JP2513559B2 - Manufacturing method of aluminum alloy plate with excellent mold galling resistance, scratch resistance and corrosion resistance - Google Patents

Manufacturing method of aluminum alloy plate with excellent mold galling resistance, scratch resistance and corrosion resistance

Info

Publication number
JP2513559B2
JP2513559B2 JP4115346A JP11534692A JP2513559B2 JP 2513559 B2 JP2513559 B2 JP 2513559B2 JP 4115346 A JP4115346 A JP 4115346A JP 11534692 A JP11534692 A JP 11534692A JP 2513559 B2 JP2513559 B2 JP 2513559B2
Authority
JP
Japan
Prior art keywords
aluminum alloy
resistance
amount
cooling
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4115346A
Other languages
Japanese (ja)
Other versions
JPH05287469A (en
Inventor
俊雄 小松原
俊樹 村松
守 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sky Aluminium Co Ltd
Original Assignee
Sky Aluminium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sky Aluminium Co Ltd filed Critical Sky Aluminium Co Ltd
Priority to JP4115346A priority Critical patent/JP2513559B2/en
Publication of JPH05287469A publication Critical patent/JPH05287469A/en
Application granted granted Critical
Publication of JP2513559B2 publication Critical patent/JP2513559B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electroplating And Plating Baths Therefor (AREA)
  • Electroplating Methods And Accessories (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、自動車ボディシート
に代表される各種陸運車両の部品や電気機器等の部品に
使用される成形加工用アルミニウム合金板の製法に関
し、特に成形加工時における耐型かじり性や耐きず性に
優れ、かつ塗装後の耐食性も良好なアルミニウム合金板
の製法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an aluminum alloy sheet for forming, which is used for parts of various land transportation vehicles typified by automobile body sheets and parts of electric equipment. The present invention relates to a method for producing an aluminum alloy plate which has excellent galling property and scratch resistance and also has good corrosion resistance after painting.

【0002】[0002]

【従来の技術】自動車のボディシートには、従来は冷延
鋼板を使用することが多かったが、最近では主として車
体軽量化の要求からアルミニウム合金圧延板を使用する
検討が進められている。またボディシート以外の自動車
などの陸運車両の部品やシャーシ、パネル等の電気機器
の部品におけるアルミニウム合金圧延板の需要は近年一
層増加している。このような成形加工の用途に供される
アルミニウム合金圧延板は、成形性に優れていることは
勿論、強度、耐食性(特に塗装後の耐食性)、さらには
塗装前の下地処理性が良好であることが要求されるが、
そればかりでなく、特に大量生産方式で成形加工を行な
う場合には、搬送時や成形加工時に傷が付きにくいこ
と、すなわち耐きず性が良好であること、またプレス成
形時に型かじりが生じにくいこと、すなわち耐型かじり
性が良好であることが極めて重要な課題となる。
2. Description of the Related Art In the past, cold-rolled steel sheets were often used for automobile body sheets, but recently, studies have been conducted on the use of rolled aluminum alloy sheets mainly due to the demand for weight reduction of vehicle bodies. Further, in recent years, the demand for aluminum alloy rolled plates in parts of land vehicles such as automobiles other than body sheets and parts of electric devices such as chassis and panels has been increasing. The rolled aluminum alloy plate used for such forming processing has not only excellent formability, but also good strength, corrosion resistance (especially corrosion resistance after coating), and further pretreatment before coating. Is required,
Not only that, but especially when molding is performed in a mass production system, it is less likely to be scratched during transportation or molding, that is, it has good scratch resistance, and mold galling is less likely to occur during press molding. That is, good mold galling resistance is a very important issue.

【0003】ところで従来上述のような用途の成形加工
用アルミニウム合金としてはAl−Mg系のJIS 5
182合金O材や5082合金O材が広く知られてお
り、またこれに関連して、特開昭62−27544号、
特開昭62−207850号、特開平1−225783
号、特開平2−118049号、特開平2−11805
0号、特開昭55−152160号、特開昭63−17
9043号、特開平1−198456号、特開平1−2
19139号、特開平2−47234号、特開平2−5
7655号、特開平2−57656号においても同様な
用途の成形加工用アルミニウム合金としてAl−Mg−
Cu系、Al−Mg系、Al−Mg−Cu−Zn系など
の合金が提案されている。
By the way, conventionally, as an aluminum alloy for forming for the above-mentioned applications, Al-Mg based JIS 5 is used.
182 alloy O material and 5082 alloy O material are widely known, and in connection therewith, JP-A-62-27544,
JP-A-62-207850, JP-A-1-225783
No. 2, JP-A-2-118049, JP-A No. 2-11805
No. 0, JP-A-55-152160, JP-A-63-17
No. 9043, JP-A-1-198456, JP-A 1-2
19139, JP-A-2-47234, JP-A-2-5
In 7655 and JP-A-2-57656, Al-Mg-is used as an aluminum alloy for molding for similar applications.
Cu-based, Al-Mg-based, and Al-Mg-Cu-Zn-based alloys have been proposed.

【0004】[0004]

【発明が解決しようとする課題】前述のような5182
合金O材や5082合金O材、あるいは前記公報で提案
されているような各合金は、成形加工性および強度、耐
食性、塗装下地処理性は良好であるが、耐きず性や耐型
かじり性の点で未だ不充分と言わざるを得なかった。す
なわち自動車用ボディシートの製造ラインでは、アルミ
ニウム合金板も鋼板に対する処理ラインと同じラインで
搬送したりハンドリングしたりすることが多いが、鋼板
と同じラインで搬送、ハンドリングした場合、傷が付き
やすく、そのため手直し作業が必要となって生産性の向
上を阻害する原因となっていた。またアルミニウム合金
は鋼板と比較してヤング率が低く、動的摩擦係数が高い
ため、金型でプレスする際に型にアルミニウムが凝着し
て型かじりが発生し、表面外観を損ったり形状不良や割
れを発生させたりする問題があった。
The above-mentioned 5182 is to be solved.
The alloy O material, the 5082 alloy O material, and each alloy as proposed in the above publication have good moldability and strength, corrosion resistance, and coating undercoating property, but they have excellent scratch resistance and mold galling resistance. I had to say that the points were still insufficient. That is, in the production line of automobile body sheets, aluminum alloy plates are often transported or handled on the same line as the processing line for steel plates, but when transported on the same line as steel plates and handled, they are easily scratched, Therefore, rework is required, which is a cause of hindering improvement in productivity. Since aluminum alloy has a lower Young's modulus and a higher dynamic friction coefficient than steel plates, aluminum sticks to the die when it is pressed by the die, causing galling, which may damage the surface appearance or shape. There was a problem of causing defects and cracks.

【0005】この発明は以上の事情を背景としてなされ
たもので、陸運車両や電気機器部品等の用途に使用され
る成形加工用アルミニウム合金板として、従来材料と比
べ特に耐型かじり性、耐きず性に優れ、しかも成形加工
性や強度等の面でも従来材料と同等に良好であり、しか
も塗装後の耐食性にも優れたアルミニウム合金板を提供
することを目的とするものである。
The present invention has been made in view of the above circumstances, and as an aluminum alloy plate for molding used for applications such as land transportation vehicles and electric equipment parts, it is particularly resistant to mold galling and scratches as compared with conventional materials. It is an object of the present invention to provide an aluminum alloy sheet which has excellent properties, is as good as the conventional material in terms of moldability and strength, and is also excellent in corrosion resistance after coating.

