CHF2,R3=n−C8H17の化
合物 R9=n−C8H17,f=1,e=1,G=CH2F,R3=n−C8H17の化
合物 (K.Yoshino,et al.,J.Appl.Phys.,26,L77(1987)及び
鈴木,他,第15回液晶討論会,3A17(1989)) 具体例 R9=n−C7H15,f=1,e=1,G=CH3,R3=n−C6H13の化合
具体例 R9=n−C8H17,f=1,e=0,h=2,G=CH3,R3=C2H5の化合
物 R9=n−C11H23,f=1,e=0,h=2,G=CH3,R3=C2H5の化
合物 R9=n−C8H17,f=0,e=1,h=1,G=CH3,R3=C2H5の化合
(I.Sage,et.al.,Ferroelectrics,85,351(1988)) 具体例 R9=n−C8H17,f=1,G=CH3,R3=n−C8H17の化合物 R9=n−C9H19,f=1,C=CN,R3=CH(CH3の化合物 具体例 R9=n−C8H17,f=0,G=CH3,R3=n−C4H9の化合物 具体例 R9=n−C8H17,f=1,G=CH3,R3=C2H5の化合物 具体例 R9=n−C8H17,f=0,G=CH3,R3=n−C6H13の化合物 具体例 R9=n−C8H17,f=1,e=1,G=CH3,R3=n−C6H13の化合
物 R9=n−C8H17,f=1,e=0,G=Cl, (T.Sakurai,et al.,J.Chem.Soc.,Commun,978(198
6)) 具体例 R9=n−C8H17,f=1,G=CH3,R3=n−C6H13の化合物 具体例 R9=C6F13CH2CH2,G=CH3,R3=n−C6H3の化合物 (K.Terashima,et al.,Mol.Cryst.Liq.Cryst.,141,237
(1986). 市橋,他,第13回液晶討論会予稿集,50(1987) K.Furukawa,et al.,Ferroelectrics,85,451(1988)) 具体例 R9=n−C10H21,E=H,Z3′=−COO−,R3=n−C6H13
化合物 (J.Bmelburg,et al.,12th Int.LC Conf.,FE−18(19
88)) (A.Yoshizawa,et al.,J.Appl.Phys.,28,L1269(198
9)) 具体例 R9=n−C8H17,R3=n−C6H13の化合物 (吉田,他,第15回液晶討論会,IAOI(1989)) (宮沢,他,第14回液晶討論会予稿集,52(1988)) 具体例 R9=n−C6H13,R3′=n−C4H9の化合物 (C.Tschierske,et al.,2nd Int.Conf.FLC,P−83(198
9)) 具体例 R9=n−C8H17, R3=CH2CH(CH3の化合物 (D.M.Walba,et an.,J.Am.Chem.Soc.,110,8686(198
8)) 具体例 R9=n−C10H21,R3′=n−C4H9の化合物 (M.Koden,et al.,Mol.Cryst.Liq.Lett.,,197(198
9)) 具体例 R9=n−C8H17,R3′=n=C8H17の化合物 本発明の強誘電性液晶組成物に、上記一般式(III)
で表される光学活性基を有する化合物の他、次のような
一般式で表される光学活性化合物を組合せて用いること
ができる。
(上記一般式(X III)においてR3,R9,X3,Z,A4,A5,A6,Y
3,Y4,a,b,c及び*は前記一般式(X II)中のそれらと同
じ意味を示す。) 上記一般式(X III)で表される光学活性化合物とし
ては下記一般式で表される化合物が挙げられる。
(一般式(X III)−I中、 を示し、Zは−OCO−又は−OCH2−を示す。) (D.M.Walba,et al.,J.Am.Chem.Soc.,110,8686(198
8)) 具体例 Z=−OCO−,R3=n−C5H11の化合物 Z=−OCH2−,R3=n−C5H11の化合物 (一般式(X IV)中、Y3は−COO−を示し、Y4は−COO
−,−OCO−,−OCH2−を示し、Y5−COO−,−O−を示
し、EはH,Clを示す。) (J.Nakauchi,et al.,J.Appl.Phys.,28,L1258(198
9),池本,他,第15回液晶討論会,1A05(1989)) 具体例 R9=n−C10H21,Y3=−COO−,E=H,Y4=−OCH2−,Y5
−COO−,R3=n−C6H13の化合物 本発明の強誘電性液晶組成物において、一般式(I)
で表される光学活性基を有する化合物及び一般式(II)
又は(II′)で表される光学活性化合物と一般式(II
I)で表される光学活性基を有する化合物及び一般式(X
II)で表される光学活性化合物と組合せることのでき
る化合物としては、下記一般式(IV)で表される化合物
及び一般式(V)で表されるフルオロアルキル基を有す
る化合物を挙げることができる。
(一般式(IV)中、R4,R5はそれぞれ炭素数1〜15の直
鎖状もしくは分岐アルキル基又はアルキルオキシ基を示
す。) −(CH2−CnF2n+1 (V) (一般式(V)中、mは1又は2であり、nは2〜12の
整数である。) 上記一般式(IV),(V)で表される化合物は液晶を
構成する成分としては公知のものであり、実施例で示す
ような各種化合物がある。なお、一般式(V)で表され
るフルオロアルキル基を有する化合物としては、実施例
で用いたものの他下記のような化合物が挙げられる。
次に、本発明強誘電性液晶素子について説明する。
第1図は本発明の強誘電性液晶組成物を用いた液晶素
