JP2504397B2 - 水素吸蔵合金電極 - Google Patents

水素吸蔵合金電極

Info

Publication number
JP2504397B2
JP2504397B2 JP60025228A JP2522885A JP2504397B2 JP 2504397 B2 JP2504397 B2 JP 2504397B2 JP 60025228 A JP60025228 A JP 60025228A JP 2522885 A JP2522885 A JP 2522885A JP 2504397 B2 JP2504397 B2 JP 2504397B2
Authority
JP
Japan
Prior art keywords
hydrogen storage
electrode
storage alloy
alloy electrode
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60025228A
Other languages
English (en)
Other versions
JPS61185863A (ja
Inventor
基 神田
清志 光安
えり子 新長
優治 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP60025228A priority Critical patent/JP2504397B2/ja
Publication of JPS61185863A publication Critical patent/JPS61185863A/ja
Application granted granted Critical
Publication of JP2504397B2 publication Critical patent/JP2504397B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/242Hydrogen storage electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、水素吸蔵合金を主要構成材料とする水素吸
蔵合金電極に係わり、詳しくはその電極寿命の向上に関
するものである。
〔発明の技術的背景とその問題点〕
水素吸蔵合金を主要構成材料とする、いわゆる水素吸
蔵合金電極は、アルカリ水溶液の中で電気化学的に水素
を吸蔵し、比較的大きな電極容量を示すことから、電池
負極への応用等が考えられている。その場合の大きな問
題点の一つは、寿命が短いことである。
水素吸蔵合金電極の寿命が短い理由は、水素吸蔵合金
が一般に酸化されやすい金属元素を成分の一つとしてお
り、それが選択的に酸化されることによつて、本来の合
金組成とは異なつたものに変化するためである。すなわ
ち、例えば、最も代表的な合金であるLaNi5について
は、La(ランタン)が極めて酸化されやすい。特にこの
電極が、電池負極に使われるような場合、正極から発生
する酸素ガスに直接さらされるが、このときLaは急激に
酸化される。このような状況は他の水素吸蔵合金につい
ても全く同様であつて、例えばMg2NiではMgが、ZrNiで
はZrが、TiMnではTiもMnも、それぞれ酸化されやすく、
これらの合金からなる電極の寿命はこのために短かいも
のとなつている。
〔発明の目的〕
本発明の目的は、上記の電極に対する酸化性の雰囲気
を弱めることによつて酸化されやすい金属元素の酸化を
できる限り抑制し電極寿命の向上を図ることである。
〔発明の概要〕
本発明の特徴は、電極を構成する水素吸蔵合金粉末の
粒子のそれぞれの表面を炭素質で被覆し、合金粉末自体
がなるべく酸化性の雰囲気に曝されないようにするこ
と、さらには、その炭素に酸素還元触媒を付与して、酸
素がその触媒上で還元されるようにすることによつて、
合金中の酸化されやすい金属元素の酸化をおくらせ、電
極寿命の向上を図ることである。
本発明の場合は、炭素質は電極抵抗を低減する効果が
ある。また被覆する炭素質は、多孔性であってかつ、非
晶質、乱層構造、黒鉛構造のいずれか1つ以上の構造を
有する炭素物質である。このような構造を有する炭素物
質は例えば有機物の熱分解によって生成させることがで
きる。セルロースを熱分解する場合を例にとれば二百数
十度℃までに脱水、400℃以下で主鎖の炭素結合の開環
が起こり、400℃を越えると芳香族化が進む。つまり熱
処理条件によって低温では非晶質の炭素物質、ついで芳