【0006】[0006]

【課題を解決するための手段】前述の課題を解決するた
め、本発明者等が鋭意実験・研究を重ねた結果、基本的
にAl−Mg系をベースとするアルミニウム合金板の表
面にZnを含有するメッキを施し、その後適切な加熱処
理を施してAl−Mg系合金板の表面層中にZnを拡散
させて板の表面層のみをAl−Mg−Zn系合金層と
し、かつその表面のAl−Mg−Zn系合金層を、所謂
T4処理状態、さらにはT6処理状態とすることによっ
て、耐型かじり性、耐きず性が優れると同時に、成形加
工性、強度、塗装後の耐食性にも優れたアルミニウム合
金板が得られることを見出し、この発明をなすに至っ
た。なお主として塗装下地処理性を向上させる目的か
ら、成形加工用アルミニウム合金について表面にZnメ
ッキを施すこと自体は従来から行なわれているが、単に
Znメッキを施しただけでは、プレス加工時に表面のZ
nメッキが剥離するフレーキングや型かじりが発生し易
くなる問題があり、したがって根本的な解決策とはなら
ない。この発明では単にZnメッキを施すだけではな
く、Znメッキを施した後に適切な加熱処理を施してZ
nを拡散させ、さらに表面層をT4処理状態もしくはT
6処理状態とすることにより、プレス成形時のフレーキ
ングを生じることなく、耐型かじり性、耐きず性を向上
させ得ることを見出したのである。
[Means for Solving the Problems] In order to solve the above-mentioned problems, the inventors of the present invention have conducted extensive experiments and researches, and as a result, Zn is basically formed on the surface of an aluminum alloy plate based on Al--Mg system. The plating containing is performed, and then appropriate heat treatment is performed to diffuse Zn into the surface layer of the Al-Mg-based alloy plate to form only the surface layer of the plate as an Al-Mg-Zn-based alloy layer, and By making the Al-Mg-Zn alloy layer into a so-called T4 treated state, and further in a T6 treated state, it is possible to obtain excellent mold galling resistance and flaw resistance, and at the same time, in terms of moldability, strength, and corrosion resistance after coating. The inventors have found that an excellent aluminum alloy plate can be obtained, and have completed the present invention. It has been conventionally practiced to subject the surface of an aluminum alloy for forming to Zn plating, mainly for the purpose of improving the coating undercoating property.
There is a problem that flaking or mold galling that peels off the n-plating is likely to occur, and thus is not a fundamental solution. According to the present invention, not only Zn plating but also Zn plating is followed by appropriate heat treatment.
n is diffused, and the surface layer is treated with T4 or T
It was found that the 6-treatment state can improve the mold galling resistance and the scratch resistance without causing flaking during press molding.

【0007】 具体的には、請求項1の発明の製法は、
最終的に表面層がT4処理状態となっている成形加工用
アルミニウム合金板を得るためのものであり、必須合金
成分として2.0〜8.0%のMgを含有するAl−M
g系アルミニウム合金板の表面に、Znを5%以上含む
メッキ層を、Zn量にして0.1g/m以上形成し、
その後400〜580℃に1440分以内加熱して、5
0℃/分以上の冷却速度で冷却することを特徴とするも
のである。また請求項2の発明の製法も、最終的に表面
層がT4処理状態となっている成形加工用アルミニウム
合金板を得るためのものであり、前記同様なAl−Mg
アルミニウム合金板の表面に、Znを5%以上含むメ
ッキ層を、Zn量にして0.1g/m以上形成し、そ
の後400〜580℃に1440分以内加熱して、50
℃/分未満の冷却速度で冷却し、さらに350〜580
℃の範囲内の温度に加熱して50℃/分以上の冷却速度
で冷却する最終焼鈍を施すことを特徴とするものであ
る。
Specifically, the manufacturing method of the invention of claim 1 is
It is for obtaining an aluminum alloy plate for forming that has a surface layer in the T4 state finally, and is an essential alloy.
Al-M containing 2.0 to 8.0% Mg as a component
A plating layer containing Zn in an amount of 5% or more is formed on the surface of the g-based aluminum alloy plate in an amount of Zn of 0.1 g / m 2 or more,
Then, heat to 400-580 ° C within 1440 minutes, and
It is characterized by cooling at a cooling rate of 0 ° C./minute or more. The method of the invention of claim 2 is also finally surface layer is used to obtain a molded aluminum alloy plate has a T4 processing state, the same Al-Mg
A plating layer containing Zn in an amount of 5% or more is formed on the surface of the aluminum- based aluminum alloy plate in an amount of Zn of 0.1 g / m 2 or more, and then heated to 400 to 580 ° C. within 1440 minutes to obtain 50
Cooling at a cooling rate of less than C / min, and further 350-580
The final annealing is performed by heating to a temperature in the range of 0 ° C. and cooling at a cooling rate of 50 ° C./min or more.

【0008】 一方請求項3の発明の製法は、最終的に
表面層がT6処理状態となっている成形加工用アルミニ
ウム合金板を得るためのものであり、前記同様なAl−
Mg系アルミニウム合金板の表面に、Znを5%以上含
むメッキ層を、Zn量にして0.1g/m以上形成
し、その後400〜580℃に1440分以内加熱し
て、50℃/分以上の冷却速度で冷却してから、80〜
200℃の温度に1〜40時間加熱する人工時効処理を
施すことを特徴とするものである。また請求項4の製法
も、最終的に表面層がT6処理状態となっている成形加
工用アルミニウム合金板を得るためのものであり、前記
同様なAl−Mg系アルミニウム合金板の表面に、Zn
を5%以上含むメッキ層を、Zn量にして0.1g/m
以上形成し、その後400〜580℃に1440分以
内加熱して、50℃/分未満の冷却速度で冷却し、さら
に350〜580℃の範囲内の温度に加熱して50℃/
分以上の冷却速度で冷却する最終焼鈍を施してから、8
0〜200℃の温度に1〜48時間加熱する人工時効処
理を施すことを特徴とするものである。
On the other hand, the manufacturing method of the invention of claim 3 is for obtaining an aluminum alloy plate for forming, in which the surface layer is finally in a T6 treated state .
On the surface of the Mg-based aluminum alloy plate, a plating layer containing Zn in an amount of 5% or more is formed in a Zn amount of 0.1 g / m 2 or more, and then heated to 400 to 580 ° C. within 1440 minutes, and 50 ° C./minute. After cooling at the above cooling rate, 80 ~
It is characterized in that it is subjected to an artificial aging treatment in which it is heated to a temperature of 200 ° C. for 1 to 40 hours. The method according to claim 4 also is for obtaining a molded aluminum alloy sheet for finally surface layer is in the T6 treatment condition, the
Zn on the surface of a similar Al-Mg-based aluminum alloy plate
The Zn content of the plating layer containing 5% or more is 0.1 g / m
2 or more, and then heated to 400 to 580 ° C. within 1440 minutes, cooled at a cooling rate of less than 50 ° C./min, and further heated to a temperature in the range of 350 to 580 ° C. to 50 ° C. /
After performing the final annealing to cool at a cooling rate of more than 5 minutes,
It is characterized in that it is subjected to an artificial aging treatment in which it is heated to a temperature of 0 to 200 ° C. for 1 to 48 hours.