子の例を示す断面図である。
第1図は透過型表示素子の1例であり、1および2は
絶縁性基板,3及び4は導電性膜,5は絶縁性膜,6は配向制
御層,7はシール剤,8は強誘電性液晶,9は偏光板を示す。
1及び2の絶縁性基板としては透光性の基板が用いら
れ、通常ガラス基板が使われる。1及び2の絶縁性基板
にはそれぞれInO3,SnO2,ITO(Indium−Tin Oxide)など
の導電性薄膜からなる所定のパターンの透明電極3,4が
形成される。
その上に通常、絶縁性膜5が形成されるが、これは場
合によっては省略できる。絶縁性膜5は例えば、SiO2,S
iNX,Al2O3などの無機系薄膜,ポリイミド,フォトレジ
スト樹脂,高分子液晶などの有機系薄膜などを用いるこ
とができる。絶縁性膜5が無機系薄膜の場合には蒸着
法,スパッタ法,CVD(Chemical Vapor Deposition)
法,あるいは溶液塗布法などによって形成できる。ま
た、絶縁性膜5が有機系薄膜の場合には有機物質を溶か
した溶液またはその前駆体溶液を用いて、スピンナー塗
布法,浸せき塗布法,スクリーン印刷法,ロール塗布
法,などで塗布し、所定の硬化条件(加熱,光照射な
ど)で硬化させ形成する方法,あるいは蒸着法,スパッ
タ法,CVD法などで形成したり、LB(Langumuir−Blodget
t)法などで形成することもできる。
絶縁性膜5の上には配向制御層6が形成される。ただ
し、絶縁性膜5が省略された場合には導電性膜3および
4の上に直接配向制御層6が形成される。配向制御層に
は無機系の層を用いる場合と有機系の層を用いる場合と
がある。
無機系の配向制御層を用いる場合、よく用いられる方
法としては酸化ケイ素の斜め蒸着がある。また、回転蒸
着などの方法を用いることもできる。有機系の配向制御
層を用いる場合、ナイロン,ポリビニルアルコール,ポ
リイミド等を用いることができ、通常この上をラビング
する。また、高分子液晶,LB膜用いて配向させたり、磁
場による配向,スペーサエッジ法による配向,なども可
能である。また、SiO2,SiNXなどを蒸着法,スパッタ法,
CVD法などによって形成し、その上をラビングする方法
も可能である。
次に2枚の絶縁性基板を張り合わせ、液晶を注入して
強誘電性液晶素子とする。
以上第1図においては画素数1のスイッチング素子と
して説明したが、本発明の強誘電性液晶及び液晶素子は
大容量マトリクスの表示装置に適用可能であり、この場
合には第2図の平面模式図に示すように上下基板の配線
をマトリクス型に組み合わせて用いる。このようなマト
リクス型液晶素子はこれまで提案されている各種駆動法
(例えば、脇田,上村,大西,大庭,古林,太田,Natio
nal Technical Report,33,44(1987)参照)によって駆
動できる。
(ホ)式(I)を有する化合物の合成 合成例1 R−(−)−エピクロルヒドリン(光学純度99%以
上)5.55gと、下記化学式で示される4−(トランス−
4−n−ペンチルシクロヘキシル)フェノール2.46g、 ベンジルトリエチルアンモニウムクロリド0.04gとの混
合物を60℃で攪拌させながら水酸化ナトリウム水溶液
(NaOH 0.45g,水15ml)を20分かけて滴下し、さらに1
時間還流を行った。反応溶液を室温まで冷却し、エーテ
ル抽出を2回行い、飽和食塩水で1回洗浄して減圧下溶
媒を留去した。残渣をシリカゲルカラムクロマトグラフ
ィーで精製し下記化学式で示される(S)−2,3−エポ
キシプロピル4−(トランス−4−n−ペンチルシクロ
ヘキシル)フェニルエーテル1.8gを得た。
▲〔α〕25 D▼+4.44゜(C=1.36,CH2Cl2) NMR(CDCl3) δ:0.45〜2.50(21H,m) 2.50〜3.00(2H,m) 3.15〜3.50(1H,m) 3.70〜4.30(2H,m) 6.79(2H,d,J=9.0Hz) 7.09(2H,d,J=9.0Hz) 鉱油で懸濁させた50重量%水素化ナトリウム224mgを
乾燥エーテルで2回洗浄後、乾燥テトラヒドロフラン10
mlを加えた。この懸濁液を40℃で攪拌しながらn−ブチ
ルマロン酸ジメチル1.07gを滴下して5分間攪拌した
後、上記得られた(S)−2,3−エポキシプロピル4−
(トランス−4−n−ペンチルシクロヘキシル)フェニ
ルエーテル1.41gを滴下し、20時間還流攪拌した。反応
液を室温に戻してから4N塩酸をpH=1になるまで滴下し
た後、エーテル抽出を2回行い、飽和食塩水で1回洗浄
して減圧下溶媒を留去した。残渣をシリカゲルカラムク
ロマトグラフィーで分離精製し、下記化学式で示される
(2S,4S)体及び(2R,4S)体のγ−ラクトン誘導体をそ
れぞれ500mg,440mg得た。
このうち(2S,4S)体は性状は以下のとおりである。
(2S,4S)体 ▲〔α〕23 D▼+33.45゜(C=0.658,CH2Cl2) NMR(CDCl3) δ:0.88〜1.98(30H,m) 2.38〜2.67(3H,m) 4.07〜4.13(2H,m) 4.67〜4.73(1H,m) 6.83(2H,d,J=8.3Hz) 7.12(2H,d,J=8.3Hz) IR(KBr) 1762cm-1 元素分析(C26H40O3として) C H 理論値(%) 77.95 10.07 実測値(%) 77.91 10.12 合成例2 原料フェノール誘導体として下記化学式で示される化
合物2.50g、 合成例1と同じR−(−)−エピクロルヒドリン4.25g
及びベンジルトリエチルアンモニウムクロリド20mgをジ