香族化した炭素からなる網面層が積層した乱層構造を有
する炭素物質、さらに温度を上昇させると部分的に結晶
性が向上した乱層構造と黒鉛構造が共存した構造を有す
る炭素物質を得ることができる。なおかかる方法によっ
て調製された炭素物質は有機物の熱分解によって発生す
るガスが炭素物質に解放気孔を形成するため一般に多孔
性となるため、合金粒子と電解液の接触は十分に行なわ
れ、電極反応の進行に対しては妨害にはならない。
多孔性炭素を水素吸蔵合金粉末に付着させる方法とし
ては、粒子表面に強固に付着させるために、合金粉末を
炭水化物の高粘度水溶液中に浸漬した後、これを非酸化
性雰囲気中で乾留することが望ましい。また他にスパツ
タ法によつて合金粉末表面に付着させてもよいし、他の
方法でもよい。また、さらにその上に寄与する酸素還元
触媒としては、銀、白金等の貴金属触媒あるいはフタロ
シアニン、ポルフイリンといつた有機錯体系触媒のいず
れでもよい。
用いられる水素吸蔵合金としては、LaNi5,MmNi5(Mm:
ミツシユメタル)を代表とするランタン系元素を含む合
金、およびそれらのうち金属の一部を他の元素で置換し
た合金のほかに、TiNi系、TiMn系、TiCu系、FeTi系、Zr
Ni系、MgNi系など他の水素吸蔵合金があげられ、又これ
らの粒径は数十μm以下とする事が好ましい。
〔発明の実施例〕
次に本発明を実施例にて説明する。まず、用いる水素
吸蔵合金としてMmNi4.2Mn0.8を選んだ。これは平衡圧が
30℃で約0.4atmである。これを粉砕して粒径を最大で5
μm程度にそろえておく。
〈実施例−1〉:シヨ糖(C12H22O11)の60%溶液を高
粘度水溶液として用いた。この溶液20gの上記MmNi4.2Mn
0.8を加え、よく撹拌した。この後、これを窒素気流中
(流速100ml/min)にて400℃、3時間乾留した。とりだ
した水素吸蔵合金粉末表面は黒化し、よく炭素が付着し
ていた。次に前記合金粉末100gに対し、結着剤として10
%のポリテトラフルオロエチレン(PTFE)を加え、よく
混合した後ローラで厚さ0.5mmのシート状物質を作成し
た。次いで、前記シートを2枚用意し、その中間にニツ
ケル製のネツトをはさみ、400kg/cm2の圧力でプレス
し、厚さ0.8mmの電極を形成した。次いで前記電極体を
その面積1cm2程度に切りだし、これを測定用の電極体
とした。この中には約0.35gのMmNi4.2Mn0.8が含まれて
いる。
〈実施例−2〉:実施例−1で得た表面に炭素を被覆し
たMmNi4.2Mn0.8の粉末を、コバルトフタロシアニンを溶
解したジメチル・ホルムアミド(DME)溶液に5分間浸
漬した後、とりだして乾燥した。これを用いて実施例−
1と全く同様な方法で作成し、電極体とした。
〈比較例−1〉:表面に全く炭素を被覆しないMmNi4.2M
n0.8の合金粉末を用いて、上記と同様の方法で作成し、
電極体とした。
〈比較例−2〉:炭素質を被覆しないMmNi4.2Mn0.8の合
金粉末に、活性炭0.5%を加えて、上記と同様の方法で
作成し、電極体とした。
このようにして作成した電極体の測定は第1図に示す
ようなセルを用いて行つた。第1図の1は本発明に係わ
る電極体であり負極として作用する。2はセパレータ3
を介して正極として使われるニツケル極(NiOOH電極)
であり、その容量は十分大きくしてある。これらはホル
ダー4でおさえられている。これをセルケース5に入れ
るが、そこには酸素ガス導入口6を取りつけ、測定中ず
つと電解液7が酸素で飽和されているようにする。電極
寿命の測定は、負極と正極の間を一定電流で充放電を行
うことによつて求めた。充電、放電とも電流は、水素吸
蔵合金1gあたり85mAとし、充電は2時間、放電は端子電
圧0.95Vになつた時点までとした。
測定結果を第2図に示す。第2図に示されるように、
比較例−1の寿命(最初の容量の50%になる時点のサイ
クル数)130サイクル、比較例−2の160サイクルに比較
し、実施例−1では180サイクル、実施例−2では210サ
イクルの寿命となり、効果のあることが認められる。
〔本発明の効果〕
以上示したように、水素吸蔵合金電極において水素吸
蔵合金粉末の表面を炭素質で被覆すること、さらにそれ
に酸素還元触媒を付与することは、電極寿命を向上させ
る上で効果的である。
【図面の簡単な説明】
第1図は寿命測定装置用のセルを示す断面図、第2図は
本発明の効果を示す特性図である。 1……水素吸蔵合金電極

Claims (2)