【0009】[0009]

【作用】この発明のアルミニウム合金板では、ベースと
なるアルミニウム板(以下基板と記す)としては、成形
加工性、強度に優れる成形加工用の非熱処理型合金とし
てJIS 5000番系の各合金を含むAl−Mg系合
、すなわち必須合金成分としてMgを2.0〜8.0
%含有するAl−Mg系合金を用いる。そしてその基板
の表面に5%以上のZnを含むメッキ層をZn量にして
0.1g/m以上の付着量で形成してから、400〜
580℃で1440分以内加熱する加熱処理を施す。こ
の加熱処理によってメッキ層中のZnが基板の表層中に
拡散され、メッキ層が基板表面層と一体化される。した
がって表面層のみがJIS 7000番系に相当するA
l−Zn−Mg系の合金からなり、内部が5000番系
に相当するAl−Mg系合金からなる板が得られること
になる。そしてこのようなZn拡散のための加熱処理後
の冷却が50℃/分以上で行なわれる場合には、その加
熱処理が表面層のAl−Zn−Mg系合金に対する溶体
化処理−焼入れを兼ねることになるから、そのまま常温
時効すれば表面層のAl−Zn−Mg系合金に対するT
4処理が施された状態となる。またZn拡散のための加
熱処理後の冷却速度が50℃/分未満の場合には、その
後、350〜580℃に加熱して50℃/分以上で溶体
化処理−焼入れを行ない、常温時効させれば良く、これ
によって表面層のAl−Zn−Mg系合金に対するT4
処理が施された状態となる。
In the aluminum alloy sheet of the present invention, the base aluminum sheet (hereinafter referred to as the substrate) includes JIS 5000 series alloys which are excellent in formability and strength as non-heat treatment type alloys for forming use. Al-Mg-based alloy , that is, Mg as an essential alloy component is 2.0 to 8.0.
% Al-Mg based alloy is used. Then, after forming a plating layer containing 5% or more of Zn on the surface of the substrate with a Zn amount of 0.1 g / m 2 or more,
Heat treatment is performed by heating at 580 ° C. for 1440 minutes or less. By this heat treatment, Zn in the plating layer is diffused into the surface layer of the substrate, and the plating layer is integrated with the substrate surface layer. Therefore, only the surface layer is equivalent to JIS 7000 series A
A plate made of an 1-Zn-Mg-based alloy and having an Al-Mg-based alloy whose interior corresponds to the No. 5000 series can be obtained. When cooling after the heat treatment for such Zn diffusion is performed at 50 ° C./min or more, the heat treatment also serves as solution treatment-quenching of the Al—Zn—Mg-based alloy of the surface layer. Therefore, if it is aged at room temperature as it is, T for Al-Zn-Mg-based alloy of the surface layer
4 will be in the state of being processed. If the cooling rate after the heat treatment for Zn diffusion is less than 50 ° C / min, then heat to 350 to 580 ° C and perform solution treatment-quenching at 50 ° C / min or more, and perform aging at room temperature. It suffices that the T4 with respect to the Al-Zn-Mg based alloy of the surface layer
It will be in a state where it has been processed.

【0010】以上のように、表面層のみを熱処理型のA
l−Zn−Mg系合金としかつT4処理に相当する処理
を施すことによって、表面層のみが硬化されることにな
る。すなわち、表面層のAl−Zn−Mg系合金は、溶
体化処理−焼入れによる過飽和固溶体から常温時効でG
Pゾーンが生成され、このGPゾーンが硬化に寄与す
る。このようにして表面層が硬化されたアルミニウム合
金板は、耐きず性および成形加工時の耐型かじり性が優
れ、また耐食性も良好となる。一方内部は非熱処理型の
Al−Mg系合金のままであって、前述のように溶体化
処理−焼入れ、常温時効を行なっても特にGPゾーンの
生成による著しい硬化は生じず、したがって成形加工性
等は従来のAl−Mg系合金と同様に確保される。
As described above, only the surface layer of the heat treatment type A
By using the 1-Zn-Mg-based alloy and performing the treatment corresponding to the T4 treatment, only the surface layer is hardened. That is, the Al-Zn-Mg-based alloy of the surface layer is G at room temperature aging from the supersaturated solid solution by solution treatment-quenching.
A P zone is created, which contributes to curing. The aluminum alloy plate having the surface layer thus hardened has excellent scratch resistance and mold galling resistance during molding, and also has good corrosion resistance. On the other hand, the inside remains a non-heat treatment type Al-Mg alloy, and even if the solution treatment-quenching and normal temperature aging are performed as described above, no remarkable hardening due to the formation of the GP zone occurs, and therefore, the formability is high. Etc. are secured similarly to the conventional Al-Mg-based alloy.

【0011】さらに、前述のような処理の後、80〜2
00℃で1〜48時間加熱する人工時効処理を施せば、
表面層のAl−Zn−Mg系合金に対してT6処理を施
した状態となる。すなわち表面層のAl−Zn−Mg系
合金においては、溶体化処理−焼入れによる過飽和固溶
体からGPゾーンを経て人工時効により強度に対する寄
与の大きい中間相(η′相、T′相、またCuを含有す
る場合にはS′相)が生成され、これらのη′相、T′
相、S′相によって表面層がより一層硬質化して、耐型
かじり性および耐きず性が一層良好となる。
Further, after the above-mentioned processing, 80-2
If you give artificial aging treatment by heating at 00 ℃ for 1-48 hours,
The T6 treatment is applied to the Al-Zn-Mg-based alloy of the surface layer. That is, the Al-Zn-Mg-based alloy of the surface layer contains an intermediate phase (η 'phase, T' phase, and Cu, which has a large contribution to the strength due to artificial aging, from the supersaturated solid solution by solution treatment-quenching, through the GP zone. S ′ phase) is generated, and these η ′ phase, T ′
The phase and S'phase further harden the surface layer to further improve mold galling resistance and scratch resistance.

【0012】さらにこの発明のアルミニウム合金板の製
法についてより詳細に説明する。
The method for producing the aluminum alloy plate of the present invention will be described in more detail.

【0013】 基板となるアルミニウム板は、基本的に
は前述のように必須合金成分としてMg2.0〜8.0
%を含有するAl−Mg系のアルミニウム合金であれば
良いが、そのほか必要に応じてCu0.05〜1.5
%、Zn0.05〜2.5%のうちの1種または2種を
含有しても良く、また必要に応じてMn0.05〜0.
6%、Cr0.05〜0.3%、Zr0.05〜0.3
%のうちの1種または2種以上を含有しても良い。以下
にこれらの元素の添加理由を述べる。
As described above, the aluminum plate serving as the substrate basically contains Mg2.0 to 8.0 as an essential alloy component.
%, An Al-Mg-based aluminum alloy may be used, but if necessary, Cu 0.05 to 1.5
%, Zn 0.05 to 2.5%, one or two of
It may be contained, and if necessary, Mn of 0.05 to 0.
6%, Cr 0.05 to 0.3%, Zr 0.05 to 0.3
You may contain 1 type (s) or 2 or more types of%. Less than
The reasons for adding these elements are described in.

【0014】Mg:Mgは成形加工用のAl−Mg系合
金で基本となる合金元素であり、強度および成形性の向
上に寄与する。Mg量が2.0%未満では充分な強度お
よび成形性が得られず、一方8.0%を越えれば圧延性
が悪化し、圧延が困難となるから、Mgは2.0〜8.
0%の範囲内とした。
Mg: Mg is an alloying element that is a basic Al-Mg alloy for forming and contributes to the improvement of strength and formability. If the amount of Mg is less than 2.0%, sufficient strength and formability cannot be obtained, while if it exceeds 8.0%, the rollability deteriorates and rolling becomes difficult, so Mg is 2.0-8.
It was set within the range of 0%.