メチルホルムアミド3mlに溶解させ、60℃で24重量%水
酸化ナトリウム水溶液(1.2当量)を滴下した。同温度
で40分間反応させた後、反応液を室温に戻し、次いでエ
ーテル抽出を行い、減圧下で溶媒を留去した。残渣をシ
リカゲルカラムクロマトグラフィーにより精製し、下記
化学式で示されるS体のグリシジルエーテル1.62gを得
た。
mp 90℃ ▲〔α〕25 D▼+4.44゜(C=1.01,CH2Cl2) NMR(CDCl3) δ:0.50〜3.00(19H,m) 3.10〜3.50(1H,m) 3.80〜4.30(2H,m) 6.75〜7.60(8H,m) 上記得られたS体のグリシジルエーテル370mg,n−プ
ロピルマロン酸ジエチル442mg,カリウムt−ブトキシド
134mg及びt−ブチルアルコール3mlを混合し10時間還流
攪拌した。反応液を室温に戻し4N塩酸を加えてpH=1と
した後、水とメタノールで洗浄し白色結晶を得た。これ
をシリカゲルクロマトグラフィーにより分離精製して下
記式で示されるγ−ラクトン誘導体の(2S,4S)体240mg
と(2R,4S)体140mgを得た。
このうち(2S,4S)体の性状は以下のとおりである。
(2S,4S)体 ▲〔α〕26 D▼+32.67゜(C=1.081,CH2Cl2) NMR(CDCl3) δ:0.70〜3.00(27H,m) 4.00〜4.25(2H,m) 4.40〜4.85(1H,m) 6.60〜7.60(8H,m) IR(KBr) 1762cm-1(C=0) 合成例3〜6 合成例2と同様にして下記化学式で示される各(2S,4
S)体のγ−ラクトン誘導体を得た。
合成例7 原料フェノール誘導体として下記化学式で示される化
合物1.01g、 合成例1と同じR−(−)−エピクロルヒドリン2.01g
及びベンジルトリエチルアンモニウムクロリド16mgを混
合して70℃に加熱し、これに24重量%水酸化ナトリウム
水溶液650mgを滴下した。70℃で2時間攪拌した後、反
応液を室温になるまで放置し、次いでクロロホルムで3
回抽出し無水硫酸マグネシウムで乾燥した。減圧下で溶
媒を留去して得た残渣をヘキサンで再結晶して下記化学
式で示されるS体のグリシジルエーテル380mgを得た。
mp 65℃ ▲〔α〕25 D▼+1.90゜(C=0.46,CH2Cl2) NMR(CDCl3) δ:0.6〜3.0(19H,m) 3.2〜3.6(1H,m) 3.9〜4.5(2H,m) 6.99(2H,d,J=9.0Hz) 8.36(2H,d,J=9.0Hz) 8.55(2H,s) 上記得られたS体のグリシジルエーテル320mg,n−ヘ
キシルマロン酸ジメチル406mg,カリウムt−ブトキシド
116mgをt−ブチルアルコール3.5mlに溶かし6時間還流
攪拌した。反応後の処理は合成例2と同様にしてγ−ラ
クトン誘導体のジアステレオマーの混合物((2S,4S)
/(2R,4S)=9/1)270mgを得た。この混合物をさらに
精製して(2S,4S)体のγ−ラクトン誘導体210mgを得
た。
(2S,4S)体 NMR(CDCl3) δ:0.85〜0.90(6H,m) 1.27〜1.64(21H,m) 1.82〜1.95(2H,m) 2.47〜2.70(4H,m) 4.13〜4.25(2H,m) 4.70〜4.77(1H,m) 6.99(2H,d,J=9.1Hz) 8.37(2H,d,J=8.9Hz) 8.57(2H,s) IR(ヌジョール) 1778cm-1 合成例8 4−(4−n−オクチルフェニル)フェノール2.82g
および1,2−ジクロロエタン40mlからなる懸濁液に、氷
冷下三塩化ホウ素2M−1,2−ジクロロエタン溶液6mlを加
え、さらにチオシアン酸メチル0.82ml,塩化アルミニウ
ム1.33gを加えた。塩化アルミニウムが溶解するまで室
温で攪拌した後、80℃で3時間攪拌した。放冷後、さら
に4N水酸化ナトリウム水溶液33mlを加えて75〜80℃で30
分間攪拌した。冷後、反応液を塩化メチレンで洗浄し、
水層を6N塩酸でpH=2に調整し、エーテルで抽出した。
抽出液を乾燥後、エーテルを減圧下留去して得られた粗
結晶をシリカゲルカラムクロマトグラフィーで精製し下
記化学式で示される4−(4−n−オクチルフェニル)
−2−シアノフェノール2.03gを得た。
mp 93℃ NMR(CDCl3) δ:0.88(3H,t,J=6.8Hz) 1.27〜1.32(10H,m) 1.60〜1.71(2H,m) 2.64(2H,t,J=7.7Hz) 6.24(1H,broad S) 7.02〜7.70(7H,m) IR(KBr) 3288cm-1(νO−H) 2240cm-1(νC≡N) 上記4−(4−n−オクチルフェニル)−2−シアノ
フェノール1.9gおよびt−ブチルアルコール40mlからな
る溶液に、カリウムt−ブトキシド832mgを加え、次い
で合成例1と同じR−(−)エピクロロヒドリン2.5ml
および4−(N,N−ジメチルアミノ)ピリジン100mgを加
えて室温で2日間攪拌した。混合物を減圧濃縮して残渣
に水を加えてエーテルで抽出し、抽出液を乾燥した。抽
出液よりエーテルを留去して得られた粗生成物をシリカ
ゲルカラムクロマトグラフィーで精製し、下記化学式で
示されるS体のグリシジルエーテル750mgを得た。
mp 54℃ ▲〔α〕23 D▼+7.88゜(C=1.01,CH2Cl2) NMR(CDCl3) δ:0.88(3H,t,J=6.6Hz) 1.20〜1.42(10H,m) 1.55〜1.67(2H,m) 2.64(2H,t,J=7.7Hz) 2.84〜2.97(2H,m) 3.39〜3.43(1H,m) 4.12〜4.45(2H,m) 7.05〜7.77(7H,m) IR(KBr) 2224cm-1(νC≡N) 上記S体のグリシジルエーテル363mg,n−プロピルマ