    (57)【特許請求の範囲】
  1. 【請求項1】水素吸蔵合金電極を構成する水素吸蔵合金
    粒子表面が炭素質により被覆されていることを特徴とす
    る水素吸蔵合金電極。
  2. 【請求項2】表面を被覆している炭素質に酸素還元触媒
    を担持したことを特徴とする特許請求の範囲第1項記載
    の水素吸蔵合金電極。
JP60025228A 1985-02-14 1985-02-14 水素吸蔵合金電極 Expired - Lifetime JP2504397B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60025228A JP2504397B2 (ja) 1985-02-14 1985-02-14 水素吸蔵合金電極

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60025228A JP2504397B2 (ja) 1985-02-14 1985-02-14 水素吸蔵合金電極

Publications (2)

Publication Number Publication Date
JPS61185863A JPS61185863A (ja) 1986-08-19
JP2504397B2 true JP2504397B2 (ja) 1996-06-05

Family

ID=12160109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60025228A Expired - Lifetime JP2504397B2 (ja) 1985-02-14 1985-02-14 水素吸蔵合金電極

Country Status (1)

Country Link
JP (1) JP2504397B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0677450B2 (ja) * 1986-06-13 1994-09-28 松下電器産業株式会社 密閉形ニツケル−水素蓄電池
DE3702138C2 (de) * 1987-01-24 1994-10-13 Varta Batterie Elektrode mit Speichervermögen für Wasserstoff zur Durchführung von elektrochemischen und chemischen Reaktionen
JPS6481169A (en) * 1987-09-21 1989-03-27 Sanyo Electric Co Manufacture of hydrogen storage alloy electrode
WO1997002904A1 (en) * 1995-07-12 1997-01-30 E.I. Du Pont De Nemours And Company Improved fluoropolymer adhesion
US6579645B2 (en) 2000-03-28 2003-06-17 Sanyo Electric Co., Ltd. Hydrogen absorbing alloy for electrode, hydrogen absorbing alloy electrode and alkaline storage battery
CN110482488B (zh) * 2019-09-11 2021-12-14 广东省稀有金属研究所 一种复合储氢材料、制备方法及其应用

Also Published As

Publication number Publication date
JPS61185863A (ja) 1986-08-19

Similar Documents

Publication Publication Date Title
US4752546A (en) Electrochemical cell
US4822699A (en) Electrocatalyst and fuel cell electrode using the same
EP1708297A1 (en) Powdery material, electrode member, method for manufacturing same and secondary cell
JP2504397B2 (ja) 水素吸蔵合金電極
JP2655810B2 (ja) アルカリ二次電池及び触媒性電極体の製造法
JP3019978B2 (ja) 電気化学的電池及び電気化学的活性物質とその製造方法
JPH07282862A (ja) ガス拡散電極を備えた電池並びにその充電及び放電方法
Lee et al. Self-discharge behaviour of sealed Ni-MH batteries using MmNi3. 3+ xCo0. 7Al1. 0− x anodes
JP3104230B2 (ja) 水素吸蔵電極とその製造法及びそれを用いた酸化金属―水素蓄電池
JPH1074523A (ja) 燃料電池用アノード電極触媒とその製造方法、燃料電池用アノード電極及び燃料電池
JPS5937667A (ja) 金属酸化物・水素電池
JPS5854564A (ja) ガス拡散電極用多孔質触媒層
JPH01186561A (ja) 燃料電池
JPH02281560A (ja) ニッケル―水素アルカリ蓄電池
JPH084003B2 (ja) アルカリ蓄電池用水素吸蔵合金電極及びその製造方法
JPS58123675A (ja) ボタン形空気電池
JPS63301461A (ja) アルカリ蓄電池用非焼結式正極
JPS6355857A (ja) 密閉型アルカリ蓄電池
JP2558624B2 (ja) ニツケル−水素アルカリ蓄電池
JPH01132055A (ja) 燃料電池用電極触媒層の製造方法
JPH0797497B2 (ja) 水素吸蔵電極
JPH0351056B2 (ja)
JPH09259870A (ja) 水素吸蔵合金電極およびその製造法
JPS62154464A (ja) 燃料電池用電極触媒層
Britton Lightweight nickel electrode for nickel hydrogen cells and batteries

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term