【0015】 Cu,Zn: これらはいずれも強度向上に有効な元素であり、いずれ
か一方または双方必要に応じて添加しても良い。Cu
が0.05%未満、Znが0.05%未満では強度向上
の効果が充分に得られず、一方Cuが1.5%、Znが
2.5%をそれぞれ越えれば、耐食性が低下するととも
に成形性が低下するから、Cu添加量は0.05〜1.
5%、Zn添加量は0.05〜2.5%の範囲内とする
ことが好ましい。なお不純物として0.05%未満のC
u、0.05%未満のZnが含有される場合があること
はもちろんである
[0015] Cu, Zn: These are elements effective in both improving the strength, may be added if necessary either or both. Cu
Is less than 0.05% and Zn is less than 0.05%, the effect of improving strength cannot be sufficiently obtained, while if Cu is more than 1.5% and Zn is more than 2.5%, corrosion resistance is deteriorated. Since the formability decreases, the Cu addition amount is 0.05 to 1.
5%, Zn addition amount is in the range of 0.05 to 2.5%
It is preferable. In addition, less than 0.05% of C as an impurity
u, may contain less than 0.05% Zn
Of course .

【0016】 Mn,Cr,Zr: これらはいずれも結晶粒を微細化、安定化する効果を有
する元素であり、必要に応じて1種または2種以上を添
加しても良い。それぞれ0.05%未満では上記の効果
が得られず、一方Mnが0.6%を、Cr,Zrがそれ
ぞれ0.3%を越えれば成形性を低下させるから、Mn
添加量は0.05〜0.6%の範囲内、Cr添加量、
添加量はいずれも0.05〜0.3%の範囲内とする
ことが好ましい。なお不純物として0.05%未満のM
n、0.05%未満のCr、0.05%未満のZrが含
有される場合があることはもちろんである
Mn, Cr, Zr: Each of these is an element having an effect of refining and stabilizing crystal grains, and if necessary, one kind or two or more kinds are added.
You may add . If the content of Mn is less than 0.05%, the above effect cannot be obtained. On the other hand, if the content of Mn exceeds 0.6% and the content of Cr and Zr exceeds 0.3%, the formability decreases.
Addition amount is within the range of 0.05-0.6%, Cr addition amount, Z
The amount of addition of r is in the range of 0.05 to 0.3% in all cases.
It is preferable. M less than 0.05% as an impurity
n, less than 0.05% Cr, less than 0.05% Zr
Of course, there are cases where it is included .

【0017】 以上のほかは、基本的にはAlと、C
u,Zn,Mn,Cr,Zr以外の不可避的不純物とす
れば良い。ここで、アルミニウム合金における不可避的
不純物の代表的なものとしてはFe,Siがあるが、F
eはAl−Fe(−Si)系の金属間化合物を生成し
て、成形性劣化の原因となるから、Feは0.20%未
満とすることが望ましい。またSiもFeと共存してA
l−Fe−Si系の金属間化合物を生成し、成形性、特
に伸び、曲げ性を劣化させるから、Siは0.20%未
満とすることが望ましい。
Other than the above, basically Al and C
Inevitable impurities other than u, Zn, Mn, Cr, and Zr may be used. Here, Fe and Si are typical examples of unavoidable impurities in an aluminum alloy.
Since e forms an Al-Fe (-Si) -based intermetallic compound and causes deterioration of moldability, Fe is preferably less than 0.20%. Si also coexists with Fe
Si is desirable to be less than 0.20% because it produces an l-Fe-Si based intermetallic compound and deteriorates formability, particularly elongation and bendability.

【0018】また一般のアルミニウム合金では、鋳塊結
晶粒微細化のため少量のTiを単独であるいは少量のT
iを微量のBと組合せて添加することがあり、この発明
の場合にもTi、もしくはTiおよびBの添加は許容さ
れる。但しTi添加量が0.15%を越えれば粗大な初
晶TiAl3 粒子が生成されるから、Ti添加量は0.
15%以下とすることが望ましく、またTiとともにB
を添加する場合、B添加量が500ppm を越えれば粗大
なTiB2 粒子が生成されるから、B量は500ppm 以
下とすることが好ましい。さらにMgを2%程度以上含
有するアルミニウム合金の場合、溶湯の酸化防止のため
に微量のBeを添加することがあるが、この発明の場合
も500ppm 以下のBe添加であれば特に他の性能を劣
化させることはない。
In general aluminum alloys, a small amount of Ti alone or a small amount of T is used for refining ingot crystal grains.
i may be added in combination with a trace amount of B, and addition of Ti, or Ti and B is allowed in the present invention as well. However, if the Ti addition amount exceeds 0.15%, coarse primary crystal TiAl 3 particles are generated, so that the Ti addition amount is 0.1.
15% or less is desirable, and B together with Ti
When B is added, the amount of B is preferably 500 ppm or less because coarse TiB 2 particles are generated when the amount of B added exceeds 500 ppm. Further, in the case of an aluminum alloy containing about 2% or more of Mg, a small amount of Be may be added to prevent the oxidation of the molten metal. In the case of the present invention, however, if Be is added in an amount of 500 ppm or less, other performances are It does not deteriorate.

【0019】次にこの発明の製造方法の各プロセスにつ
いて説明する。
Next, each process of the manufacturing method of the present invention will be described.

【0020】前述のような成分組成のアルミニウム合金
を所要の製品板厚の基板とするまでの工程、すなちわZ
nを含むメッキを施す前までの工程は従来の通常のAl
−Mg系合金に対して適用されている工程を適用すれば
良い。すなわち、前記成分組成のアルミニウム合金をD
C鋳造法(半連続鋳造法)などによって鋳造し、得られ
た鋳塊に均質化処理を施してから熱間圧延および冷間圧
延を行なって所要の板厚とすれば良い。そして熱間圧延
と冷間圧延との間もしくは冷間圧延の中途においては中
間焼鈍を行なっても良い。
The process of forming an aluminum alloy having the above-described composition into a substrate having a required product thickness, that is, Z
The process up to the point of applying the plating containing n is the conventional Al
-The process applied to the Mg-based alloy may be applied. That is, the aluminum alloy having the above-mentioned composition is
Casting may be performed by a C casting method (semi-continuous casting method) or the like, and the obtained ingot may be homogenized, and then hot-rolled and cold-rolled to obtain a required plate thickness. Then, intermediate annealing may be performed between the hot rolling and the cold rolling or in the middle of the cold rolling.