ロン酸ジエチル303mg,カリウムt−ブトキシド157mg及
びt−ブチルアルコール10mlを混合し6時間還流攪拌し
た。反応液を室温に戻し、水を加え4N塩酸でpH=2とし
た後、クロロホルムで抽出した。抽出液より得られた油
状物をシリカゲルクロマトグラフィーにより分離精製し
て下記式で示されるγ−ラクトン誘導体の(2S,4S)体3
3mgと(2R,4S)体25mgを得た。
(2R,4S)体 ▲〔α〕23 D▼+31.83゜(C=1.09,CH2Cl2) NMR(CDCl3) δ:0.88(3H,t,J=6.6Hz) 0.97(3H,t,J=7.1Hz) 1.25〜1.32(10H,m) 1.41〜1.58(3H,m) 1.59〜1.66(2H,m) 1.85〜2.07(2H,m) 2.55〜2.78(4H,m) 4.31(2H,d,J=4.3Hz) 4.74〜7.83(1H,m) 7.00〜7.77(7H,m) IR(KBr) 2232cm-1(νC≡N) 1768cm-1(νC=O) (2R,4S)体 ▲〔α〕23 D▼+18.26゜(C=0.87,CH2Cl2) NMR(CDCl3) δ:0.88(3H,t,J=6.8Hz) 0.98(3H,t,J=7.1Hz) 1.25〜1.27(12H,m) 1.45〜1.56(2H,m) 1.60〜1.62(1H,m) 1.85〜1.95(1H,m) 2.12〜2.22(1H,m) 2.56〜2.67(3H,m) 3.05〜3.10(1H,m) 4.19(1H,dd,J=3.3Hz,10.3Hz) 4.37(1H,dd,J=3.3Hz,10.3Hz) 4.84〜4.89(1H,m) 7.00〜7.77(7H,m) IR(KBr) 2232cm-1(νC≡N) 1768cm-1(νC=O) 合成例9 ベンジル4−(4′−n−オクチルオキシフェニル)
−2−フルオロフェニルエーテル5g,5%Pb−C(52%含
水)25g及び酢酸エチル200mlの混合物を水素雰囲気下,
室温,2kg/cm2で3時間振盪した。終了後、固体を別
し、液より溶媒を留去して得られた固体をベンゼン−
ヘキサンより再結晶し、下記化学式で示されるn−オク
チルオキシフェニル)−2−フルオロフェノール3.71g
を得た。
mp 115.5℃ NMR(CDCl3) δ:0.89(3H,t,J=6.8Hz) 1.2〜1.5(10H,m) 1.7〜1.85(2H,m) 3.98(2H,t,J=6.6Hz) 5.18(1H,d,J=3.9Hz) 6.9〜7.4(7H,m) IR(KBr) 3544cm-1(νOH) 上記4−(4′−n−オクチルオキシフェニル)−2
−フルオロフェノール2.68gおよびt−ブチルアルコー
ル60mlからなる溶液にカリウムt−ブトキシド1.12gを
加え、次いで合成例1と同じR−(−)−エピクロロヒ
ドリン3.3mlおよび4−(N,N−ジメチルアミノ)ピリジ
ン50mgを加え40℃で1日攪拌した。混合物を減圧濃縮し
て残渣に水を加えてクロロホルムで抽出した。抽出液を
洗浄,乾燥したのち、クロロホルムを留去して得られた
粗生成物をシリカゲルカラムクロマトグラフィーで精製
し、ジクロロメタン溶出部より下記化学式で示されるS
体のグリシジルエーテル2.17gを得た。
mp 96℃ ▲〔α〕22 D▼+4.65゜(C=1.00,CH2Cl2) NMR(CDCl3) δ:0.89(3H,t,J=6.8Hz) 1.2〜1.55(10H,m) 1.74〜1.85(2H,m) 2.78(1H,dd,J=2.8,5.0Hz) 2.91(1H,t,J=5.0Hz) 3.35〜3.42(1H,m) 3.98(2H,t,J=6.6Hz) 4.08(1H,dd,J=5.5,11.3Hz) 4.31(1H,dd,J=3.3,11.3Hz) 6.9〜7.45(7H,m) MS(EI) m/z 372(M+) 上記S体のグリシジルエーテル650mg,n−プロピルマ
ロン酸ジエチル529mg,カリウムt−ブトキシド274mg及
びt−ブチルアルコール20mlの混合物を1.5時間還流攪
拌した。反応液を室温に戻し、水を加え2N塩酸でpH=3
とした後、析出した固体を取,水洗,乾燥した。この
ものをシリカゲルカラムクロマト過に続いて順相系シ
リカゲル高速液体クロマトグラフィーにより分離精製し
て下記式で示されるγ−ラクトン誘導体の(2S,4S)
体、310mgと(2R,4S)体102mgを得た。
(2S,4S)体 ▲〔α〕21 D▼+38.35゜(C=1.02,CH2Cl2) NMR(CDCl3) δ:0.89(3H,t,J=6.7Hz) 0.97(3H,t,J=7.1Hz) 1.2〜1.6(13H,m) 1.74〜2.0(4H,m) 2.45〜2.6(1H,m) 2.6〜2.75(1H,m) 3.99(2H,t,J=6.6Hz) 4.15〜4.3(2H,m) 4.7〜4.8(1H,m) 6.8〜7.5(7H,m) IR(KBr) 1764cm-1(νC=O) MS(EI) m/z 456(M+) (2R,4S体) ▲〔α〕21 D▼+21.51゜(C=0.79,CH2Cl2) NMR(CDCl3) δ:0.89(3H,t,J=6.8Hz) 0.98(3H,t,J=7.1Hz) 1.2〜1.55(13H,m) 1.75〜1.9(3H,m) 2.05〜2.2(1H,m) 2.45〜2.56(1H,m) 2.85〜2.95(1H,m) 3.99(2H,t,J=6.6Hz) 4.15(1H,dd,J=3.5,10.3Hz) 4.26(1H,dd,J=3.5,10.3Hz) 4.75〜4.85(1H,m) 6.9〜7.4(7H,m) IR(KBr) 1770cm-1(νC=O) MS(EI) m/z 456(M+) 合成例10 (S)−n−ヘキシルグリシジルエーテルの合成 50%苛性ソーダ40g,(S)−(+)−エピクロロヒド