【0021】前記均質化処理は、鋳塊の不均質を解消し
て成形性を向上させるとともに、再結晶粒を安定化する
ために行なうものであって、400〜570℃の範囲内
の温度で0.5〜48時間加熱保持することが望まし
い。均質化処理温度が450℃未満では前述の効果が充
分に得られず、一方570℃を越えれば共晶融解のおそ
れがある。また均質化処理の加熱時間が0.5時間未満
でも前述の効果が充分に得られず、一方48時間を越え
ても経済性を損なうだけである。また熱間圧延と冷間圧
延との間もしくは冷間圧延の中途において必要に応じて
行なう中間焼鈍は、再結晶させることによって冷間圧延
性を改善するとともに結晶粒をコントロールするに効果
があり、バッチ式焼鈍炉、連続焼鈍炉のいずれを用いて
も良いが、バッチ式の場合には300〜450℃におい
て0.5〜24時間加熱保持する条件で行なうことが望
ましい。この場合の加熱温度が300℃未満または保持
時間が0.5時間未満では再結晶が生じず、一方加熱温
度が450℃を越えればMgの高温酸化が激しくなって
表面性状を劣化させるとともに経済性も悪くなり、また
保持時間が24時間を越えても経済的に無駄となるだけ
である。中間焼鈍を連続焼鈍によって行なう場合は、3
50〜580℃に加熱して保持なしもしくは5分以内の
保持の条件とすることが好ましい。この場合の加熱温度
が350℃未満では再結晶せず、580℃を越えればM
gの高温酸化が激しくなって表面性状が劣化するととも
に、共晶融解のおそれがあり、さらに保持時間が5分を
越えれば結晶粒が粗大化するとともに、経済性も悪くな
る。
The homogenization treatment is carried out to eliminate inhomogeneity of the ingot to improve the formability and stabilize the recrystallized grains, and at a temperature in the range of 400 to 570 ° C. It is desirable to keep heating for 0.5 to 48 hours. If the homogenization temperature is lower than 450 ° C, the above-mentioned effects cannot be sufficiently obtained, while if it exceeds 570 ° C, eutectic melting may occur. Further, if the heating time of the homogenization treatment is less than 0.5 hours, the above-mentioned effects cannot be sufficiently obtained, while if it exceeds 48 hours, the economical efficiency is only impaired. In addition, intermediate annealing performed as necessary between hot rolling and cold rolling or in the middle of cold rolling is effective in improving cold rolling property by recrystallizing and controlling crystal grains, Either a batch type annealing furnace or a continuous annealing furnace may be used, but in the case of a batch type annealing, it is preferable to perform heating and holding at 300 to 450 ° C. for 0.5 to 24 hours. In this case, if the heating temperature is less than 300 ° C. or the holding time is less than 0.5 hours, recrystallization does not occur. On the other hand, if the heating temperature exceeds 450 ° C., high-temperature oxidation of Mg becomes severe, deteriorating the surface properties and economical efficiency. Is worse, and even if the holding time exceeds 24 hours, it is economically wasteful. 3 if intermediate annealing is performed by continuous annealing
It is preferable to heat to 50 to 580 ° C. and set the condition of no holding or holding within 5 minutes. In this case, if the heating temperature is less than 350 ° C, recrystallization does not occur, and if it exceeds 580 ° C, M
There is a possibility that eutectic melting may occur as a result of violent high-temperature oxidation of g and the eutectic melting. Further, if the holding time exceeds 5 minutes, the crystal grains become coarse and the economical efficiency deteriorates.

【0022】以上のようにして所要の板厚とした基板と
してのアルミニウム板に対しては、次いで電気メッキ、
溶融メッキ、化学メッキ(無電解メッキ)等によってZ
nを5%以上含むメッキ層を形成する。このメッキ層は
要はZnを5%以上含有していれば良いから、純Znメ
ッキ層のほか、Zn−Fe合金メッキ層、Zn−Ni合
金メッキ層、Zn−Mn合金メッキ層等であっても良
い。Zn−Fe合金メッキ層の場合、Feは10〜80
%の範囲内とすることが好ましく、またZn−Ni合金
メッキ層の場合、Niが1〜20%の範囲内とすること
が好ましく、さらにZn−Mnメッキ層の場合もMnが
1〜10%の範囲内とすることが好ましい。ここで、メ
ッキ層のZn含有量が5%未満では、拡散後の表面層の
Zn含有量が少な過ぎて、加熱処理(あるいはさらに人
工時効処理)によって充分に表面を硬化させることがで
きず、そのため耐型かじり性や耐きず性が充分に向上し
ない。またこのメッキ層は、その付着量(厚さ)がZn
量にして0.1g/m2 以上となっている必要がある。
この付着量が0.1g/m2 未満では、前記同様に拡散
後の表面層のZn含有量が少な過ぎて板表面を充分に硬
化させることができず、充分な耐型かじり性、耐きず性
が得られない。なおこのようにZnを5%以上含有する
メッキを施す前に、予めジンケート処理等の任意の前処
理を基板表面に施しておいても良い。
The aluminum plate as a substrate having the required plate thickness as described above is then electroplated,
Z by hot dip plating, chemical plating (electroless plating), etc.
A plating layer containing 5% or more of n is formed. This plated layer need only contain 5% or more of Zn. Therefore, in addition to a pure Zn plated layer, a Zn-Fe alloy plated layer, a Zn-Ni alloy plated layer, a Zn-Mn alloy plated layer, etc. Is also good. In the case of a Zn-Fe alloy plating layer, Fe is 10-80.
%, And in the case of a Zn—Ni alloy plated layer, Ni is preferably in the range of 1 to 20%, and in the case of a Zn—Mn plated layer, Mn is also 1 to 10%. It is preferably within the range. Here, if the Zn content of the plating layer is less than 5%, the Zn content of the surface layer after diffusion is too small to sufficiently harden the surface by heat treatment (or further artificial aging treatment), Therefore, mold galling resistance and scratch resistance are not sufficiently improved. In addition, this plating layer has an adhesion amount (thickness) of Zn
The amount should be 0.1 g / m 2 or more.
If the amount of adhesion is less than 0.1 g / m 2 , the Zn content of the surface layer after diffusion is too small to sufficiently harden the plate surface as described above, resulting in sufficient mold galling resistance and scratch resistance. I can not get sex. Before the plating containing 5% or more of Zn in this way, an arbitrary pretreatment such as a zincate treatment may be performed in advance on the substrate surface.

【0023】メッキ後には、メッキ層のZnを基板表面
層に拡散させ、Al−Zn−Mg系合金層を形成するた
めの加熱処理を行なう。この加熱処理は400〜580
℃で1440分以内の条件で行なう。温度が400℃未
満では拡散が不充分で板表面の硬化が不充分となり、一
方580℃を越えるかまたは加熱処理時間が1440分
を越えれば、拡散が進行し過ぎて板の内部まで硬化して
しまい、成形性が低下するとともに板全体が脆化し、ま
た耐食性も低下する。ここで、拡散層すなわちAl−Z
n−Mg系合金からなる表面層の厚みは、片面当り板厚
の20%以内とすることが望ましい。なおこの加熱処理
は、バッチ式の炉によって行なっても、また連続焼鈍炉
の如き連続炉を用いて行なっても良い。バッチ式の炉を
用いる場合は前記温度に10分以上保持することが好ま
しく、また連続炉を用いる場合は460℃以上で10秒
以上、10分以内の保持とすることが望ましいが、高温
であれば保持なしでも良い。
After plating, Zn in the plating layer is diffused into the surface layer of the substrate, and a heat treatment for forming an Al-Zn-Mg-based alloy layer is performed. This heat treatment is 400-580
Perform at 1440C for 1440 minutes or less. If the temperature is lower than 400 ° C, the diffusion is insufficient and the surface of the plate is insufficiently cured. On the other hand, if the temperature is higher than 580 ° C or the heat treatment time is longer than 1440 minutes, the diffusion is excessive and the inside of the plate is cured. As a result, the formability decreases, the entire plate becomes brittle, and the corrosion resistance also decreases. Here, the diffusion layer, that is, Al-Z
It is desirable that the thickness of the surface layer made of the n-Mg-based alloy be within 20% of the plate thickness per one side. The heat treatment may be performed in a batch type furnace or a continuous furnace such as a continuous annealing furnace. When using a batch type furnace, it is preferable to maintain the temperature at 10 minutes or more, and when using a continuous furnace, it is desirable to maintain the temperature at 460 ° C. or higher for 10 seconds or more and 10 minutes or less, but at a high temperature. If you don't hold it

【0024】上述のようなZn拡散のための加熱処理後
の冷却速度が50℃/分未満の場合には、その後表面層
(Al−Zn−Mg系合金層)の溶体化処理のために3
50〜580℃で最終焼鈍を行なって50℃/分以上の
冷却速度で急冷(焼入れ)する。この最終焼鈍の温度が
350℃未満ではZn,Cuの溶体化が不充分で、最終
的に充分な硬さが得られず、一方580℃を越えれば溶
体化の効果が飽和するばかりでなく、共晶融解のおそれ
がある。最終焼鈍後の冷却速度が50℃/分未満では、
冷却中にCu,Znの粒界析出が生じて、強度および成
形性、特に伸び耐食性を低下させる。なお保持時間は特
に限定しないが、JIS H6088で規定させる時間
以内で充分である。
If the cooling rate after the heat treatment for Zn diffusion as described above is less than 50 ° C./min, then 3 for solution treatment of the surface layer (Al--Zn--Mg alloy layer).
Final annealing is performed at 50 to 580 ° C, and rapid cooling (quenching) is performed at a cooling rate of 50 ° C / min or more. If the temperature of this final annealing is less than 350 ° C., solution treatment of Zn and Cu is insufficient, and finally sufficient hardness cannot be obtained. On the other hand, if it exceeds 580 ° C., not only the solutionizing effect is saturated, There is a risk of eutectic melting. If the cooling rate after the final annealing is less than 50 ° C / min,
Grain boundary precipitation of Cu and Zn occurs during cooling, which reduces strength and formability, particularly elongation corrosion resistance. The holding time is not particularly limited, but it is sufficient if it is within the time specified in JIS H6088.

【0025】一方、Zn拡散のための加熱処理後の冷却
速度が50℃/分以上の急冷の場合には、その加熱処理
およびその後の急冷によって溶体化処理−焼入れの目的
は達成されるから、前述のような溶体化処理のための最
終焼鈍を改めて施す必要はない。
On the other hand, when the cooling rate after the heat treatment for diffusion of Zn is rapid cooling of 50 ° C./min or more, the object of solution treatment-quenching is achieved by the heat treatment and the subsequent rapid cooling. It is not necessary to perform the final annealing again for the solution treatment as described above.

【0026】このようにしてZnを含有するメッキ層形
成後に、Zn拡散のための加熱処理と兼ねて溶体化処理
−焼入れを行なうか、あるいはZn拡散のための加熱処
理後に別に改めて最終焼鈍として溶体化処理−焼入れを
行ない、常温時効させることによって、表面層のAl−
Zn−Mg系合金に対し所謂T4処理を施した状態とな
る。このままでも表面層は相当に硬質化されるから、そ
のままでも耐型かじり性、耐きず性は従来の通常の成形
加工用Al−Mg系合金よりも優れているが、さらに人
工時効処理を施すことによって表面層のより一層の高硬
度化を図ることができる。
After forming the Zn-containing plated layer in this way, solution treatment-quenching is performed in combination with the heat treatment for Zn diffusion, or the solution is treated as a final annealing after the heat treatment for Zn diffusion. Chemical treatment-Altering the surface layer by quenching and aging at room temperature
The Zn-Mg-based alloy is in a state of being subjected to so-called T4 treatment. Even as it is, the surface layer is considerably hardened, so even if it is as it is, the mold galling resistance and the scratch resistance are superior to those of the conventional Al-Mg alloys for ordinary forming, but further artificial aging treatment should be performed. This makes it possible to further increase the hardness of the surface layer.

【0027】この人工時効処理は80〜200℃で1〜
48時間の条件とする。温度が80℃未満、また時間が
1時間未満では表面層が充分に硬化されず、一方温度が
200℃を越えれば過時効により強度が低下するととも
に成形性が低下し、また脆化する。時間が48時間を越
えても経済的に無駄となり、特に高温で48時間を越え
れば過時効が生じる なお上述のような人工時効処理を施す場合、その前の溶
体化処理−焼入れから人工時効までの間において室温〜
80℃未満の低温で予備時効すれば、より一層の表面層
の硬化を図ることができる。この予備時効は、室温であ
れば1日以上が好ましく、また加熱するのであれば、2
時間以上48時間以下が好ましい。
This artificial aging treatment is carried out at 80-200 ° C. for 1-
The condition is 48 hours. If the temperature is less than 80 ° C. and the time is less than 1 hour, the surface layer is not sufficiently cured, while if the temperature exceeds 200 ° C., overaging causes a decrease in strength, a decrease in moldability, and an embrittlement. Even if the time exceeds 48 hours, it is economically wasted, and especially over 48 hours at a high temperature, overaging occurs. In addition, when the artificial aging treatment as described above is performed, before solution treatment-quenching to artificial aging. Room temperature between
By pre-aging at a low temperature of less than 80 ° C., it is possible to further harden the surface layer. This preliminary aging is preferably at least 1 day at room temperature, and 2 if heated.
It is preferably from 48 hours to 48 hours.

【0028】なおまた、前述のようなZn拡散のための
加熱処理を兼ねた溶体化処理−焼入れ、もしくは最終焼
鈍の後には、必要に応じて板の歪矯正を行なっても良
い。このような矯正処理としては、ストレッチ、レベリ
ング等の任意の手段を適用することができる。
Further, after the solution treatment-quenching which also serves as the heat treatment for Zn diffusion as described above-the quenching, or the final annealing, the strain of the plate may be corrected if necessary. As such a correction process, any means such as stretching and leveling can be applied.

【0029】[0029]

【実施例】JIS 5182に相当するAl−4.41
%Mg−0.02%Cu−0.18%Fe−0.15%
Si−0.28%Mnよりなる合金をDC鋳造によって
鋳造し、500℃で5時間均質化処理を施した後、板厚
3mmまで熱間圧延し、さらに冷間圧延を行なって板厚1
mmとした。次いでこの板の表面に、通常の電気メッキに
よって表1に示すようなメッキ層を形成し、次いでZn
拡散のための加熱処理を表1中に示す条件で行ない、さ
らに一部を除いて同じく表1中に示す条件で最終焼鈍
(溶体化処理)を行なった。そしてさらに一部のものを
除き、表1中に示す条件で人工時効処理を行なった。
Example Al-4.41 corresponding to JIS 5182
% Mg-0.02% Cu-0.18% Fe-0.15%
An alloy composed of Si-0.28% Mn was cast by DC casting, homogenized at 500 ° C. for 5 hours, hot-rolled to a thickness of 3 mm, and cold-rolled to a thickness of 1 mm.
mm. Then, a plating layer as shown in Table 1 was formed on the surface of this plate by ordinary electroplating, and then Zn
The heat treatment for diffusion was performed under the conditions shown in Table 1, and the final annealing (solution treatment) was also performed under the same conditions shown in Table 1 except for a part. Then, an artificial aging treatment was performed under the conditions shown in Table 1 except for some of them.

【0030】上述のような処理後の各板について、圧延
面表面の硬さを測定するとともに、圧延面表面をエッチ
ングして、圧延面表面から50〜500μmの深さの各
位置での硬さを測定し、厚み方向の硬さ分布を調べた。
その結果を表2に示す。また、成形性評価として、曲げ
試験およびエリクセン試験を行なった。曲げ試験は18
0°最小曲げ半径を調べた。さらに耐型かじり性および
塗装後の耐食性を調べた。耐型かじり性は、日本工作油
(株)製のZ−5潤滑油を用い、50mmφの円筒絞り試
験を連続50回行ない、ダイスへの型かじりによる傷の
発生およびフレーキング(板表面層のフレーク状の剥
離)の発生の有無によって評価した。また塗装後の耐食
性は、塗装下地処理として燐酸亜鉛による化成処理を行
なった後、電着塗装を行ない、さらに焼付塗装を行なっ
た板に対して、糸錆試験を行ない、発生した糸錆長さで
評価した。具体的には、焼付塗装面にカッターナイフに
よりスクラッチを入れ、ASTMに準拠して腐食試験を
行ない、スクラッチ部分に発生した糸錆の長さをルーペ
によって調べた。これらの結果を表3に示す。なお表3
における条件No.13は、参考例として鋼板について各
特性を調べた結果を示す。
With respect to each plate after the above-mentioned treatment, the hardness of the surface of the rolled surface was measured, and the surface of the rolled surface was etched to obtain hardness at each position at a depth of 50 to 500 μm from the surface of the rolled surface. Was measured to examine the hardness distribution in the thickness direction.
The results are shown in Table 2. In addition, a bending test and an Erichsen test were performed as a formability evaluation. Bending test is 18
The 0 ° minimum bend radius was investigated. Furthermore, the mold galling resistance and the corrosion resistance after coating were examined. The mold galling resistance was determined by using a Z-5 lubricating oil manufactured by Nippon Machine Oil Co., Ltd. and conducting a cylindrical drawing test of 50 mmφ 50 times in succession to generate scratches and flaking due to mold galling on the die (plate surface layer It was evaluated based on the presence or absence of flaky peeling). Corrosion resistance after coating was evaluated by subjecting a plate that had been subjected to chemical conversion treatment with zinc phosphate as a coating base treatment, followed by electrodeposition coating and then baking coating to a thread rust test to determine the length of thread rust that occurred. It was evaluated by. Specifically, scratches were put on the baking coated surface with a cutter knife, a corrosion test was performed in accordance with ASTM, and the length of thread rust generated in the scratched portion was examined by a loupe. Table 3 shows the results. Table 3
Condition No. in As a reference example, 13 shows the results of examining each characteristic of the steel sheet.