リン(光学純度99%以上)24gおよびテトラブチルアン
モニウム硫酸水素塩400mgの混合物を20〜25℃に冷却し
ながらn−ヘキサノール6mlを滴下した。反応液をさら
に同温度で3時間攪拌の後水を加えて生成物をエーテル
で抽出した。抽出物を減圧下で精留することにより
(S)−n−ヘキシルグリシジルエーテル3.20gを得
た。
▲〔α〕37 D▼−2.45゜(C=1.005,CH2Cl2) bp 52℃/4mmHg NMR(CDCl3) δ:0.89(3H,m) 1.2〜1.4(6H,m) 1.58(2H,m) 2.58(1H,dd) 2.77(1H,dd) 3.12(1H,m) 3.36(1H,dd) 3.48(2H,m) 3.70(1H,dd) 4−(4′−n−ヘプチル)−ビフェニル酢酸の合成 4−アセチル−4′−n−ヘプチルビフェニル10.85
g,イオウ2.36gをモルホリン20ml中で9時間攪拌下に還
流した。反応後に苛性ソーダ29.5g,水80ml及びエタノー
ル100mlの溶液を加え9時間攪拌した後、反応液を水に
移して塩酸酸性にし析出した固体を濾別採取して粗生成
物13.51gを得た。粗生成物をシリカゲルカラムクロマト
グラフィーで精製し目的物8.29gを得た。
mp 154〜162℃ IR(ヌジョール)1724cm-1 NMR(CDCl3) δ:0.88(3H,m) 1.2〜1.4(8H,m) 1.64(2H,m) 2.63(2H,t) 3.68(2H,s) 7.23(2H,d) 7.33(2H,d) 7.48(2H,d) 7.54(2H,d) −78℃に冷却したジイソプロピルアミン505mg及びテ
トラヒドロフラン10mlの溶液に15%n−ブチルリチウム
のヘキサン溶液3mlを滴下し、徐々に温度を0℃まで上
昇させ1時間攪拌した。この反応液に上記合成した4−
(4′−n−ヘプチル)−ビフェニル酢酸682mg及びテ
トラヒドロフラン3mlの溶液を滴下し1時間攪拌した。
反応液を−78℃に冷却し、上記合成した(S)−n−ヘ
キシルジグリシジルエーテル445mg及びテトラヒドロフ
ラン1mlの溶液を滴下した。反応液の温度を徐々に室温
まで上昇させ6時間攪拌した後水を加え、さらに塩酸酸
性としクロロホルムで生成物を抽出した。抽出物に乾燥
ベンゼン及び触媒量の濃硫酸を加え、ベンゼンを少しず
つ流出させながら6時間加熱攪拌した。冷却後ベンゼン
を減圧留去し、残渣をシリカゲルカラムクロマトグラフ
ィーで精製して下記化学式で示されるγ−ラクトン誘導
体(2S,4R)及び(2R,4R)をそれぞれ401mg及び465mg得
た。
(2S,4R)体 ▲〔α〕22 D▼−2.17゜(C=1.07,CH2Cl2) NMR(CDCl3) δ:0.86〜0.91(6H,m) 1.29〜1.61(18H,m) 2.28〜2.42(1H,m) 2.61〜2.76(3H,m) 3.52(2H,t,J=6.60Hz) 3.61〜3.75(2H,m) 3.92(1H,dd,J=9.16Hz,12.09Hz) 4.62〜4.67(1H,m) 7.24(2H,d,J=8.06Hz) 7.35(2H,d,J=8.42Hz) 7.48(2H,d,J=8.42Hz) 7.57(2H,d,J=8.06Hz) (2R,4R)体 ▲〔α〕22 D▼−37.95゜(C=1.003,CH2Cl2) NMR(CDCl3) δ:0.86〜0.90(6H,m) 1.29〜1.60(18H,m) 2.45〜2.57(1H,m) 2.61〜2.74(3H,m) 3.51(2H,t,J=6.68Hz) 3.60〜3.75(2H,m) 4.09(1H,t,J=9.35Hz) 4.74〜4.78(1H,m) 7.24(2H,d,J=8.06Hz) 7.33(2H,d,J=8.43Hz) 7.48(2H,d,J=8.43Hz) 7.57(2H,d,J=8.06Hz) 合成例11(式(III)を有する化合物の合成) (R)−4′−n−オクチルオキシ−ビフェニル−4−
カルボン酸−1−トリフルオロメチル−ノニルエステル
の製造 4′−n−オクチルオキシ−ビフェニル−4−カルボ
ン酸0.5g(1.5ミリモル)に五塩化リン4g(1.9ミリモ
ル)を加えて加熱反応させた。減圧蒸留によりPOCl3
び過剰の五塩化リンを除去し、4′−n−オクチルオキ
シ−ビフェニル−4−カルボン酸クロリドを得た。これ
をピリジンに溶解し、この溶液に(R)−1−トリフル
オロメチル−ノナノール0.30g(1.5ミリモル)を加え、
室温で12時間放置した後、80℃に加温し、そのまま3時
間保持後冷却して反応混合物を得た。反応混合物をHCl
水溶液中に加え、ジエチルエーテルで抽出した。ジエチ
ルエーテル層をNaHCO3水溶液、次いで水で洗い、Na2SO4
で乾燥した後、ジエチルエーテルを留去し、残留物をカ
ラムクロマトグラフィー(溶媒:クロロホルム)精製し
て液状の目的物を得た(〔α〕25=−21.8゜(CHC
l3))。
上記合成例1〜10で得られた式(I)で表される光学
活性基を有する化合物は以下実施例において化合物No.1
〜No.6,No.36〜No.42として用いたまた、合成例11で得
られた式(III)で表される光学活性基を有する化合物
は化合物No.43として用いた。
(ヘ)実施例 実施例1 第1表に示す組成のネマチック液晶組成物(1)を作
成した。水平配向処理を施し、表面をそれぞれ反対方向
にラビングした2枚のガラス基板を用いて、Canoタイプ
のくさび型セルを作成し、セルの各部分の厚さを測定し
た。液晶組成物(1)に第2表に示す化合物をそれぞれ
約1重量%添加したネマチック液晶組成物を作成し、Ca
noタイプのくさび型セルに注入した。互いに偏光方向の
直交する2枚の偏光板の間にこのセルを設置し、ディス
クリネーション・ラインを観察する。ディスクリネーシ
ョン・ラインの現れる位置でのセル厚の値に基づいて、
注入したネマチック液晶組成物のらせんピッチを求め
た。(X)式の関係を用いて各化合物の1/Piの推定値に
換算した。この値を第2表に示す。
実施例2 液晶組成物(1)に第3表に示す化合物をそれぞれ30
重量%添加してネマチック相を示す液晶組成物を作成し
た。
第3表に示す化合物はネマチック相のらせんピッチの
向きが既に知られている化合物である。一方、液晶組成
物(1)に第2表に示す化合物をそれぞれ1〜30重量%
添加してネマチック相を示す液晶組成物も作成した。第
3表の化合物より作成したネマチック液晶組成物と第2
表の化合物より作成した液晶組成物とをプレパラート上
で接触させ、これを偏光顕微鏡によって観察した。両者
の接触している領域に、らせんのピッチが非常に長いと
きにのみ現れるシュリーレン組織が現れるか否かによ
り、第2表の化合物がネマチック相において誘起するら
せんのピッチの向きを決定した。結果を第2表に示す。
実施例3 第4表に示す組成の液晶組成物(2)を作成した。
この液晶組成物(2)は光学活性化合物を含まないノ
ンカイラル・スメクチックC液晶組成物である。この液
晶組成物(2)に第2表の化合物をそれぞれ2重量%添
加してカイラルスメクチックC液晶組成物を作成した。
2枚のガラス基板上にITO膜を形成し、さらにSiO2
形成し、PVA膜を塗布し、ラビングした。次にこの2枚
のガラス基板をセル厚2μmで張り合わせた。次いで、
先に作成したカイラルスメクチックC液晶組成物を注入
した。この液晶セルを2枚の直交する偏光子の間に設置
し、電圧を印加すると、透過光強度の変化が観察され
た。透過光強度の変化より見いだされた液晶分子の応答
の向きと、印加した電圧の向きとの関係から各化合物が
スメクチックC相において誘起する自発分極(Ps)の向
きを決定した。結果を第2表に示す。
実施例4 第2表に示す化合物と第5表に示す化合物とを用いて
第6表に示す組成の強誘電性液晶組成物No.30〜35を作
成した。これらの組成物はスメクチックC相,スメクチ
ックA相,およびネマチック相を示し、かつネマチック
相のらせんピッチは20μmになるように作成した。
相転移温度,および式(X)を用いて計算したネマチッ
ク相のらせんピッチを第7表に示す。
実施例1に用いたのと同じようなCanoタイプのくさび
型セルを作成した。ただし、セル厚の厚い部分を10μm
に設定した。このセルに組成物No.30〜35をそれぞれ注
入した。いずれにおいてもディスクリネーション・ライ
ンは観察されず、これらの組成物のネマチック相のらせ
んピッチが20μm以上であることが確認できた。
実施例5 2枚のガラス基板上にITO膜を形成し、更にSiO2を形
成し、PVA膜を塗布し、ラビングした。次にこの2枚の
ガラス基板をラビング方向が同一になるようにセル厚2
μmで張り合わせ、実施例4で作成した強誘電性液晶組
成物をそれぞれ注入した。注入後いったん液晶組成物が
等方性液体に変化する温度にセルを加熱し、その後1℃
/minで室温まで冷却することにより良好な配向を有する
強誘電性液晶素子を得た。
この強誘電性液晶素子を2枚の直交する偏光子の間に
設置して電圧を印加し、特性を評価した。
評価条件および得られた特性を第7表に示す。
(ト)発明の効果 以上の実施例から分かるように本発明の強誘電性液晶
組成物を用いた強誘電性液晶素子は配向性がよく、高コ
ントラストで明るく、動作温度範囲の広い、大容量の強
誘電性液晶素子を得ることができる。
【図面の簡単な説明】
第1図は本発明の強誘電性液晶組成物を用いた強誘電性
液晶素子の構造及び作成法を説明するための断面図であ
る。 第2図は本発明の強誘電性液晶素子を用いて大容量の強
誘電性液晶素子を作成する方法を模式的に示した図であ
る。 1,2……絶縁性基板、3,4……導電性膜 5……絶縁性膜、6……配向制御層 7……シール剤、8……強誘電性液晶 9……偏光板
───────────────────────────────────────────────────── フロントページの続き (72)発明者 船田 文明 大阪府大阪市阿倍野区長池町22番22号 シャープ株式会社内 (72)発明者 坂口 和彦 大阪府豊中市南桜塚2丁目7―1―211 (72)発明者 竹平 喜和 兵庫県伊丹市鈴原町5丁目5―4 (72)発明者 塩見 豊 兵庫県尼崎市元浜町2丁目81 (72)発明者 北村 徹 京都府京都市伏見区新町7丁目441―1 (56)参考文献 特開 平2−138274(JP,A) 特開 平2−289561(JP,A) 特開 平3−173879(JP,A) 特公 平7−110189(JP,B2)

Claims (9)

    (57)【特許請求の範囲】
  1. 【請求項1】それぞれ電圧印加手段を設けた一対の基板
    の少なくとも一方に配向制御層を設け、該一対の基板間