【0031】[0031]

【表1】 [Table 1]

【0032】[0032]

【表2】 [Table 2]

【0033】[0033]

【表3】 [Table 3]

【0034】表2、表3から明らかなように、この発明
の方法に従った条件No.1〜No.4、No.11の場合
は、表面のみが高硬度化しており、成形性が良好である
と同時に、耐型かじり性が鋼板と同様に優れており、ま
た塗装後の耐食性も良好であった。なお耐きず性につい
ては特に調べなかったが、表面が硬質で耐型かじり性が
優れていることから、耐きず性も良好であることが明ら
かである。
As is apparent from Tables 2 and 3, the condition No. 1 according to the method of the present invention was used. 1-No. 4, No. In the case of No. 11, only the surface had a high hardness, and the moldability was good, and at the same time, the galling resistance was excellent as with the steel sheet, and the corrosion resistance after coating was also good. Although the scratch resistance was not particularly investigated, it is clear that the scratch resistance is also good because the surface is hard and the mold galling resistance is excellent.

【0035】これに対しZnメッキ量が過少の条件No.
5では、成形性は良好であるが、表面が充分に硬化され
ず、耐型かじり性が劣るとともに塗装後の耐食性も劣っ
ていた。また条件No.6はZnの拡散のための加熱処理
の温度が低過ぎたものであるが、この場合は成形性およ
び塗装後の耐食性は良好であるが、表面層にZnが充分
に拡散されないため、表面が充分に硬化されず、耐型か
じり性が劣っており、フレーキングも生じてしまった。
条件No.7はZn拡散のための加熱処理の温度が高過ぎ
たもの、条件No.8はZn拡散のための加熱時間が長過
ぎたものであるが、これらの場合はいずれも内部まで硬
化されてしまって、成形性が劣るようになり、また塗装
後の耐食性も劣化した。条件No.9は人工時効処理の温
度が高過ぎたものであるが、この場合は過時効によって
表面層の硬さが低くなり、そのため耐型かじり性が悪く
なるとともに、成形性も低下した。条件No. 10はZn
拡散のための加熱処理後の冷却速度が遅く、しかもその
後に最終焼鈍としての溶体化処理−焼入れを行なわなか
ったものであるが、この場合は表面層が全く硬化され
ず、耐型かじり性も悪かった。さらに条件No.12はメ
ッキ層の付着量がFe−10%Zn合金で0.5g/m
2 であって、Zn量にして0.05g/m2 と少ないた
め、表面が充分に硬化されず、耐型かじり性が劣るとと
もに耐食性も劣っていた。
On the other hand, the condition No.
In No. 5, the moldability was good, but the surface was not sufficiently cured, the mold galling resistance was poor, and the corrosion resistance after coating was also poor. In addition, the condition No. In No. 6, the temperature of the heat treatment for diffusion of Zn was too low. In this case, the moldability and the corrosion resistance after coating were good, but since Zn was not sufficiently diffused in the surface layer, the surface was It was not sufficiently cured, the mold galling resistance was poor, and flaking also occurred.
Condition No. In No. 7, the heat treatment temperature for Zn diffusion was too high. In No. 8, the heating time for diffusion of Zn was too long, but in all of these cases, the interior was hardened, the moldability became poor, and the corrosion resistance after coating deteriorated. Condition No. In No. 9, the temperature of the artificial aging treatment was too high, but in this case, the hardness of the surface layer was lowered by the overaging, so that the mold galling resistance was deteriorated and the moldability was also lowered. Condition No. 10 is Zn
The cooling rate after the heat treatment for diffusion is slow, and further, the solution treatment as the final annealing-quenching is not performed, but in this case, the surface layer is not cured at all and the mold galling resistance is also high. It was bad. Further condition No. No. 12 has an adhesion amount of the plating layer of Fe-10% Zn alloy of 0.5 g / m
Since the amount of Zn was 2 and the amount of Zn was as small as 0.05 g / m 2 , the surface was not sufficiently hardened, and the mold galling resistance and corrosion resistance were poor.

【0036】[0036]

【発明の効果】実施例からも明らかなように、この発明
の製法によれば、成形加工性、強度を損なうことなく、
従来成形加工用に用いられていたAl−Mg系合金板よ
りもプレス加工時の耐型かじり性、耐きず性に優れかつ
塗装後の耐食性も優れた成形加工用アルミニウム合金板
を得ることができ、したがって自動車ボディシートその
他の陸運車両用部品、あるいは各種電気機器の筐体やシ
ャーシ等の用途に用いられるアルミニウム合金板の製造
に最適である。
As is clear from the examples, according to the manufacturing method of the present invention, the moldability and strength are not impaired.
It is possible to obtain an aluminum alloy plate for forming which is superior in die galling resistance during press working, scratch resistance and corrosion resistance after painting, compared to the Al-Mg alloy plate used for forming in the past. Therefore, it is most suitable for manufacturing aluminum alloy plates used for automobile body seats and other parts for land transportation vehicles, or as cases and chassis for various electric devices.