    に強誘電性液晶層を有する強誘電性液晶素子において、
    該強誘電性液晶が下記式(I)で表される光学活性基を
    有する化合物を少なくとも一種以上、およびネマチック
    相中において誘起する螺旋ピッチの向きが式(I)で表
    される光学活性基を有する化合物とは逆である化合物を
    少なくとも一種以上含有し、かつ少なくともスメクチッ
    クC相,スメクチックA相,及び螺旋ピッチが20μm以
    上のネマチック相を示すことを特徴とする強誘電性液晶
    素子。 (式(I)中、*はその炭素原子が不斉炭素原子である
    ことを示す。)
  2. 【請求項2】式(I)で表される光学活性基を有する化
    合物が下記一般式(II)で表される光学活性化合物であ
    る請求項1記載の強誘電性液晶素子。 (一般式(II)中、A1,A2及びA3は置換基を有していて
    もよい含六員環基を示し、Xは−O−,−COO−,−OCO
    −又は単結合を示し、Y1及びY2は−COO−,−OCO−,−
    OCH2−,−CH2O−,−CH2CH2−,−CH=CH−,−C≡C
    −又は単結合を示し、R1及びR2は炭素数1〜15の直鎖状
    もしくは分岐状アルキル基を示し、p,q及びrは0又は
    1であり、*はその炭素原子が不斉炭素原子であること
    を示す。)
  3. 【請求項3】一般式(II)で示される光学活性化合物が
    下記一般式(II)−1〜(II)−7で表される光学活性
    化合物からなる群より選ばれた化合物である請求項2記
    載の強誘電性液晶素子。 (上記式(II)−1〜(II)−7中、R1,R2及び*は一
    般式(II)中のR1,R2及び*と同じ意味を示し、e及び
    fは0又は1であり、X1はハロゲン原子又はシアノ基を
    示す。)
  4. 【請求項4】式(I)で表される光学活性基を有する化
    合物が下記一般式(II′)で表される光学活性化合物で
    ある請求項1記載の強誘電性液晶素子。 (一般式(II′)中、A7を示し、X2は−O−又は単結合を示し、R10及びR11は炭
    素数1〜15のアルキル基又は炭素数2〜15のアルケニル
    基を示し、d及びfは0又は1であり、*はその炭素原
    子が不斉炭素原子であることを示す。)
  5. 【請求項5】ネマチック相中において誘起する螺旋ピッ
    チの向きが式(I)で表される光学活性基を有する化合
    物とは逆である化合物が下記一般式(III)で表される
    光学活性基を有する化合物であることを特徴とする請求
    項1〜4のいずれかに記載の強誘電性液晶素子。 (一般式(III)中、Zは−COO−,−OCO−,−O−,
    −CO−,−OCH2−,−OCH2CH2−又は単結合を示し、R3
    は炭素数1〜15のアルキル置換基を有するフェニル基又
    はそれぞれ炭素数1〜15の直鎖状もしくは分岐状のアル
    キル基,アルキルオキシ基及びアシルオキシ基から選ば
    れた基を示し、上記アルキル基,アルキルオキシ基,ア
    シルオキシ基中のアルキルは、ハロゲン原子又はシアノ
    基を置換基として有していてもよく、また−O−,−CO
    O−,二重結合又は三重結合を含んでいてもよく、さら
    に不斉炭素を含んでいてもよい。Gはハロゲン原子,−
    CN−,−CH3,−CH2F,−CHF2又は−CF3を示し、*はその
    炭素原子が不斉炭素原子であることを示す。)
  6. 【請求項6】一般式(III)で表される光学活性基を有
    する化合物が下記一般式(X II)で表される光学活性化
    合物である請求項5記載の強誘電性液晶素子。 (一般式(X II)中、Z,R3,G及び*は一般式(III)中
    のZ,R3,G及び*と同じ意味を示し、A4,A5及びA6は置換
    基を有していてもよい含六員環基又は五員環基を示し、
    X3は−O−,−OCO−又は単結合を示し、Y3及びY4は−C
    OO−,−OCO−,−OCH2−,−CH2O−,−CH=CH−,−
    C≡C−,−CH2CH2−又は単結合を示し、R9は炭素数1
    〜15の直鎖状もしくは分岐状アルキル基を示し、a,b及
    びcは0又は1である。)
  7. 【請求項7】一般式(X II)で表される光学活性化合物
    が下記一般式(X II)−1〜(X II)−4で表される光
    学活性化合物からなる群より選ばれた化合物である請求
    項6記載の強誘電性液晶素子。 (一般式(X II)−1〜(X II)−4中、R3,R9,G及び
    *は一般式(X II)中のR3,R9,G及び*と同じ意味を示
    し、e及びfは0又は1であり、hは1又は2であ
    る。)
  8. 【請求項8】強誘電性液晶が下記一般式(IV)で表され
    る化合物を少なくとも一種含有することを特徴とする請
    求項1〜7のいずれかに記載の強誘電性液晶素子。 (一般式(IV)中、R4及びR5はそれぞれ炭素数1〜15の
    直鎖状もしくは分岐状アルキル基又はアルキルオキシ基
    を示す。)
  9. 【請求項9】強誘電性液晶が下記一般式(V)で表され
    るフルオロアルキル基を有する化合物を少なくとも一種
    含有することを特徴とする請求項1〜8のいずれかに記
    載の強誘電性液晶素子。 −(CH2−CnF2n+1 (V) (一般式(V)中、mは1又は2であり、nは2〜12の
    整数である。)
JP2063367A 1989-03-14 1990-03-14 強誘電性液晶素子 Expired - Lifetime JP2519564B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2063367A JP2519564B2 (ja) 1989-03-14 1990-03-14 強誘電性液晶素子

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6299889 1989-03-14
JP1-62998 1989-03-14
JP2063367A JP2519564B2 (ja) 1989-03-14 1990-03-14 強誘電性液晶素子

Publications (2)

Publication Number Publication Date
JPH0348220A JPH0348220A (ja) 1991-03-01
JP2519564B2 true JP2519564B2 (ja) 1996-07-31

Family

ID=26404075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2063367A Expired - Lifetime JP2519564B2 (ja) 1989-03-14 1990-03-14 強誘電性液晶素子

Country Status (1)

Country Link
JP (1) JP2519564B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4506098B2 (ja) * 2003-04-28 2010-07-21 Dic株式会社 5員環ラクトン骨格を有する化合物を含有する液晶組成物

Also Published As

Publication number Publication date
JPH0348220A (ja) 1991-03-01

Similar Documents

Publication Publication Date Title
US7018685B2 (en) Fluorinated aromatic compounds and the use of the same in liquid crystal mixtures
JP5269279B2 (ja) 液晶混合物
JP2004529867A (ja) フッ素化芳香族化合物および液晶混合物におけるこの使用
DE69406468T2 (de) Mesomorphe Verbindung, Flüssigkristallzusammensetzung und Flüssigkristallvorrichtung
JPH0291065A (ja) 光学活性テトラヒドロフラン‐2‐カルボン酸エステルを液晶混合物においてドーパントとして用いる方法、該エステルを合有する液晶混合物および新規の光学活性テトラヒドロフラン‐2‐カルボン酸エステル
JPH04236295A (ja) 強誘電性液晶組成物及び液晶素子
KR940002639B1 (ko) 강유전성 액정장치
JP2505291B2 (ja) 強誘電性液晶素子
JP2519564B2 (ja) 強誘電性液晶素子
US5525258A (en) Trifluorophenylene compounds, process for their preparation, and their use in liquid-crystalline mixtures
JP2510314B2 (ja) 強誘電性液晶素子
JPH0952852A (ja) フッ素置換ビフェニル誘導体並びにそれらを含む液晶組成物
EP1027403B1 (en) 5-arylindane derivatives and ferroelectric liquid crystal mixture containing same
JP2977410B2 (ja) 強誘電性液晶組成物およびこれを用いた素子
JPH09291049A (ja) キラルドープ剤
JP2575885B2 (ja) 液晶組成物及びこれを含む液晶素子
US5215678A (en) Ferroelectric liquid crystal composition and liquid crystal device incorporating same
EP0982387A1 (en) Liquid crystal compound having negative dielectric anisotropy, liquid crystal composition containing said liquid crystal compound and liquid crystal display device using said composition
EP1150937A1 (en) Liquid crystalline trifluoro-substituted compounds
JPH02261892A (ja) 強誘電性液晶組成物及びそれを用いた液晶素子
JP2819038B2 (ja) 光学活性化合物、その中間体、液晶組成物及び液晶表示素子
JPH0931459A (ja) 新規な強誘電性液晶組成物
JP2001511470A (ja) アクティブマトリクス素子を有する強誘電性液晶ディスプレイ
JPH06211865A (ja) キラルバレロラクトン誘導体
JP4193222B2 (ja) ジチイン誘導体、およびこれを含有する液晶組成物