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 必須合金成分として2.0〜8.0%
(wt%、以下同じ)のMgを含有するAl−Mg系
ルミニウム合金板の表面に、Znを5%以上含むメッキ
層を、Zn量にして0.1g/m以上形成し、その後
400〜580℃に1440分以内加熱して、50℃/
分以上の冷却速度で冷却することを特徴とする、プレス
成形時の耐型かじり性、耐きず性、耐食性に優れたアル
ミニウム合金板の製法。
1. An essential alloying component of 2.0 to 8.0%
A plating layer containing 5% or more of Zn is formed on the surface of an Al-Mg-based aluminum alloy plate containing (wt%, the same applies hereinafter) Mg in a Zn amount of 0.1 g / m 2 or more. Then, heat to 400 to 580 ° C within 1440 minutes to obtain 50 ° C /
A method for producing an aluminum alloy sheet having excellent mold galling resistance, scratch resistance, and corrosion resistance during press forming, which is characterized by cooling at a cooling rate of not less than a minute.
【請求項2】 必須合金成分として2.0〜8.0%の
Mgを含有するAl−Mg系アルミニウム合金板の表面
に、Znを5%以上含むメッキ層を、Zn量にして0.
1g/m以上形成し、その後400〜580℃に14
40分以内加熱して、50℃/分未満の冷却速度で冷却
し、さらに350〜580℃の範囲内の温度に加熱して
50℃/分以上の冷却速度で冷却する最終焼鈍を施すこ
とを特徴とする、プレス成形時の耐型かじり性、耐きず
性、耐食性に優れたアルミニウム合金板の製法。
2. An essential alloying component of 2.0 to 8.0%
On the surface of the Al-Mg-based aluminum alloy plate containing Mg, a plating layer containing Zn in an amount of 5% or more was added in a Zn amount of 0.
1 g / m 2 or more, and then at 400 to 580 ° C for 14
A final anneal of heating within 40 minutes, cooling at a cooling rate of less than 50 ° C./minute, further heating to a temperature in the range of 350 to 580 ° C. and cooling at a cooling rate of 50 ° C./minute or more is performed. A characteristic method of manufacturing aluminum alloy sheets with excellent mold galling resistance, scratch resistance, and corrosion resistance during press forming.
【請求項3】 必須合金成分として2.0〜8.0%の
Mgを含有するAl−Mg系アルミニウム合金板の表面
に、Znを5%以上含むメッキ層を、Zn量にして0.
1g/m以上形成し、その後400〜580℃に14
40分以内加熱して、50℃/分以上の冷却速度で冷却
してから、80〜200℃の温度に1〜48時間加熱す
る人工時効処理を施すことを特徴とする、プレス成形時
の耐型かじり性、耐きず性、耐食性に優れたアルミニウ
ム合金板の製法。
3. An essential alloying component of 2.0 to 8.0%
On the surface of the Al-Mg-based aluminum alloy plate containing Mg, a plating layer containing Zn in an amount of 5% or more was added in a Zn amount of 0.
1 g / m 2 or more, and then at 400 to 580 ° C for 14
An artificial aging treatment of heating within 40 minutes, cooling at a cooling rate of 50 ° C./minute or more, and then heating at a temperature of 80 to 200 ° C. for 1 to 48 hours is performed. A method of manufacturing aluminum alloy sheets with excellent mold galling, scratch resistance, and corrosion resistance.
【請求項4】 必須合金成分として2.0〜8.0%の
Mgを含有するAl−Mg系アルミニウム合金板の表面
に、Znを5%以上含むメッキ層を、Zn量にして0.
1g/m以上形成し、その後400〜580℃に14
40分以内加熱して、50℃/分未満の冷却速度で冷却
し、さらに350〜580℃の範囲内の温度に加熱して
50℃/分以上の冷却速度で冷却する最終焼鈍を施して
から、80〜200℃の温度に1〜48時間加熱する人
工時効処理を施すことを特徴とする、プレス成形時の耐
型かじり性、耐きず性、耐食性に優れたアルミニウム合
金板の製法。
4. An essential alloy component of 2.0 to 8.0%
On the surface of the Al-Mg-based aluminum alloy plate containing Mg, a plating layer containing Zn in an amount of 5% or more was added in a Zn amount of 0.
1 g / m 2 or more, and then at 400 to 580 ° C for 14
Heating within 40 minutes, cooling at a cooling rate of less than 50 ° C./min, further heating to a temperature in the range of 350 to 580 ° C. and cooling at a cooling rate of 50 ° C./min or more. A method for producing an aluminum alloy plate excellent in mold galling resistance, scratch resistance and corrosion resistance during press forming, characterized by performing artificial aging treatment of heating at a temperature of 80 to 200 ° C for 1 to 48 hours.
JP4115346A 1992-04-07 1992-04-07 Manufacturing method of aluminum alloy plate with excellent mold galling resistance, scratch resistance and corrosion resistance Expired - Lifetime JP2513559B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4115346A JP2513559B2 (en) 1992-04-07 1992-04-07 Manufacturing method of aluminum alloy plate with excellent mold galling resistance, scratch resistance and corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4115346A JP2513559B2 (en) 1992-04-07 1992-04-07 Manufacturing method of aluminum alloy plate with excellent mold galling resistance, scratch resistance and corrosion resistance

Publications (2)

Publication Number Publication Date
JPH05287469A JPH05287469A (en) 1993-11-02
JP2513559B2 true JP2513559B2 (en) 1996-07-03

Family

ID=14660258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4115346A Expired - Lifetime JP2513559B2 (en) 1992-04-07 1992-04-07 Manufacturing method of aluminum alloy plate with excellent mold galling resistance, scratch resistance and corrosion resistance

Country Status (1)

Country Link
JP (1) JP2513559B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19962641B4 (en) * 1999-12-23 2012-04-19 Erlus Aktiengesellschaft Method for producing a microstructure on a metallic surface and microstructured metallic surface
EP1624093A1 (en) * 2004-08-04 2006-02-08 Aluminal Oberflächentechnik GmbH & Co. KG Coating of substrates of light metals or light metal alloys
JP2008127662A (en) * 2006-11-24 2008-06-05 Mazda Motor Corp Method of manufacturing metal made sliding member

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63186857A (en) * 1987-01-27 1988-08-02 Showa Alum Corp Manufacture of pressed product made of corrosion-resisting aluminum alloy

Also Published As

Publication number Publication date
JPH05287469A (en) 1993-11-02

Similar Documents

Publication Publication Date Title
JP5203772B2 (en) Aluminum alloy sheet excellent in paint bake hardenability and suppressing room temperature aging and method for producing the same
JP7044863B2 (en) Al-Mg-Si based aluminum alloy material
JPH0747807B2 (en) Method for producing rolled aluminum alloy plate for forming
JP2997156B2 (en) Method for producing aluminum alloy sheet at room temperature with slow aging excellent in formability and paint bake hardenability
US10704128B2 (en) High-strength corrosion-resistant aluminum alloys and methods of making the same
JP4799294B2 (en) Method for producing high formability Al-Mg alloy plate
JPH06256917A (en) Production of aluminum alloy sheet having delayed aging characteristic at ordinary temperature
JP2006241548A (en) Al-Mg-Si ALLOY SHEET SUPERIOR IN BENDABILITY, MANUFACTURING METHOD THEREFOR, AND AUTOMOTIVE SKIN PLATE OBTAINED FROM THE SHEET
JPH076022B2 (en) Aluminum alloy for glitter disk wheels
JP3849095B2 (en) Aluminum alloy plate for forming and method for producing the same
JPH09137243A (en) Aluminum alloy sheet excellent in bendability after press forming and its production
JP2513559B2 (en) Manufacturing method of aluminum alloy plate with excellent mold galling resistance, scratch resistance and corrosion resistance
JPH06340940A (en) Aluminum alloy sheet excellent in press formability and baking hardenability and its production
JP3754624B2 (en) Method for producing automotive aluminum alloy panel material excellent in room temperature aging suppression and low temperature age hardening ability, and automotive aluminum alloy panel material
JP3749627B2 (en) Al alloy plate with excellent press formability
JPH0547615B2 (en)
JPH05331588A (en) Aluminum alloy sheet for forming excellent in flange formability and its production
JPH10237576A (en) Aluminum alloy sheet excellent in formability, baking finish hardenability, chemical conversion treatment property, and corrosion resistance and its production
JPH0247234A (en) High strength aluminum alloy for forming having suppressed age hardenability at room temperature and its manufacture
WO2019013744A1 (en) High-strength corrosion-resistant aluminum alloy and method of making the same
JP3208234B2 (en) Aluminum alloy sheet for forming process excellent in formability and method for producing the same
JPH0257656A (en) Aluminum alloy for automobile panel having excellent zinc phosphate treatability and its manufacture
JPH06220564A (en) Aluminum alloy excellent in corrosion resistance and undercoat coating treatability and its production
JPH10310835A (en) Aluminum alloy sheet excellent in strength, stretcher strain mark resistance and bendability and its production
JPH0660366B2 (en) Aluminum alloy sheet for zinc phosphate treatment and method for producing the same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960206